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Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)
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André Fialho Coelho

Dezembro/2019

Orientador: Fernando Cesar Lizarralde

Programa: Engenharia Elétrica

O presente trabalho apresenta uma estrutura que permite a realização de telema-

nipulação aérea estável e de alto desempenho com manipuladores aéreos completa-

mente atuados. A fim de cumprir tal objetivo, um controlador baseado em passivi-

dade no domı́nio do tempo foi aplicado a fim de lidar com as fontes de instabilidade

introduzidas pelo canal de comunicação, como atrasos, perda de pacotes e jitter.

Além disso, foi desenvolvido um compensador de desvio baseado na abordagem de

passividade no domı́nio do tempo (TDPA) visando melhorar as caracteŕısticas de

sincronização de posição do sistema de teleoperação. Além de compensar o desvio

causado pelo controlador de passividade, o método proposto garante que as forças de

teleoperação permaneçam dentro de uma faixa segura de magnitude. A abordagem

de compensação de desvio também foi estendida a fim de permitir sua aplicação a

robôs com múltiplos graus de liberdade, incluindo o DLR Suspended Aerial Manipu-

lator (SAM). A eficácia do compensador de desvio proposto foi demonstrada através

de simulações e experimentos em hardware. Somado a isso, devido à redundância

de tais sistemas robóticos, uma estrutura de controle de corpo completo foi aplicada

a fim de permitir que o operador comande poses de efetuador no espaço cartesiano

enquanto uma tarefa secundária é realizada de forma autônoma no espaço nulo, sem

que o sistema de teleoperação seja afetado. Validação numérica foi realizada a fim

de demonstrar a aplicabilidade da estrutura proposta a cenários de telemanipulação

aérea sujeita a atrasos de comunicação.
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This thesis presents a framework to allow stable and performant aerial telema-

nipulation with fully-actuated aerial manipulators. In order to fulfill this objective

a time-domain passivity-based controller was applied to cope with the sources of

instability introduced by the communication channel, namely time delay, package

loss, and jitter. Additionally, in order to improve the position synchronization char-

acteristics of the teleoperation system, a Time Domain Passivity Approach (TDPA)

based drift compensator was developed, which, in addition to compensating the

drift caused by the passivity controller, ensures that the teleoperation forces remain

within a safe range. The drift-compensation approach was also extended to allow its

application to multi-DoF robots, including the DLR Suspended Aerial Manipulator

(SAM). The efficacy of the proposed drift compensator was demonstrated through

simulations and hardware experiments. Adding to that, due to the redundancy of

such systems, a whole-body control framework was applied in order to allow the

human operator to command Cartesian end-effector poses while a secondary task is

autonomously fulfilled in the null space without disturbing the teleoperation system.

Numerical validation was performed in order to demonstrate the applicability of the

proposed framework to time-delayed aerial telemanipulation scenarios.
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Chapter 1

Introduction

1.1 Aerial Manipulation

The use of unmanned aerial vehicles (UAVs) as a flying base for robotic manipulators

has been object of intensive research in the recent years [1–5]. One of the main goals

of such systems is to replace and assist humans in tasks as inspection and repairing

of bridges, high-voltage electric lines, and wind-turbine rotor blades [2].

Despite the rapid development of new technologies in this field, in order to be

able to replace humans in dangerous tasks, two aspects of aerial manipulators still

have to be explored:

• Safety and reliability;

• Power and dexterity.

The first aspect relates to the capacity of robotic systems to match human capa-

bilities in terms of generated forces and velocities. The second characteristic refers

to the ability of performing tasks correctly without putting material resources and

human integrity at risk.

To this date, multiple small aerial manipulation systems have been developed

in order to perform safe and reliable tasks [1, 2, 6–8]. However, most of them lack

the necessary power to perform human tasks. On the other hand, some large-sized

aerial manipulators can match human power and dexterity [9–11]. Nevertheless,

those lack the necessary safety and reliability to perform tasks.

The large-sized platforms developed to this date consist of an industrial robotic

manipulator attached to an autonomous helicopter. The helicopter is meant to fly

close enough to the manipulation object and hover above it while the robotic arm

performs the manipulation task. Although being comparable to human workers in

terms of strength, some safety issues might appear when dealing with such aerial

manipulators. The first issue relates to the size of the rotor blades, which restricts
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Figure 1.1: A prototype of the Suspended Aerial Manipulator.

the application of those systems to open spaces. Adding to that, manipulation tasks

involve making direct contact with the environment and, in case of unpredictably

high contact forces, the stability of the helicopter might be jeopardized, causing the

system to crash.

In that scope, a novel Suspended Aerial Manipulator (SAM) has been developed

in order to allow powerful aerial manipulation while enhancing the safety of the task

[12]. The system consists of an industrial robotic manipulator fixed to an octarotor,

which is attached to an autonomous helicopter or a crane by means of actuated

cables (see Fig. 1.1). With this novel construction, the safety of the system is

enhanced since the helicopter rotor blades are far from the manipulation task space.

The octarotor, which is used to stabilize the base of the manipulator, is less prone

to collide with the environment due to its reduced size. Adding to that, in case

an unexpected collision happens, the outcome would be less disastrous for the two

following reasons. First, due to their smaller size compared to the helicopter blades,

the octarotor blades do not cause as much hazard. Second, in case an accident

happens, the helicopter could still be kept stable and would be able to fly back to a

desired home location.

In order to be considered suitable, the aerial manipulator has to be able to

stably perform aerial manipulation tasks in a safe and reliable way. Due to the

complexity of aerial manipulation applications, bilateral teleoperation presents itself

as a solution to tasks which would not be otherwise autonomously performed.

Another interesting issue that comes out when dealing with the Suspended Aerial

Manipulator is related to its redundancy. Due to its large number of degrees of

freedom, such system can be present internal motions, which do not affect the end-

effector at kinematic level. However, if not properly treated, these motions can

dynamically interfere in the end-effector task being performed, putting its passivity

2



properties at risk.

1.2 Bilateral Telemanipulation

Despite being able to autonomously fulfill a significant range of objectives, state-of-

the-art robots still need human assistance to perform more complex or unforeseen

tasks [13]. The level of human participation in robotic tasks can range from super-

vised autonomy [14] to direct telemanipulation [15–18]. In the latter, an important

characteristic of the telemanipulation setup is to be able to passively interact with

the environment and the human operator.

1.2.1 Time Domain Passivity Approach

Among the passivity-based telemanipulation approaches [19, 20] developed to solve

that issue, Time Domain Passivity Approach (TDPA, [21, 22]) presents the ad-

vantage of adapting the energy dissipation necessary to passivate the teleoperation

channel based on measurements of the flow and effort variables acting on the sys-

tem. This characteristic allows the implementation of a model-independent passivity

observer and passivity controller (PO-PC) pair, which is robust to varying time de-

lays and package losses in the communication channel. The adaptive characteristic

of TDPA results in better performance compared to other passivity-enforcing con-

trollers for teleoperation, e.g., wave-variable methods (see [23]).

Nevertheless, in spite of being able to render the communication channel passive,

TDPA presents the drawback of creating position drift between master and slave

devices whenever the PO-PC pair is applied in admittance configuration, which is

necessary in many telemanipulation architectures ([15, 18, 22, 24]).

1.2.2 Drift Compensation in TDPA

In order to tackle this issue, Artigas et al. [25] proposed a compensator that modifies

the existing PO-PC in order to inject energy into the system to compensate for the

existing drift. Later, Chawda et al. [26] adapted Artigas’ compensator in order

keep the original TDPA formulation by using a virtual velocity injection source

before the PO-PC. Despite being able to compensate for the position drift, these

two methods present a drawback. As mentioned by Chawda et al. [26], force spikes

are generated when drift compensation happens after significant position drift has

been accumulated. This behavior affects the natural feeling desired for teleoperation

since force spikes are suddenly felt by the operator during free-space motion or wall

contact. Adding to that, these spikes can put the hardware and the human operator’s

integrity at risk.

3



Moreover, the efficacy of TDPA-based compensation methods has been shown

through its application to one-degree-of-freedom (1-DoF) devices or in a concate-

nated manner, treating each DoF as an independent system. Nevertheless, no multi-

DoF application of TDPA-based compensators has been tackled to this date.

1.3 Problem Statement

In light of that, in order to allow bilateral telemanipulation of the Suspended Aerial

Manipulator, the following issues have to be tackled:

• Applying a local control framework that allows bilateral telemanipulation of

the end-effector without having to take the energy acting in its null space into

account;

• Developing a multi-DoF drift compensation method, that preserves the per-

formance of the local controller in the presence of delays while keeping the

control forces in their normal range.

1.4 Contribution

In that scope, this thesis describes the steps to applying a previously presented

dynamic decoupling controller for kinematically redundant robots in order to allow

passive bilateral teleoperation of the end-effector of redundant aerial manipulators,

like the SAM. In addition, a novel drift compensation method for TDPA-based

teleoperation is proposed, which presents the following advantages:

• As in [26], the approach is also based on TDPA and carries along the advan-

tages of such formulation.

• The approach provides smoother drift compensation (with lower forces caused

by the compensator), enhancing the natural feeling of free-space motion and

wall contact.

• A way of tuning the behavior of the compensator in order to achieve desired

performance (smoothness and compensation speed) is provided.

An extension of the previously presented drift compensators [25, 26] as well as

the proposed one to multi-DoF robotic systems is also provided. In addition, a

convergence analysis is carried out. It is shown that, if the gains are kept within a

given range and if allowed by the passivity condition, the presented method is able

to successfully reduce the accumulated drift caused by admittance type passivity

controllers in TDPA.
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The proposed framework, as well as its composing elements, is validated through

numerical simulation and hardware experiments, which show its efficacy in allowing

stable bilateral telemanipulation of aerial manipulators and other redundant robots.

1.5 Thesis Outline

The remainder of this thesis is divided as follows: Chapter 2 provides an introduction

to Lie groups and Lie algebra as well as geometric control techniques that are used in

the subsequent chapters. Chapter 3 provides an overview of the Time Domain Pas-

sivity Approach, introduces the proposed 1-DoF and multi-DoF drift compensators,

and shows experimental results of their implementation. Chapter 4 presents whole-

body control techniques used to decouple the Cartesian and null-space dynamics

of redundant manipulators in order to perform Cartesian-space teleoperation. In

addition, a two-task controller for the Suspended Aerial Manipulator is proposed

and validated though Numerical simulation. Chapter 5 provides a numerical evalu-

ation of time-delayed bilateral teleoperation of the Cartesian space of the redundant

Aerial Manipulator with drift compensation and whole-body control techniques.

Lastly, Chapter 6 concludes the thesis and briefly discusses the future work.
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Chapter 2

Geometric Control of Robot

Manipulators

2.1 Overview

This chapter briefly introduces two useful mathematical groups, namely, the Special

Orthogonal group of rigid body rotations, SO(3), and the Special Euclidean group

of rigid body motions, SE(3). In addition, their Lie algebras [27], which are used to

represent rigid-body velocities and time-derivatives of rigid body motions, are also

presented. After describing a way defining rigid-body poses and velocities as ele-

ments of these groups and presenting the kinematics and dynamics of manipulators,

proportional (P) and proportional-derivative (PD) control techniques are described,

which allow regulation and tracking tasks to be performed on these groups. This

chapter is mainly based on the works of BULLO and LEWIS [27], BULLO and

MURRAY [28], MURRAY [29]. The reader is referred to those references for a more

comprehensive discussion on geometric control of robots.

2.2 The SO(3) and SE(3) Groups and Their Lie

Algebras

2.2.1 The Special Orthogonal Group SO(3)

The SO(3) group is a subgroup of the general linear group of 3× 3 nonsingular real

matrices, GL(3,R), which can be defined as [29]

SO(3) = {R ∈ GL(3,R) : RTR = I, det R = 1}. (2.1)
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The elements of this group can be used to represent the basis vectors of a right-

handed coordinate frame in R3 with respect to another coordinate frame. They also

can be used to represent rotation or change of coordinate frame actions on elements

of R3 defined by linear maps R : R3 → R3 of the form R(x) = Rx.

The Lie algebra of SO(3) is so(3). An element of so(3) can be represented in

matrix form as

ϕ̂ =

 0 −ϕ3 ϕ2

ϕ3 0 −ϕ1

−ϕ2 ϕ1 0

 . (2.2)

It is also useful to represent elements of so(3) in R3 as ϕT =
[
ϕT1 ϕT2 ϕT3

]T
, such

that

ϕ̂x = ϕ× x , ∀x ∈ R3 , (2.3)

where “×” is the regular vector product.

2.2.2 The Special Euclidean Group SE(3)

The Special Euclidean Lie group SE(3), whose elements are of the form g =

(R, p) ∈ SO(3) × R3, where R ∈ SO(3) and p ∈ R3 may be used to express

the pose of a rigid body in space. Elements of the SE(3) can also be expressed in

matrix form as

g =

[
R p

0 1

]
∈ SE(3) . (2.4)

The action of this group on vectors in R3 is defined by g(x) = Rx + p, which can

be represented by the matrix product[
x0

1

]
=

[
R p

0 1

][
x

1

]
(2.5)

Furthermore, the velocity of a rigid body can be expressed by elements of the

Lie algebra of SE(3), namely se(3), as

[V ]∧ =

[
ω̂ v

0 0

]
∈ se(3) , (2.6)

where ω̂ ∈ so(3) is the angular velocity and v ∈ R3 is the linear velocity component.

Adding to that, due to the isomorphism between se(3) and R6, it is useful to define

the operators [·]∧ : R6 → se(3) and [·]∨ : se(3) → R6, such that the velocity of a

rigid body can be expressed as V =
[
ωT vT

]T
∈ R6, which can be represented in

body (BV ) or in spatial frame (SV ) [29].
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It is important to note that elements of the Lie algebra of both SO(3) and SE(3)

can be used to either represent the matrix logarithmic state of the system (see

Section 2.2.3) or its velocity [28]. The logarithmic state is denoted by X = (ϕ̂, q)

while the velocity is denoted by [V ]∧ = (ω̂, v), where ϕ̂ and ω̂ ∈ so(3) represent

the logarithmic state and the velocity of elements of SO(3), respectively.

2.2.3 Exponential and Logarithmic Maps

In both SO(3) and SE(3) there are special maps between the groups and their Lie

algebra, which, to cite a few, can be used to define metrics on the group and express

the solution to an initial value problem. Those maps are defined as follows [28]

Definition 2.2.1 (Exponential map). Given ϕ̂ ∈ SO(3) and X = (ϕ̂, q) ∈ SE(3),

expSO(3)(ϕ̂) = I + sin||ϕ||
ϕ̂

||ϕ||
+ (1− cos||ϕ||)

ϕ̂2

||ϕ||2
, (2.7)

expSE(3)(X) =

[
expSO(3)(ϕ̂) A(ϕ)q

0 1

]
, (2.8)

where || · || is the standard Euclidean norm, expSO(3)(0) = I, and

A(ϕ) = I +

(
1− cos||ϕ||
||ϕ||

)
ϕ̂

||ϕ||
+

(
1−

sin||ϕ||
||ϕ||

)
ϕ̂2

||ϕ||2
, (2.9)

A(0) = I , (2.10)

A(ϕ)−1 = I−
1

2
ϕ̂+ (1− α(||ϕ||))

ϕ̂2

||ϕ||2
, (2.11)

where

α(||ϕ||) , ||ϕ||
2

cot

(
||ϕ||

2

)
. (2.12)

In addition, a useful identity is

A(ϕ)−T = A(ϕ)−1 expSO(3)(ϕ̂) , (2.13)

where

A(ϕ)−T = I +
1

2
ϕ̂+ (1− α(||ϕ||))

ϕ̂2

||ϕ||2
. (2.14)

Definition 2.2.2 (Logarithmic map). Given (R ,p) ∈ SO(3)×R3 such that tr(R) 6=
−1,

logSO(3)(R) =
γ

2sinγ

(
R−RT

)
∈ so(3) , (2.15)
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where cosγ = 1
2
(tr(R)− 1) and |γ| < π. Moreover,

logSE(3)(R, p) =

[
ϕ̂ A(ϕ)−1p

0 1

]
∈ se(3) , (2.16)

where ϕ̂ = logSO(3)(R).

2.2.4 Adjoint Map and Lie Bracket

Along with the previous ones, there are another two definitions, which are useful in

geometric control theory.

Definition 2.2.3 (Adjoint map and Lie bracket). Given X, Y ∈ se(3) and g =

(R ,p) ∈ SE(3),

Adg(Y ) = g−1Y g , (2.17)

[X,Y ] = XY − Y X, (2.18)

are the adjoint map and the Lie bracket, respectively. Furthermore, given [V ]∧ ∈
se(3) and V ∈ R6 as its column vector representation,

Adg([V ]∧) =

[
R 0

p̂R R

]
V . (2.19)

2.2.5 Dynamical Systems and Discrete-Time Integration on

SE(3)

A dynamical system with state g ∈ SE(3) evolves according to the following differ-

ential equation in continuous time [28]

ġ(t) = [SV (t)]∧ g(t) = g(t) [BV (t)]∧ , (2.20)

where BV (t) and SV (t) are the body and spatial velocities of g at time t, which are

related through
SV (t) = Adg(t)BV (t) . (2.21)

The recursive solution to (2.20) in discrete time, given a set of initial conditions,

can be approximated to

g(k) = expSE(3)

(
[SV (k)]∧∆T

)
g(k − 1) , (2.22)

g(k) = g(k − 1) expSE(3)

(
[BV (k)]∧∆T

)
. (2.23)

10



2.3 Kinematics and Dynamics of Non-Redundant

Robotic Manipulators

The kinematics of a robotic manipulator can be understood as the map (or a set

thereof) between a space of generalized coordinates and the space of possible motions

of a point of interest on the robot. In general, a vector of generalized coordinates

is used to represent the joint angles of a manipulator with rotational joints at a

given moment. On the other hand, the Special Euclidean group is usually suitable

to represent the pose of a point of interest on the manipulator, usually the end-

effector. The joint space, Q, is embedded in Rn, where n is the number of joints of

the robot. Therefore, a set of joint angles at a given moment can be represented by

a vector q ∈ Rn. In addition, the end-effector pose can be represented by a vector

g ∈ SE(3). Finally, the forward-kinematic map between the two spaces of a given

manipulator can be represented by

g = f(q) , (2.24)

where f is assumed to be a differentiable map. Therefore, the relationship between

the time derivatives of q and the vector representation of the body velocity of g,

denoted by V ∈ R6 can be written as

V =
∂f

∂ q
q̇ = J(q) q̇ , (2.25)

where J(q) ∈ Rm×n is the so-called Jacobian matrix. Here m is the dimension of

the space used to represent the end-effector motions. In case SE(3) is used, m = 6.

See BULLO and LEWIS [27] for a discussion about dimensions of manifolds.

In case n = m and under the assumption of full row-rank, which is locally

achievable, the map J(q) will be a homeomorphism [27], and the (local) map from

Cartesian to joint space can be defined as

q̇ = J(q)−1 V . (2.26)

Moreover, the dynamic model of a robotic manipulator with n joints can be

represented in joint space as

M(q)q̈ +C(q, q̇)q̇ = τ −G(q) , (2.27)

where M (q) ∈ Rn×n is the inertia matrix, C(q, q̇)q̇ ∈ Rn is a vector of Coriolis

and centrifugal forces, G(q) ∈ Rn is the gravitational generalized torque vector,

and τ ∈ Rn is the control torque. Note that no external force other than gravity is
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assumed.

In order to represent the manipulator dynamics acting on the end-effector, a

change of coordinates can be performed as

Λx(q) =
(
J(q)M (q)−1 J(q)T

)−1
(2.28)

µx(q, q̇) = Λx(q)
(
J(q)M (q)−1C(q, q̇)−J̇(q)

)
J(q)−1 . (2.29)

Such formulation allows the manipulator dynamics to be written as

Λx(q)V̇ + µx(q, q̇)V = J(q)−T (τ −G(q)) , (2.30)

where Λx(q) and µx(q, q̇) are the Cartesian Inertia and Coriolis matrices. It is also

important to remark that the so-called passivity property holds for this group of

systems, i.e.
BV T

(
Λ̇(g)− 2µ(q, q̇)

)
BV = 0 . (2.31)

2.4 Geometric PD Control on SO(3) and SE(3)

This section introduces some results on geometric PD control on SO(3) and SE(3).

It starts by defining distance functions on those groups, which are later used to

define asymptotically stable controllers on both groups.

2.4.1 Distance Functions on SO(3)×R3 and Convergence on

SE(3)

In order to define stability and convergence on SE(3), two distance functions on

SO(3) and R3 can be defined as follows.

Definition 2.4.1 (Distance function on R3). Given a vector p ∈ R3, the regular

Euclidean norm

||p|| = (pTp)
1
2 (2.32)

is a distance function that defines the distance from p to the origin of R3.

Definition 2.4.2 (Distance function on SO(3)). Given an element R ∈ SO(3), a

distance function

||R||SO(3) = (ϕTϕ)
1
2 , (2.33)

where ϕ = [logSO(3)(R)]∨ ∈ R3, defines the distance of R to the identity element I.

Given these two definitions, a sufficient condition for convergence of a sequence

on SE(3) can be defined as follows.
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Lemma 2.4.1 (Double-geodesic convergence on SE(3)). Given a sequence {g(k) =

(R(k) ,p(k))}k∈N, where k is the index of a partition of a “time variable” as tp =

{t1, t2, .., tk, ...}, a sufficient condition for convergence of this sequence to the identity

element of SE(3) is

||p(k)|| < ||p(k − 1)|| ∧ |R(k)||SO(3) < |R(k − 1)||SO(3) ∀k . (2.34)

Sketch of Proof. Eq. 2.34 makes sure that, in matrix representation

lim
k→∞

R(k) = I ∧ lim
k→∞

p(k) = 0 , (2.35)

which implies that

lim
k→∞

g(k) =

[
limk→∞R(k) limk→∞ p(k)

0 1

]
= I . (2.36)

Furthermore, even though the function ||p(k)|| + |R(k)||SO(3) is not adjoint in-

variant [28], the above defined SO(3) and R3 distance functions can be used in

Lyapunov functions to prove stability of control systems on SE(3) (see [27]).

2.4.2 Double-Geodesic Regulation Control of Dynamical

Systems on SE(3)

In case the velocity variables can be directly command, the following lemma holds.

Lemma 2.4.2 (Double-geodesic kinematic regulation). Given the control system

ġ(t) = g(t) [BV (t)]∧ on SE(3) where values of BV (t) can be directly commanded

and Kω and Kv are positive definite symmetric matrices, the control law[
Bω
Bv

]
=

[
−KωlogSO(3)(R)

−RTKvp

]
, (2.37)

asymptotically stabilizes the state g at I, given any set of initial conditions

(R(0) ,p(0)), such that tr(R(0)) 6= 1

Proof. See [28].

On the other hand, if the control variable is acceleration and the system under

consideration is a fully actuated interconnection of rigid bodies with Cartesian (end-

effector) body velocities and SE(3) poses as the states, as is the case assumed in
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Sections 2.3 and 4.2.2, the system dynamics can be defined asġ = g[BV ]∧

Λ(g)BV̇ = −µ(g, BV )BV −N (g, BV ) + U ,
(2.38)

where Λ, µ, N are the inertia, Coriolis, and friction-gravity matrices and U is the

control wrench in body coordinates.

Lemma 2.4.3 (Stabilizing state-feedback control of mechanical systems). For the

above described system, the following control law

U(g, BV ) = N (g, BV )−

[
kωlogSO(3)(R)

kvR
Tp

]
−Kd

BV (2.39)

asymptotically stabilizes the state at identity, if positive-definite gains kv, kω ∈ R
and Kd ∈ R6×6 are used.

Proof. Asymptotic stability is proven using the following Lyapunov function [28].

W (g, BV ) =
kω
2
||R||2SO(3) +

kv
2
||p||2 +

1

2
BV TΛ(g)BV + ε

[
logSO(3)(R)

RTp

]T
Λ(g)BV ,

(2.40)

whose first derivative with respect to time is

Ẇ =


ϕ

p
Bω
Bv


T 

Q11 Q12 Q13 Q14

Q21 Q22 Q23 Q24

Q31 Q32 Q33 Q34

Q41 Q42 Q43 Q44



ϕ

p
Bω
Bv

 , (2.41)

where ϕ = logSO(3)(R) and

Q11 =− εkωI3 (2.42)

Q12 =03 (2.43)

Q13 =
ε

2
(Λ̇ωω + µωω − kdI3) (2.44)

Q14 =
ε

2
(Λ̇ωv + µωv) (2.45)

Q21 =QT
12 (2.46)

Q22 =− εkvI3 (2.47)
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Q23 =
ε

2
(R(Λ̇T

ωv + µvω) + ṘΛT
ωv) (2.48)

Q24 =
ε

2
(R(Λ̇vv + µvv − kdI3) + ṘΛvv) (2.49)

Q31 =QT
13 (2.50)

Q32 =QT
23 (2.51)

Q33 =− kdI3 + εA(ϕ)−1Λωω (2.52)

Q34 =
ε

2
(A(ϕ)−1 + I3)Λωv (2.53)

Q41 =QT
14 (2.54)

Q42 =QT
24 (2.55)

Q43 =QT
34 (2.56)

Q44 =− kdI3 + εΛvv , (2.57)

where the dynamic matrices are divided into 3× 3 blocks as

Λ(g) =

[
Λωω Λωv

ΛT
ωv Λvv

]
, µ(g, BV ) =

[
µωω µωv

µvω µvv

]
(2.58)

It can be noted that, assuming smooth and bounded dynamic matrices (i.e.,

away from singularities), stability can be proven by choosing ε small enough.

It is important to remark that the SO(3) and R3 distance functions described in

Section 2.4.1 are used in the Lyapunov function.

2.4.3 Double-Geodesic Tracking Control on SE(3)

As described in BULLO and MURRAY [28] whenever tracking is desired, a compo-

sition of the desired pose and the actual one can be defined as e , g−1d g = (Re,pe)

and a body-velocity error term Ve , V −Ade−1 Vd the following control law can be

applied in order to ensure tracking of the desired pose.

Lemma 2.4.4 (Trajectory tracking controller). Given the mechanical system from

(2.38), with e and Ve defined as above, the following controller asymptotically sta-

bilizes the error e at I ∈ SE(3).

U = Uff + Utr(g,V ,Vd, V̇d) + Ureg(e,Ve) , (2.59)
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where

Uff(g,V ) = (µ(g,V ) Ade−1 Vd +N (g,V )) (2.60)

Utr(g,V ,Vd, V̇d) = Λ(g) Ade−1(V̇d) + Λ(g)[Ade−1 Vd ,V ] (2.61)

Ureg(e,Ve) = −

[
−kωlogSO(3)(Re)

−kvRT
e p

]
−KdVe (2.62)

Proof. Taking the first derivative of Ve with respect to time yields

V̇e = V̇ − Ade−1 V̇d − [Ade−1 Vd ,V ] . (2.63)

By substituting the expression for V̇ from (2.38) and the proposed control law from

(2.59), the closed-loop dynamics satisfyė = e[Ve]∧

Λ(g)V̇e = −µ(g, BV )Ve + Ureg(e,Ve) .
(2.64)

It can be noted that, with the proposed control law, the problem simplifies to a

regulation task on the error coordinates. Therefore, similarly to Lemma 2.4.3, the

proposed law can be proven to asymptotically stabilize (ge, [Ve]
∧) at (I,0) ∈ SE(3)×

se(3) with the Lyapunov following function.

W (g, e,Ve) =
kω
2
||Re||2SO(3) +

kv
2
||pe||2 + V T

e Λ(g)Ve + ε

[
logSO(3)(Re)

RT
e pe

]T
Λ(g)Ve ,

(2.65)

whose time derivative would resemble (2.41) with the error coordinates instead of

the regular pose and velocity coordinates.
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Chapter 3

Time Domain Passivity

Approach-based Telemanipulation

with Drift Compensation

3.1 Overview

In addition to presenting state-of-the art time-domain techniques for enabling pas-

sive bilateral telemanipulation, this chapter aims at introducing novel approaches

for further improving the position synchronization capabilities of teleoperation sys-

tems. Initially, a drift compensation method for 1-DoF devices, firstly introduced in

COELHO et al. [30], is presented and compared to state-of-the-art methods through

experiments. Subsequently, a novel multi-DoF drift compensator, introduced in

COELHO et al. [31], is presented, which can be regarded as an extension of the

1-DoF methods presented to this date, including the one developed by the author

[30]. Experimental validation is provided through the application of the proposed

approach to Cartesian-space teleoperation of 3-DoF commercially available haptic

devices, as well as to the full 6-dimensional Cartesian Space of the DLR Bimanual

Haptic Device (HUG).

3.2 Passivity of Dynamical Systems

Before presenting the approach used to ensure stable bilateral telemanipulation, the

notion of passivity will be introduced in this section. The definitions presented here

are taken from KHALIL [32].

It is assumed that the systems which will be dealt with in this thesis can be
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represented (in local coordinates) by the following state model.

ẋ =f(x, u) (3.1)

y =h(x, u) , (3.2)

where f : Rn×Rp → Rn, s.t. f(0, 0) = 0, is locally Lipschitz [32] and h : Rn×Rp →
Rp, s.t. h(0, 0) = 0, is continuous. It is assumed that the system has the same

number of inputs and outputs.

Definition 3.2.1. The system (3.1)–(3.2) is said to be passive if there exists a

continuously differentiable positive semidefinite function W (x) (called the storage

function) such that

uTy ≥ Ẇ =
∂W

∂x
f(x, u), ∀ (x, u) ∈ Rn×Rp . (3.3)

Moreover, it is said to be

• lossless if uTy = Ẇ .

• input-feedforward passive if uTy ≥ Ẇ + uTφ(u) for some function φ.

• input strictly passive if uTy ≥ Ẇ + uTφ(u) and uTφ(u) ≥ 0, ∀u 6= 0 .

• output-feedback passive if uTy ≥ Ẇ + yTρ(y) for some function ρ.

• output strictly passive if uTy ≥ Ẇ + yTρ(y) and yTρ(y) ≥ 0, ∀ y 6= 0 .

• strictly passive if uTy ≥ Ẇ + ψ(x) for some positive-definite function ψ.

In all cases the inequality should hold for all (x, u).

It is important to remark that (3.3) is a condition on the power flow of the

system, which is given by the inner product between the system input and output

vectors [21] (or equivalently, the input covector applied to the output vector [27]). In

addition to that definition, an energy-based definition of passivity could be defined

as ∫ t

t0

u(τ)Ty(τ)dτ ≥ W (t)−W (t0), ∀ (y, u) ∈ Rp×Rp . (3.4)

In the approach defined subsequently, the passivity condition is defined as a

discrete-time version of (3.4). Since no previous knowledge of the system is as-

sumed, the computed inputs and outputs are adapted in order to fulfill the following

condition.

∆T
k∑
j=0

u(j)Ty(j) ≥ 0, ∀ (y, u) ∈ Rp×Rp , (3.5)
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where ∆T is the sampling interval. Assuming that the inputs and outputs do not

change between samples, condition (3.5) ensures that the system (3.1)–(3.2) is pas-

sive.

3.3 Time Domain Passivity Approach

3.3.1 Overview

Time Domain Passivity Approach [21, 22] is a widely used method to ensure stability

of bilateral teleoperation systems. It consists of measuring the energy flow in the

system and adaptively dissipating energy in order to enforce passivity (see (3.3)–

(3.5)). In contrast to methods where a damping element is designed for the worst

case scenario (e.g. [19, 20]), TDPA adds adaptive damping components in order to

dissipate only the necessary amount of energy, computed using measurements of the

forces and velocities being exchanged.

In mechanical control systems, the most common control inputs are forces and

torques, while the most common states are velocities and positions. One of the most

widely used teleoperation schemes is the position-force (P-F) architecture [33]. A

block diagram of this architecture is shown in Fig. 3.1. Tf and Tb are the forward

and backward delays, respectively. Vm and Vs are the velocities of the master and

slave devices. Fh, Fe, and Fs are the forces exerted by the human, the environment,

and the slave controller, respectively. Vsd is the delayed master velocity that serves

as reference to the slave, and Fm is the delayed slave computed force applied to the

master device.

Communication 
Channel

Human Master
Slave 

Controller
Slave Environment

Tb

Tf
Vsd + —

+ —

Vs

FeFsFmFh

Vm

+ —

Figure 3.1: Block diagram representation of a P-F teleoperation architecture.

A useful tool to facilitate the application of TDPA is to describe the elements

of the teleoperation system in circuit representation. This is achieved by using the

velocity-current and force-voltage analogies. Besides allowing for the use of simple

tools (e.g. Kirchoff’s laws) to derive the dynamic equations, the circuit represen-

tation also enables the network representation of the system. This is particularly
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important for TDPA, because it makes the power-conjugate pairs in the ports evi-

dent, enabling the computation of the energy flows in the system. From the block

diagram in Fig. 3.1, a network representation, where the subsystems exchange force

and velocity, can be derived. The network representation of the P-F architecture

is shown in Fig. 3.2. In this representation the velocity-force pairs become more

evident, and the energies at each node can be computed by taking the integral over

time of the product of these two quantities.

MasterHuman
Slave
Ctrl.

Comm.
Channel

Env.Slave
+

-
Fs

+

-
Fe

+

-
Fs

+

-
Fh

+

-
Fm

Vh Vm Vsd Vs Ve

Figure 3.2: Network representation of a P-F teleoperation architecture.

In TDPA, the communication channel is usually represented by one or more Time

Delay Power Networks (TDPNs, [22]), which are two-port networks that exchange

velocities and forces. In addition to constant or variable time delays, TDPNs can

also model package losses in the signals being transmitted. Fig. 3.3 shows the signal

flow of a TDPN. EM and ES are the energies computed on the master and slave

sides, respectively.

TDPNf1

v1

f2

+

v2

+

Figure 3.3: Signal flow of the TDPN.

The pairs v1/f1 and v2/f2 from Fig. 3.3 are the flow-effort pairs on each side of

the TDPN, such that

EM(k) = ∆T
k∑
j=0

f1(j)
Tv1(j), (3.6)

ES(k) = ∆T
k∑
j=0

−f2(j)
Tv2(j), (3.7)
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with v1, v2, f1, f2 being column vector representations in Rn of the flow and effort

variables.

The energies on the sides of the TDPN are divided according to the direction of

their flow (into or out of the TDPN) as

EM(t) = EM
in (t)− EM

out(t), ∀t ≥ 0,

ES(t) = ES
in(t)− ES

out(t), ∀t ≥ 0,
(3.8)

where EM
in (t), EM

out(t), E
S
in(t), and ES

out(t) are monotonically increasing and non-

negative functions, representing the energies flowing in and out of the master and

the slave. Note that these conditions can be regarded as discrete-time versions of

the one presented in (3.3) with forces as inputs and velocities as outputs.

It is well known that, due to the presence of delays, the energies computed

on each side of the TDPN are not readily available on the other side. However,

the passivity of the channel can still be enforced through the following sufficient

conditions

EL2R
obs (t) = EM

in (t− Tf (t))− ES
out(t) ≥ 0, ∀t ≥ 0, (3.9)

ER2L
obs (t) = ES

in(t− Tb(t))− EM
out(t) ≥ 0, ∀t ≥ 0, (3.10)

where EL2R
obs (t) and ER2L

obs (t) are the observed left-to-right and right-to-left energy

flows observed on the right and left-hand sides of the TDPN.

Following the framework presented by ARTIGAS et al. [34], using a hybrid of cir-

cuit and network representation, the master and slave sides of the P-F architecture

can be represented as shown in Figs. 3.4 and 3.5, respectively. There, the communi-

cation channel is represented by a TDPN. Vm and Vs are the velocities of the master

and slave devices. Fs is the force exerted by the slave-side controller. Ṽsd is the de-

layed master velocity and F̂m is the delayed slave control force applied to the master

device. Vsd and Fm are the delayed velocity and force after being modified by the

passivity controllers (PC). α and β are the impedance and admittance-type pas-

sivity controllers, respectively, while Vad is the drift compensation velocity source,

which will be addressed subsequently.

3.3.2 Passivity Observer

In order to take into account the energy removed by the passivity controllers up to

the previous time steps (EM
PC(k − 1) and ES

PC(k − 1)), the energy flow on each side
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Figure 3.5: Slave side of a P-F architecture. The PO-PC (β) is applied in admittance
configuration. Vad is the drift compensator velocity.

of the TDPN is computed as

WM(k) = ES
in(k − Tb(k))− EM

out(k) + EM
PC(k − 1), (3.11)

WS(k) = EM
in (k − Tf (k))− ES

out(k) + ES
PC(k − 1). (3.12)

These computations are performed by the so-called passivity observers (PO) and

provided to the passivity controllers.

3.3.3 Passivity Controller

The passivity controller acts as an adaptive damping in order to guarantee the

passivity of the channel. It can be applied in impedance or admittance configuration,
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according to the architecture requirements. In Fig. 3.4 the PC is being applied in

impedance configuration in order to modify the force coming out of the channel. In

Fig. 3.5 it is applied in admittance configuration and modifies the velocity flowing

out of the channel.

In order to fulfill the passivity conditions from (3.9) and (3.10) for the Cartesian-

space task, two constructions for the passivity controller are possible, namely the

concatenated and the coupled versions.

Concatenated PO-PC

The concatenated version consists of adding a passivity observer to each degree of

freedom (W i
S(k)) and computing α and β as diagonal matrices, whose diagonal

elements αi and βi are given by

αi(k) =


0 if W i

M(k) > 0

−
W i
M(k)

∆T V i
m(k)2

else, if |V i
m(k)| > 0 ,

(3.13)

βi(k) =


0 if W i

S(k) > 0

−
W i
S(k)

∆T F i
s(k)2

else, if |F i
s(k)| > 0 ,

(3.14)

where V i
m and F i

s are the elements of Vm and Fm, respectively, and ∆T is the

sampling time. The energy dissipated by each of the master and slave passivity

controllers can be computed as

EM
PC,i(k) =

k∑
j=1

αi(j)V i
m(j)2 , (3.15)

ES
PC,i(k) =

k∑
j=1

βi(j)F i
s(j)

2 , (3.16)

where ||.|| is the Euclidean norm.

Coupled PO-PC

In addition to the concatenated version, the passivity controller can be applied in a

coupled manner. For that purpose, the impedance PC presented by OTT et al. [35]

can be applied as

α(k) = dx(k)Λx(q(k)) , (3.17)
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dx(k) =


0 if WM(k) > 0

−
WM(k)

∆T ||Vm(k)||2x
else, if ||Vm(k)||2x > 0 ,

(3.18)

where

||Vm(k)||2x = Vm(k)TΛx(q(k))Vm(k) . (3.19)

In that case, the energy dissipated by the master PC will be

EM
PC(k) =

k∑
j=1

dx(j)||Vm(j)||2x . (3.20)

In addition, the equivalent admittance-type passivity controller would be

β(k) = df (k)Λx(q(k))−1 , (3.21)

df (k) =


0 if WS(k) > 0

−
WS(k)

∆T ||Fs(k)||2f
else, if ||Fs(k)||2f > 0 ,

(3.22)

where

||Fs(k)||2f = Fs(k)TΛx(q(k))−1Fs(k) . (3.23)

and the energy dissipated by the slave PC will be

ES
PC(k) =

k∑
j=1

df (j)||Fs(j)||2f . (3.24)

For both, concatenated and coupled constructions, the force removed by the

impedance-type passivity controller from the delayed slave force in order to keep

the system passive will be

Fpc(k) = α(k)Vm(k) , (3.25)

the resulting force applied on the master device will be

Fm(k) = F̂m(k)− Fpc(k) . (3.26)

Accordingly, the velocity removed by the admittance PC from the delayed master

velocity can be computed as

Vpc(k) = β(k)Fs(k) , (3.27)
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and the resulting velocity used as a reference by the slave will be

Vsd(k) = Ṽsd(k)− Vpc(k) . (3.28)

It is also important to remark that, for the 1-DoF case, the concatenated and the

coupled PO-PC constructions are equivalent. The reader is referred to PANZIRSCH

et al. [18] for further insights about the multi-DoF implementation of TDPA.

3.4 1-DoF Drift Compensator

This Section presents a novel drift-compensation method, which can be applied to

1-DoF teleoperation devices. Its advantages relative to the previously presented

approaches [25, 26] are also discussed.

3.4.1 Cause of Position Drift and Its Definition on R

From Fig. 3.5 and Eq. 3.28 it can be noted that, when the admittance type PC is

activated on the slave side, the velocity signal coming from the master is reduced. At

these moments the reference to the slave controller (Vsd) differs from the untouched

velocity signal coming from the master (Ṽsd). As soon as the PC becomes inactive,

Vsd assumes the same value as Ṽsd and the velocities can be synchronized. The

problem, however, arises when, in addition to velocity, position synchronization is

desired, which is the case for many teleoperation applications. Position signals are

usually not transmitted through the channel due to limited bandwidth. In order

to obtain information about the position of the master, the velocity signal has to

be integrated on the slave side. However, in order to keep the system passive the

velocity signal used on the slave side is Vsd. For the case where Vsd ∈ R, the position

command from the master can be obtained as

xsd = ∆T
k∑
j=1

Vsd(j). (3.29)

The correspondence between xsd and the actual delayed master device’s position,

x̃sd, is compromised as soon as the PC becomes active for the first time, and the

error between them is accumulated whenever the PC modifies the velocity signal.

This error remains even when the PC is not active, due to the accumulating charac-

teristic of the integral. The drift between delayed master position and slave reference
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position in R can be defined as

xerr(k) = ∆T
k∑
j=1

(
Ṽsd(j)− Vsd(j)

)
. (3.30)

By substituting (3.27) and (3.28) into (3.30) we get

xerr(k) = ∆T
k∑
j=1

β(j)Fs(j). (3.31)

From (3.31) it can be noted that xerr is the integral of the velocity removed by

the PC at all time steps.

3.4.2 Origin of Force Spikes in Other Compensators

Up to now, two 1-DoF compensators have been developed in order to eliminate the

position drift in energy-based TDPA without decreasing the transparency of the

task. ARTIGAS et al. [25] suggested modification to the classical PO-PC formu-

lation in order to add extra energy whenever there is a positive gap between the

delayed energy flowing into the channel on the master side and the energy flowing

out of the channel on the slave side. An algorithm was proposed to keep track of

the position error shown in (3.30) and to divide it by the sampling period and add

it to the velocity coming from the master whenever a passivity gap showed up. By

doing that, the error between xsd and x̃sd is liquidated if sufficient gaps appear.

Based on that idea, CHAWDA et al. [26] proposed an approach to keep the

classical PO-PC formulation and have the drift compensation part as an ideal current

source between the TDPN and the PC, as shown in Fig. 3.5. In this approach,

the current source represented by Vad is responsible for adding the correction to

eliminate xerr, and the classical PC checks the signal composed of Ṽsd+Vad in order

to dissipate the active energy coming from both the TDPN and the current source.

Despite the different construction, both methods are equivalent and are usually

able to eliminate position drift caused by the PC. However, as mentioned in [26], this

way of compensating drift generates undesirable force spikes during the teleoperation

task. These abrupt forces not only affect the natural feeling of teleoperation, but

can also be harmful to the hardware and the human operator.

The root cause of these forces is that the pair, drift compensator and PC, works

as an accumulator. During the periods when the PC is active the drift compensator

tries to compensate the drift by adding extra velocity. However, until a passivity

gap appears, the drift is accumulating and so is the contribution added by the

compensator. The correction is usually allowed when changing the direction of
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motion or releasing a wall. At these moments, the accumulated velocity signal is

added at one time step and an impulse-like signal is given as reference to the slave,

adding a force spike to the controller command.

3.4.3 1-DoF Drift Compensator

In order to compensate position drift in a smoother manner, a new approach was

developed. The proposed approach is based on the same architecture as presented

in [26] (see Fig. 3.5). However, a different expression for the velocity source (Vad)

was developed. The velocity added by the proposed compensator is given as

Vad(k) = K

k−1∑
j=0

(
Ṽsd(j)− Vs(j)

)
. (3.32)

From (3.32) and Fig. 3.5 it can be seen that whenever there is an error between

the delayed master position and the one modified by the PC, the compensator

adds a velocity signal to the untouched velocity coming from the master, which is

checked by the PO for passivity. As in [26] the PC is responsible for dissipating the

extra energy generated by the TDPN or the drift compensator in order to enforce

passivity. The gain K from (3.32) can be appropriately tuned in order to obtain the

desired performance. Values of K approaching 1 increase the compensation signal

and decrease the number of time steps necessary to remove all drift. Lower values of

K yield lower Vad, which compensates the drift in a smoother manner over a larger

number of time steps.

The presented formulation allows for passive teleoperation while providing posi-

tion synchronization and keeping the forces in their normal range. This is a desired

characteristic since force spikes are not always allowed in teleoperation tasks. In

cases where the workspace of the teleoperated robot is limited, if the abrupt forces

act towards the limits of the workspace, hardware damages could happen. Another

field where the force spikes would not be allowed is human-robot collaboration (e.g.

robotic-assisted surgery), where the abrupt forces would pose a risk to humans. On

the other hand, as will be shown in the experimental evaluation, the use of regular

TDPA without drift compensation also prevents the successful completion of the

tasks since the position drift can get to a point where the slave barely responds to

the master’s commands. The proposed approach is able to provide position syn-

chronization and forces with regular amplitudes, making it possible to successfully

complete teleoperation tasks without putting humans and hardware at risk.

As in [26], the passivity of this drift compensator is enforced by the PC, which

is implemented after the compensator. If the overall system is passive without time

delays, then it is also passive when the TDPN and the PO-PC pair are introduced.
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3.5 Multi-DoF Drift Compensator

Although previously presented TDPA-based methods provided a way of reducing

drift in teleoperation tasks, their Multi-DoF extension was not provided. In that

scope, this Section provides a Multi-DoF drift-compensation approach, which ac-

cording to the tuning parameters, can be seen as an extension of the previously

presented approaches [25, 26] or the one presented in Section 3.4.

3.5.1 Representation of Drift on SE(3)

Assuming the teleoperation task comprises the complete Cartesian space, the veloc-

ities Ṽsd(k) and Vsd(k) can be defined to be body velocities [29] in R6 as

D̂ Ṽsd(k) =

[
ωD̃
vD̃

]
, D Vsd(k) =

[
ωD

vD

]
, (3.33)

where D̃ and D are the frames defined by the delayed master orientation and the ori-

entation given to the slave as the reference, respectively. The discrete-time integral

of D̂ Ṽsd and D Vsd can be computed following (2.23) as

gD(k) = gD(k − 1) expSE(3)

(
[D Vsd(k)]∧∆T

)
, (3.34)

gD̃(k) = gD̃(k − 1) expSE(3)

(
[D̂ Ṽsd(k)]∧∆T

)
, (3.35)

Using the definitions above, the drift present in the system at a given time step

(k) can be represented in SE(3) by

gE(k) = gD̃(k)−1gD(k) =

[
RE(k) pE(k)

0 1

]
. (3.36)

It can be noted from (3.28) and (3.34)–(3.36) that, if the PC acts at a time step,

it will affect the value of gE for all future time steps. In case gE is not the identity

matrix, there will be a drift between the delayed master pose and the pose given as

reference to the slave.

3.5.2 Cartesian-Space Drift Compensation

In order to compensate for the drift caused by TDPA, an additional velocity signal

Vad can be added to the delayed master velocity before it is checked by the PO.

In Fig. 3.5 the drift compensator is represented by a current source. It can be

noted that, since Vad is applied before the point where the energies are computed,

the modified velocity Ṽsd(k) + Vad(k) will be checked and corrected for passivity.
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This guarantees that the compensation action will only be applied when so-called

“passivity gaps” appear, i.e., when WS(k) from (3.12) would be greater than zero.

Therefore, the compensator would not compromise the passivity of the system. From

Fig. 3.5, it can been seen that, when the drift compensator is added, (3.28) becomes

Adge(k) D Vsd(k) = D̂ Ṽsd(k) + D̂ Vad(k)− D̂ Vpc(k) , (3.37)

where Adge(k) (see Section 2.2.4) is defined as

Adge(k) =

[
RE(k) 0

p̂E(k)RE(k) RE(k)

]
. (3.38)

In order to reduce the drift between master and slave devices whenever allowed

by the aforementioned passivity conditions, the following law can be used

ωad(k) = −
1

∆T
kR ϕE(k − 1) ,

vad(k) = −
1

∆T
A (ωad(k)∆T )−T KT pE(k − 1) ,

(3.39)

D̂ Vad(k) =

[
ωad(k)

vad(k)

]
, (3.40)

where ϕ̂E(k − 1) = logSO(3) (RE(k − 1)), and KT ∈ R3×3 and kR ∈ R are the

translational and rotational gains of the compensator. Moreover, A−T is defined in

Section 2.2.3.

3.5.3 Convergence Analysis

As mentioned in Section 3.5.1, in order to keep passivity, the proposed compensator

is only able to reduce the drift when energy gaps are present. During the moments

when the passivity controller is acting to reduce the delayed master velocity coming

from the channel, the accumulation of drift is unavoidable. For that reason, this

section aims to analyze the convergence characteristics of the compensator during

the moments where it is allowed to act.

At the moments where the compensation action is allowed, (3.37) becomes

Adge(k) D Vsd(k) = D̂ Ṽsd(k) + D̂ Vad(k) . (3.41)

By defining a velocity error VE(k), (3.41) becomes

D̂ VE(k) , Adge(k) D Vsd(k)− D̂ Ṽsd(k) = D̂ Vad(k) . (3.42)
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From this definition, the error pose gE(k) can be defined as in (2.22) with D̂ VE(k)

as its spatial velocity as follows

gE(k) = expSE(3)

(
[D̂ VE(k)]∧∆T

)
gE(k − 1) . (3.43)

By exploring the equality between D̂ VE(k) and D̂ Vad(k) defined in (3.42), the error

pose from (3.43) becomes

gE(k) = expSE(3)

(
[D̂ Vad(k)]∧∆T

)
gE(k − 1) . (3.44)

It follows from the compensation law (3.39) and the definition of the exponential

function in SE(3) (2.8) that the rotational part of (3.43) becomes

RE(k) = expSO(3) (−kR ϕ̂E(k − 1))RE(k − 1) , (3.45)

which results in the following relation

ϕE(k) = (1− kR)ϕE(k − 1) . (3.46)

Likewise, the translational part becomes

pE(k) = expSO(3) (ω̂ad(k)∆T )pE(k − 1)

−A (ωad(k)∆T ) A (ωad(k)∆T )−T KT pE(k − 1) .
(3.47)

By using the identity from (2.13), (3.47) becomes

pE(k) = expSO(3) (ω̂ad(k)∆T ) (I−KT ) pE(k − 1) . (3.48)

It can be verified that a sufficient condition for convergence is

0 < kR < 2 ∧ 0 < eig(KT ) < 2 , (3.49)

which ensures that

||ϕE(k)|| < ||ϕE(k − 1)|| , (3.50)

||pE(k)|| < ||pE(k − 1)|| , (3.51)

as long as the trace of the accumulated rotational error RE is not equal to one

when the compensator is allowed to act after the drift has been accumulated by

the passivity controller. The above presented compensation law makes sure that

the magnitude of the drift is decreased from one time step to the next, even if

the compensator is only allowed to act during a short period of time. Moreover,
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if the passivity controller allows the compensator to act for an infinite number of

consecutive time steps, convergence of gE is ensured (see Lemma 2.4.1.).

It is also interesting to note that, if the gain matrices are chosen to be identity

matrices, the drift converges within one time step. This can be seen as the multi-

DoF extension of the compensators proposed in [25] and [26]. However, in case the

force peaks described in [26] are undesirable, other values within the convergent

range could be chosen. In that case, the proposed compensator can be considered

as an extension of the one presented in Section 3.4.

Another important observation is that the proposed compensator looks similar

to the kinematic regulator shown in Section 2.4.2. However, two differences can be

noted. First, a spatial-velocity representation is chosen for the drift. This is due

to the fact that, since the compensator is applied before the passivity controller, it

is easier to work with velocities in the D̃ frame. The spatial-velocity regulator is

also showed by BULLO and MURRAY [28]. Nevertheless, the substantial difference

comes from the discrete-time nature of the problem being solved. It has also been

considered meaningful to add the termA (ωad(k)∆T )−T in order to achieve indepen-

dent speed of convergence of the translational term from the rotational one, which is

suitable for the case when slow rotational- and fast translational-drift compensation

is desired.

3.6 Experimental Evaluation

This section provides both experimental evaluation of the proposed drift compen-

sator. Section 3.6.1 presents the results of experiments performed using two 1-DoF

rotational devices, which aimed at comparing the proposed approach with one of

the previously presented approaches [26]. Section 3.6.1 presents the results of ex-

periments performed using two 3-DoF translational devices. In that section, the

concatenated PO-PC construction (see Section 3.3.3) alone and with the proposed

Multi-DoF compensator is evaluated. The results of the application of the proposed

drift compensator to the complete 6-DoF Cartesian Space of an Aerial Manipulator

will be shown in Chapter 5.

3.6.1 1-DoF Implementation

Initial experiments were performed using two 1-DoF rotational devices (see Fig. 3.6)

composed of two independent motor-gear units, each of them equipped with a torque

sensor. The devices were controlled using the same computer, which was running

at a sampling rate of 1 kHz. The devices were connected through a position-force

architecture and communication delay was simulated in software. The logic was
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implemented using a mix of block diagram and MATLAB code in Simulink. Low-

level code was automatically generated and embedded onto an on-board computer,

which ran at 1 kHz.

Figure 3.6: 1-DoF teleoperation setup used for the experiments.

The experiments were conducted with regular TDPA, the compensator proposed

by CHAWDA et al. [26], and the proposed 1-DoF compensator with a gain K of

0.0025. The approach from ARTIGAS et al. [25] is not tested here since its results are

similar to the ones from CHAWDA et al. [26], despite having different construction.

Each approach was tested for round-trip delays (Trt = Tf+Tb) of 100 ms, 200 ms,

and 500 ms. The human operator attempted to simulate a sinusoidal reference in

position while the slave device performed hard-wall contacts. The wall was located

at around 90 degrees (≈ 1.5 rad) of deflection. Teleoperation without TDPA was

found to be unstable for all three delays tested and the data is not shown. The

figures are divided into four subplots: (a) shows the master and slave positions, (b)

shows the control torques acting on the master and the slave, (c) shows the input

energy from the slave and the output energy at the master, (d) shows the input

energy from the master, the output energy at the slave, and the energy added by

the compensators before the PC (Ead), except for the pure TDPA case.

Fig. 3.7 shows hard-wall contacts for pure TDPA without drift compensation for

Trt = 100 ms. It can be noted that the drift between master and slave accumulates

over the wall contacts (Fig. 3.7a). Due to the drift, the wall contacts happen earlier

at each time and the operator has to exert higher forces (Fig. 3.7b) in order to follow

the sinusoidal reference. The experiments were repeated with the compensator from

[26] (Fig. 3.8) and the proposed compensator (Fig. 3.9). Both compensators are able

to eliminate the position drift (Figs. 3.8a and 3.9a). However, high torque spikes

happen when the compensator from [26] is applied (Fig. 3.8b). These impulse-like

torques make the slave device oscillate at its natural frequency, as can be seen in
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Fig. 3.8a. Vibrations are much lower when the proposed approach is used (Fig. 3.9a)

and the forces are kept within their normal range (Fig. 3.9b). It can also be noted

that the energy injected (Ead) by the compensator from [26] (Fig. 3.8d) is much

higher than the energy injected in the proposed approach (Fig. 3.9d).
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Figure 3.7: Trt = 100 ms wall contact – no drift compensator

Figs. 3.10, 3.11, and 3.12 show the results of the experiments for a 200 ms round-

trip delay. In Fig. 3.10a it can be seen that in regular TDPA the position offset was

increased to a point where the slave barely moved, despite the commands from the

master. With the compensator from [26], oscillations on the slave device (Fig. 3.11a)

are induced by the torque spikes (Fig. 3.11b) generated when the energy stored by

the compensator is released. The energy added (Ead) by the proposed compensator

(Fig. 3.12d) is much lower than the energy added by the compensator from [26]

(Fig. 3.11d). It can be noted from Fig. 3.12a that the proposed compensator is

capable of removing the position drift while causing much smaller oscillations.

The experiments conducted for Trt = 500 ms (Figs. 3.13, 3.14, and 3.15) show

that both compensators are able to remove the position drift. However, for 500

ms the system tends to become more active due to the low inertia and damping

of the devices used. To dissipate the extra energy the PC acts at almost all time

steps, which gives both compensators few opportunities to act. Because of that,
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Figure 3.8: Trt = 100 ms wall contact – compensator from Chawda et al.

the human operator had to add extra low amplitude movements to the sinusoidal

reference in order to create extra passivity gaps (Fig. 3.14a and 3.15a). Note that

the value of Trt where passivity gaps start becoming rare depends on the damping

and inertia of the device. A larger or more damped device could allow for teleoper-

ation with higher delays without the operator having to care about passivity gaps.

Comparing the behavior of both compensators, it can be noted that, even though

some torque spikes also start to become present in the proposed approach due to

drift accumulation (Fig. 3.15b), these are still close to the range of the normal tele-

operation torques. On the other hand, the compensator from [26] presents higher

torques (Fig. 3.14b), which are much more perceptible and could be even dangerous

to the human operator.

The fact that force spikes generated by the method described in [26] are not

significant in the proposed approach is due to the addition of the gain K, which

spreads the compensation action over a number of time steps, instead of trying to

compensate for the drift at once. Moreover, adding a gain K to the compensator

equation makes this approach more versatile to different tasks since the gain could

be increased or decreased according to the nature of the task in order to obtain

faster or smoother corrections.
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Figure 3.9: Trt = 100 ms wall contact – proposed compensator
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Figure 3.10: Trt = 200 ms wall contact – no drift compensator
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Figure 3.11: Trt = 200 ms wall contact – compensator from Chawda et al.
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Figure 3.12: Trt = 200 ms wall contact – proposed compensator
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Figure 3.13: Trt = 500 ms wall contact – no drift compensator
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Figure 3.14: Trt = 500 ms wall contact – compensator from Chawda et al.
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Figure 3.15: Trt = 500 ms wall contact – proposed compensator
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Figure 3.16: 3-DoF teleoperation device used in experiments.

3.6.2 3-DoF Implementation

In order to validate the proposed compensator on multi-DoF devices, telemanip-

ulation experiments were performed using two 3-DoF translational haptic devices

(Fig. 3.16). Firstly, the concatenated PO-PC alone was applied to passivate the

communication channel set to artificially add 200 ms round-trip time delays (Trt).

Subsequently, the translational part of the proposed compensation law (see (3.39))

was applied. The logic was implemented using C code and embedded onto an on-

board computer, which ran at 1 kHz.

Figs. 3.17 and 3.18 show position and control forces, respectively, of the master

and slave devices for the non-compensated case. Fig. 3.19 shows the master-input

and slave-output energies observed on the slave side. It can be seen that, in order

to ensure passivity of the channel, not only the impedance-type PC, intermittently

reduced the force values (Fig. 3.18), but also the admittance-type PC removed part

of the velocity coming from the master, generating significant drift (see Fig. 3.17).

Figs. 3.20–3.22 show position, force, and energy values, respectively, for the

case when the proposed drift compensator was applied. It can be seen that the

compensator was able to completely remove the drift in the y- and z-axes (Fig. 3.20).

However, an offset can still be observed in the x-axis. This is due to the fact that

not enough passivity gaps appeared in order to compensate for the drift in a passive

way. The occurrence of passivity gaps depends on the system dynamics, the task

being performed and the delay of the channel.
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Figure 3.17: Master and slave positions, no drift compensator – Trt = 200 ms.
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Figure 3.18: Master and slave forces, no drift compensator – Trt = 200 ms.
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Figure 3.19: Master-in and slave-out energies, no drift compensator – Trt = 200 ms.

0 5 10 15
-0.05

0

0.05

P
o
s
it
io

n
 (

m
) x

M

x
S

0 5 10 15

-0.05

0

0.05

P
o
s
it
io

n
 (

m
) y

M

y
S

0 5 10 15

Time (s)

-0.1

-0.05

0

0.05

0.1

P
o
s
it
io

n
 (

m
) z

M

z
S

Figure 3.20: Master and slave positions, drift compensator on – Trt = 200 ms.
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Figure 3.21: Master and slave forces, drift compensator on – Trt = 200 ms.
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Figure 3.22: Master-in and slave-out energies, drift compensator on – Trt = 200 ms.
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3.6.3 6-DoF Implementation

In addition to 3-DoF translational devices, the proposed compensator was evaluated

with full six-dimensional Cartesian-space teleoperation using the DLR Bimanual

Haptic Device (HUG, [36]), which is depicted in Fig 3.23. The device is composed

of two torque-controlled 7-DoF LWR manipulators. In the conducted experiments

one of the devices was used as a master device and the other, as the slave. Artificial

round-trip time delay of 800 ms was added between the two devices (400 ms in

each direction). The devices were connected in a P-F architecture (see Fig. 3.1)

and the coupled TDPA scheme (see Section 3.3.3) was applied in order to enforce

passivity. The logic was implemented using a mix of block diagram and MATLAB

code in Simulink. Low-level code was automatically generated and embedded onto

the devices’ on-board computers, which ran at 1 kHz.

The first experiment aimed at analyzing the behavior of the teleoperation system

when TDPA was applied without the proposed compensator. The results of that

experiment are depicted in Figs 3.24–3.28, which show translational master and

slave position, roll-pitch-yaw orientation, translational end-effector control forces,

and end-effector control torques, respectively. During that experiment, hard-wall

contact was performed once between 10 and 20 seconds (see Fig. 3.24). A second

contact was attempted by the operator at around 35 seconds, but that was not

achieved due to excessive drift. As it can be noted from Figs 3.24 and 3.25, after 25

seconds of operation, the slave device barely follows the master’s commands. This

behavior is caused by the passivity enforcing strategy of the slave-side passivity

controller and causes significant drift. Adding to that, high frequency oscillations

can be seen in the master force and torque values (see Figs. 3.26 and 3.27). That

effect, which is caused by the master passivity controller in order to enforce passivity,

can be reduced by the use of passive filters (e.g., see [22]).

Figure 3.23: DLR Bimanual Haptic Device.
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The second experiment was conducted with the purpose of evaluating the be-

havior of TDPA with the proposed drift compensator. The results are shown in

Figs. 3.29–3.33. A first wall contact was performed between 10 and 20 seconds

and is visible in the translational x- and z-axes in Fig. 3.29. A shorter wall con-

tact was performed at around 25 seconds and is mostly visible in the orientation

plots (Fig. 3.30). It can be noted that, despite not completely removing the drift

in all axes due to the lack of passivity gaps (see Fig. 3.33), the position tracking

capabilities of the system when the proposed compensator was applied were signifi-

cantly improved. The action of the drift compensator can be especially seen on the

orientation plots between 25 and 40 seconds, when the position offset is smoothly

reduced. It should be noted that, alike the non-compensated case, high frequency

force and torque oscillations appear in the compensated one (see Figs. 3.31 and

3.30). Those oscillations are caused by the master passivity controller, which is not

directly affected by the compensator.
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Figure 3.24: Master and slave positions, no drift compensator – Trt = 800 ms.
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Figure 3.25: Master and slave orientation, no drift compensator – Trt = 800 ms.
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Figure 3.26: Master and slave Cartesian forces in the tool frame, no drift compen-
sator – Trt = 800 ms.
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Figure 3.27: Master and slave Cartesian torques in the tool frame, no drift compen-
sator – Trt = 800 ms.
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Figure 3.28: Master-in and slave-out energies, no drift compensator – Trt = 800 ms.
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Figure 3.29: Master and slave positions, drift compensator on – Trt = 800 ms.
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Figure 3.30: Master and slave orientation, drift compensator on – Trt = 800 ms.
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Figure 3.31: Master and slave Cartesian forces in the tool frame, drift compensator
on – Trt = 800 ms.
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Figure 3.32: Master and slave Cartesian torques in the tool frame, drift compensator
on – Trt = 800 ms.
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Figure 3.33: Master-in and slave-out energies, drift compensator on – Trt = 800 ms.
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Chapter 4

Whole-body Control of

Redundant Aerial Manipulators

4.1 Overview

This chapter focuses on presenting whole-body control techniques for redundant

aerial manipulators, which are necessary for enabling teleoperation of such systems.

Initially, state-of-the-art techniques developed for modeling and whole-body control

of general redundant manipulators are presented. Subsequently, after introducing

the DLR Suspended Manipulator, meaningful whole-body tasks for such systems

are discussed and control laws to accomplish them are proposed. Lastly, the results

of numerical validation of the proposed techniques are presented and discussed.

4.2 Modeling and Control of General Redundant

Manipulators

4.2.1 Kinematics of Redundant Manipulators

Section 2.3 presented the kinematics and dynamics of non-redundant manipulators.

However, for redundant manipulators as the SAM where n > m, there will be

a number of joint velocity combinations, which would yield the same end-effector

velocity. This means, J(q) does not have a unique inverse map. In this situation,

the set of task coordinates can be extended to[
V

Vn

]
= J̄(q)q̇ =

[
J(q)

N (q)

]
q̇ , (4.1)
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where Vn ∈ Rn−m is the set of null-space velocities. The matrix N (q) can be

constructed as [37]

N (q) = (Z(q)M (q)Z(q)T )−1Z(q)M (q) , (4.2)

where Z(q) is a full row rank null-space base matrix, such that J(q)Z(q)T = 0.

This matrix can be taken from a Singular-Value Decomposition of J(q). Note that

the choice of N (q) is not unique. In this work, the approach presented by OTT

et al. [37] is followed. The reader is referred to DIETRICH et al. [38] for an overview

of the choice of null space projectors.

The definition of J̄(q) generates a bijective map between the newly defined task

coordinates and the joint coordinates, which will be used in order to define the

dynamics the of the manipulator in the task space.

4.2.2 Dynamics and Control of Redundant Manipulators

The dynamic model of a robotic manipulator with n joints can be written as pre-

sented in (2.27). By using the previously defined mapping J̄(q), a change of coor-

dinates can be performed as

Λ(q) =
(
J̄(q)M (q)−1 J̄(q)

T )−1
(4.3)

µ(q, q̇) = Λ(q)
(
J̄(q)M (q)−1C(q, q̇)− ˙̄J(q)

)
J̄(q)

−1
. (4.4)

Such formulation allows the manipulator dynamics to be written as[
Λx(q) 0

0 Λn(q)

][
V̇

V̇n

]
+

[
µx(q, q̇) µxn(q, q̇)

µnx(q, q̇) µn(q, q̇)

][
V

Vn

]
= J̄(q)

−T
(τ −G(q)) ,

(4.5)

where Λx(q) and Λn(q) are the elements of Λ(q). In addition, µx(q, q̇), µxn(q, q̇),

µnx(q, q̇), and µn(q, q̇) are the elements of µ(q, q̇).

The choice ofN (q) as in (4.2) generates a block diagonal matrix Λ(q). However,

it is possible to see that the null-space task could still influence the Cartesian space

one by means of µnx(q, q̇).

To solve this issue, the joint control torque can be chosen such that the null-space
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task has no influence on the Cartesian one as

τ = τx + τn + τµ +G(q) , (4.6)

τx = J(q)T Fx , (4.7)

τn = N (q)TZ(q)J2(q)T Fn , (4.8)

τµ = J̄(q)
T

[
0 µxn(q, q̇)

µnx(q, q̇) 0

][
V

Vn

]
, (4.9)

where J2(q) is the Jacobian of a secondary task, which could be performed in the null

space of the primary one. Moreover, Fx is a Cartesian-space wrench and Fn is the

control wrench of the secondary task, before being projected into the null space of the

primary one. It is important to note that, even if no null-space task is commanded,

i.e., τn = 0, the null-space velocity Vn is likely to be nonzero. Therefore, the choice

of the aforementioned control law is advisable for any redundant manipulator.

With the aforementioned control torque, the dynamics of the Cartesian-space

task can be rewritten as

Λx(q)V̇ + µx(q, q̇)V = Fx , (4.10)

where Fx could implement a control law in the Cartesian-space (e.g., see [37]).

The above described dynamic decoupling allows for the teleoperation of the

Cartesian space of kinematically redundant manipulators without taking the en-

ergy generated by the null-space task into account or having null-space velocities

disturb the main task.

4.3 The Suspended Aerial Manipulator

The suspended Suspended Aerial Manipulator (SAM, [12]) developed at the German

Aerospace Center (see Fig. 1.1) consists of an omnidirectional octarotor system with

eight body-frame fixed unidirectional propellers, which hangs by means of a steerable

set of cables. The lengths of the cables can be varied in order to control a number

of degrees of freedom of the platform. The platform is intended to hang from either

a crane or an unmanned helicopter, which is able to fly to desired positions in order

to extended the workspace of the system. The integration concept of the Suspended

Aerial Manipulator can be seen in Figure 4.1.

The pose of the propellers was defined through numerical optimization, following

the work presented by TOGNON and FRANCHI [39] in order to maximize the

force and torque exertion capability of the octarotor. With eight fixed propellers, a

constant full-rank matrix B ∈ R6×8 maps propeller thrusts u ∈ R8 to body wrenches
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Figure 4.1: An integration concept (left) and the structure of the platform (right).

Figure 4.2: KUKA LWR manipulator.

of the octarotor, Fb ∈ R6, as follows.

Fb = Bu (4.11)

Attached to the octarotor is a KUKA LWR IV manipulator [40] (see Figure 4.2).

This device is a 7-DoF torque controlled robotic arm suitable for industrial applica-

tions involving human-robot interactions.
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4.4 Whole-Body Control of Redundant Omnidi-

rectional Aerial Manipulators

4.4.1 Modeling

In order to simulate teleoperation tasks performed by the Suspended Aerial Ma-

nipulator, its simplified model was developed. By taking the cable structure into

account, the system becomes a parallel manipulator [29]. The modeling of such sys-

tems requires the application of additional techniques, which are beyond the scope of

this thesis. For the purpose of applying whole-body control and aerial manipulation

techniques, the system was considered as a free-flying omnidirectional manipulator,

as shown in Fig. 4.3. Such a model should locally hold for the SAM, especially if

the mass of the cables is negligible.

Figure 4.3: Model of a free-flying omnidirectional aerial manipulator

The dynamics of such system can be described as in (2.27), where a total of

13 generalized coordinates was chosen. The first six coordinates represents a set of

three rotational and three translational joints, which describe the set of all possible

rigid body motions performed by the omnidirectional platform. The remaining seven

generalized coordinates were chosen to be the joint angles of the LWR manipulator.

In order to compute the kinematics and dynamics of the system, an iterative

Newton-Euler-based algorithm [41] was applied. That algorithm provided the val-

ues of the dynamic matrices (M (q), C(q, q̇), and G(q) from 2.27) and their time

derivatives evaluated at each time-step, based on a URDF file [42] containing the

kinematic and dynamic parameters of the aerial manipulator.
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4.4.2 Control

This section describes the Cartesian and Null-space control laws applied to the aerial

manipulator, which will be plugged into (4.6)-(4.9).

Primary task

The primary task performed by the aerial manipulator is the control of its end-

effector. For that task, the Jacobian mapping from joint velocities, q̇ ∈ R13, to

end-effector velocities, V ∈ R6, is given by the matrix J(q) ∈ R6×13.

In order to control the end-effector pose in the Cartesian space, its desired pose

with respect to the robot’s base frame can be described in SE(3) as

gBD =

[
RBD pBD

0 1

]
. (4.12)

Likewise, the robot end-effector pose with respect to its base frame can be repre-

sented as

gBT =

[
RBT pBT

0 1

]
. (4.13)

Accordingly, an error homogeneous transformation can be defined as

gDT = gBD
−1 gBT =

[
RDT pDT

0 1

]
. (4.14)

This element can be interpreted as describing the basis vectors of the tool frame

with respect to the basis vector of the desired tool frame. Adding to that, a velocity

error can be defined as

T VDT = T VBT − Adg−1
DT

DVBD , (4.15)

where the velocities T VBT and DVBD ∈ R6 represent body velocities of the element

gBT and gBD ∈ SE(3), respectively.

With this definition, a Cartesian PD controller can be implemented in the end-

effector frame as

T Fx = −

[
kωlogSO(3)(RDT )

kvR
T
DT pDT

]
−KD

T VDT , (4.16)

where kv and kω ∈ R are positive position and orientation stiffness gains, respec-

tively, defined in the tool frame. In addition, KD ∈ R6×6 is a positive-definite

Cartesian-damping matrix.
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Note that, even though tracking tasks are intended to be performed, the proposed

Cartesian PD controller resembles the regulation controller presented in Section 2.4.2

and not the tracking controller presented in Section 2.4.3. This is due to two rea-

sons. The main reason is that, since the desired velocity during teleoperation tasks

is given by the human operator and not by a trajectory generation code, the desired

acceleration is not available. Adding to that, the aerial manipulator is intended to

be used in unstructured-environment interaction tasks, which are more safely per-

formed when controllers with some compliant behavior are applied [37]. Therefore,

perfect tracking is not guaranteed by the proposed controller. However, if the desired

acceleration is low and the controller gains are high enough, satisfactory tracking

can be achieved. The reason for that can be explained by perturbation theory (see

[32]). As will be seen in the numerical validation section, satisfactory tracking is

indeed achieved by the proposed controller. In practice, actuator limitations have

to be taken into account when choosing gains. In this thesis, gain magnitudes were

chosen based on the experience of colleagues working on other robotic systems at

the German Aerospace Center, but have not yet been tested on the SAM.

Null-space task

Under the assumption of full rank of J(q), its null space,N{J(q)}, will have nonzero

dimension. This allows a secondary task to be performed in the null space of the

primary.

For the aerial manipulation platform, it has been considered meaningful to at-

tempt to keep the base steady. As a secondary task, this would make sure the base

only moves when it is necessary in order reach points in the Cartesian space that

would not be reachable by moving the arm alone. Such approach also prevents the

flying base from tilting unnecessarily, which could increase the power consumption

of the propellers in order to compensate for gravity. In addition, an extra LWR

joint angle can be used to maximize the manipulability measure [43] and avoid

singularities. The manipulability measure can be defined as

w(q) =

√
det(J(q)J(q)T ) . (4.17)

The above described secondary task coordinates can be described by[
q̇1−6

q̇10

]
=

[
I6 06×3 06×1 06×3

01×6 01×3 1 01×3

]
q̇ = J2(q) q̇ , (4.18)

where J2(q) ∈ R7×13 is a selection matrix, which selects the joints to be controlled

in the secondary task, i.e., joints 1 to 6 from the flying base and joint 10, which
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corresponds to the fourth LWR joint.

The secondary-task force can be defined as

Fn =

−KPb q1−6−KDb q̇1−6

Km

∂w(q)

∂q10
−Kd10q̇10

 , (4.19)

where KPb ∈ R6×6 and KDb ∈ R6×6 are the positive definite proportional and

derivative gain matrices acting to keep the flying-base joints at zero, Km is a positive

gain multiplying the manipulability gradient with respect to q10, and Kd10 is a

damping factor applied to joint 10. Adding Kd10 makes sure q10 will not change

abruptly while trying to maximize the manipulability measure.

The above defined expressions for the Jacobian matrix J2(q) and the secondary-

task force Fn can be plugged into (4.8), where they will be projected into the null

space of the primary task.

4.5 Numerical Validation

In order to analyze the efficacy of the aforementioned whole-body controller, three

different control strategies were applied to the simulated aerial manipulator. Ini-

tially, a non-hierarchical controller with conflicting tasks was implemented (no. 1).

Subsequently, the whole-body controller was applied. First, without a secondary

task (no. 2), and, subsequently, adding the previously described secondary task in

the null space of the primary one (no. 3).

Table 4.1 depicts the Cartesian controller gains used in all three simulations. The

term diag(.) means that the matrix has the specified elements as its main diagonal

and all non-diagonal elements are zero. Table 4.2 shows the null-space controller

parameters applied to each of the tasks.

Table 4.1: Cartesian controller gains

kv kω KD

500 300 diag(100 100 300 230 230 230)

Table 4.2: Null-space controller parameters

no. Projector τµ KPb KDb Km Kd10

1 I13 0 100 I3 200 I3 0.2 2

2 N(q)
T
Z(q) Eq. 4.9 0 0 0 0

3 N(q)
T
Z(q) Eq. 4.9 100 I3 200 I3 0.2 2

Figs. 4.4–4.7 present the results of the application of the two-task controller

without task hierarchy implementation via null-space projection (no. 1). Fig. 4.4
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shows the desired and actual values of the Cartesian positions of the end-effector

while Fig. 4.5 depicts the end-effector orientation using a Roll-Pitch-Yaw represen-

tation. Fig. 4.6 shows the norm of the control torque values. Fig. 4.7 presents the

squared norm of the vector q1−6 and the value of the manipulability measure w(q)

from (4.17).

Figs. 4.8–4.11 show the results of the application of the dynamic-decoupling

controller with only the Cartesian-space task being performed. Figs. 4.8 and 4.9

show the position and orientation of the end-effector, Fig. 4.10 depicts the norm of

the control torques, and Fig. 4.11 shows the square of the norm of q1−6 and the

manipulability value.

Figs. 4.12–4.15 show the results of the application of the dynamic-decoupling

controller with the above-described secondary task being performed in the null space

of the Cartesian one. Figs. 4.12 and 4.13 show the position and orientation of the

end-effector, Fig. 4.14 shows the norm of the control torques, and Fig. 4.15 shows

the square of the norm of q1−6 and the manipulability value.

Table 4.3 shows a comparison between the control performance parameters for

each controller. Namely, average value of the absolute position and orientation

errors, average value for the squared-norm of q1−6, average manipulability, and

average values of the norms of the control torques. Values whose order of magnitude

is 10−4 and below are shown as zero.

Table 4.3: Control performance parameters

no. x̄e ȳe z̄e φ̄e θ̄e ψ̄e q̄1−6 w̄(q) τ̄x τ̄n τ̄µ

1 0.048 0.001 0.064 0.004 0.001 0.001 0.141 9.109 67.20 67.75 0

2 0.002 0 0.002 0.001 0.001 0 0.568 9.430 2.993 0 0.874

3 0.002 0 0.002 0.001 0.001 0 0.218 9.635 3.292 2.546 1.810

It can be noted that, when two control tasks were applying without a conflict

resolution strategy (no. 1), the Cartesian-space task had its position tracking per-

formance worsened in comparison with the decoupled controllers (no. 2 and 3). This

can be seen from the error values from Table 4.3 as well as by comparing Figs. 4.4

and 4.5 with Figs. 4.8, 4.9, 4.12, and 4.13. In addition, due to the conflicting nature

of the tasks being performed, the controller had to apply much higher torques in

order to fulfill both tasks. From Table 4.3 it can be noted that the average torques

τx and τn applied by the conflicting controller (no. 1) were more than 20 times as

high as those applied in the hierarchically decoupled controller (no. 3).

When comparing the position tracking between the two dynamically decoupled

controllers, with and without a secondary task (no. 2 and no. 3, respectively),

it can be noted that the tracking performance was not altered when a secondary

task was added. This is due to the fact that the secondary task does not influence
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Figure 4.4: End-effector positions – Conflicting-task controller with no null-space
projection (no. 1).
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Figure 4.5: End-effector orientations – Conflicting-task controller with no null-space
projection (no. 1).
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Figure 4.6: Control torques – Conflicting-task controller with no null-space projec-
tion (no. 1).

the primary one when being projected into its null space. It is also important to

remark that the control torques remained in the same order of magnitude when the

secondary task was applied.

Another remarkable result of the dynamically decoupled controller with a sec-

ondary task (no. 3) is that it was able to increase the average manipulability value of

the manipulator and decrease the joint angles of the flying base (q1−6) in comparison

to the case when no secondary task was performed. In comparison with controller

no. 1, despite increasing the average manipulability, controller no. 3 presented a

higher average value for joints q1−6. This is due to the fact that the projection of

the secondary control action reduces its capability at the cost of not influencing the

primary task. However, since the regulation of the flying base is a secondary task,

this behavior is desirable.
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Figure 4.8: End-effector positions – Dynamically decoupled whole-body controller
with no secondary task (no.2).
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Figure 4.9: End-effector orientations – Dynamically decoupled whole-body controller
with no secondary task (no.2).
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Figure 4.10: Control torques – Dynamically decoupled whole-body controller with
no secondary task (no.2).
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Figure 4.11: Optimized measures – Dynamically decoupled whole-body controller
with no secondary task (no.2).
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Figure 4.12: End-effector positions – Dynamically decoupled whole-body controller
with secondary task (no.3).
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Figure 4.13: End-effector orientations – Dynamically decoupled whole-body con-
troller with secondary task (no.3).
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Figure 4.14: Control torques – Dynamically decoupled whole-body controller with
secondary task (no.3).
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Chapter 5

Bilateral Teleoperation of a

Redundant Aerial Manipulator

5.1 Overview

This chapter brings together the approaches presented in Chapters 3 and 4 in order

to show numerical simulation results of bilateral teleoperation of the Cartesian space

of a redundant Aerial Manipulator.

The aerial manipulator was teleoperated as the slave of a P-F architecture. The

slave controller was the dynamically decoupled controller described in Chapter 4.

This allowed the Cartesian-space teleoperation task to be performed without having

to take the energy acting in the null space into account.

The performance of the teleoperation task with the coupled passivity controller

from Section 3.3.3 is evaluated with and without the multi-DoF compensator pre-

sented in Section 3.5. In order to show the applicability of the proposed multi-DoF

drift compensation law, the compensator was applied to the teleoperation of the

Cartesian space of the Suspended Aerial Manipulator when round-trip communica-

tion delays of 700 ms were present.

5.2 Numerical Simulation Results

Figs 5.1–5.5 depict the Cartesian positions, tool-frame forces and torques, and slave-

side energy signals computed when applying coupled TDPA without drift compen-

sation. It is important to note that Roll-Pitch-Yaw angles were used in order to

facilitate the understanding of the orientation plots. However, this representation is

not used in the compensation law.

From Figs. 5.1 and 5.2, significant drift caused by the admittance-type PC can

be observed in all axes. In addition, from Fig. 5.5 it can be seen that the PO-PC
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pair keeps the energy coming out of the channel on the slave side smaller than the

one that is flowing into it on the master side.
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Figure 5.1: Master and slave positions, no drift compensator – Trt = 700 ms.

When drift compensation was added (Figs. 5.6–5.10), it can be noted that the

drift converged to zero in all position and orientation axes (see Figs. 5.6 and 5.7). It

is also important to remark that the control forces and torques were not increased

significantly when the compensator was applied (compare Figs. 5.3 and 5.4 with

Figs. 5.8 and 5.9). Moreover, it can be seen in Fig. 5.10 that the passivity controller

kept the system passive, allowing the compensator to act only when passivity gaps

were present.

The numerical simulation results show that the compensator is able to preserve

the controller tracking capabilities even in the presence of high communication delays

without compromising the overall stability of the system. This allows the application

of TDPA to tasks to which it would not be otherwise suitable due to the induced

position drift.
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Figure 5.2: Master and slave orientation, no drift compensator – Trt = 700 ms.
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Figure 5.3: Master and slave Cartesian forces in the tool frame, no drift compensator
– Trt = 700 ms.
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Figure 5.4: Master and slave Cartesian torques in the tool frame, no drift compen-
sator – Trt = 700 ms.
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Figure 5.5: Master-in and slave-out energies, no drift compensator – Trt = 700 ms.
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Figure 5.6: Master and slave positions, drift compensator on – Trt = 700 ms.
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Figure 5.7: Master and slave orientation, drift compensator on – Trt = 700 ms.
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Figure 5.8: Master and slave Cartesian forces in the tool frame, drift compensator
on – Trt = 700 ms.
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Figure 5.9: Master and slave Cartesian torques in the tool frame, drift compensator
on – Trt = 700 ms.
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Figure 5.10: Master-in and slave-out energies, drift compensator on – Trt = 700 ms.
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Chapter 6

Conclusions and Future Work

This work presented an overview of the Time Domain Passivity Approach applied

in order to passivate the communication channel in time-delayed bilateral teleop-

eration. Two constructions of the passivity-observer/passivity-controller pair were

applied. The first was a concatenated version, in which the excess of energy is dis-

sipated in order to make each degree of freedom passive. The second approach is a

coupled version, where the total energy of the Cartesian space is computed and the

dissipation is distributed according to the inertia of each link. This approach had

been previously shown to work in impedance configuration for haptic interaction

with virtual environments. However, to the best of the author’s knowledge, this is

the first time where the admittance case is presented and its efficacy is shown in

bilateral teleoperation tasks.

Adding to that, a novel 1-DoF TDPA-based drift compensator method has been

presented. It has been shown that the presented approach is able to compensate

for the drift caused by the admittance-type passivity controller while keeping the

control forces in the normal range of the teleoperation task. The efficacy of the

proposed method and its performance compared with previous approaches has been

demonstrated through its application to teleoperation of a 1-DoF setup.

Subsequently, an extension of the previously proposed TDPA-based drift com-

pensators to multi-DoF Cartesian-Space teleoperation has been presented. A con-

vergence analysis has also been provided. It has been shown that, if the gain is set

within certain bounds, the proposed approach is able to reduce the drift caused by

the passivity controller in case it is able to do so without violating the passivity

condition. That analysis also provided an insight about the cause of force spikes,

which are generated when the drift converges within one time step. In addition,

hardware experiments with two translational 3-DoF off-the-shelf haptic devices, as

well as with the DLR Bimanual Haptic Device, demonstrated the applicability of the

proposed compensator to time-delayed bilateral teleoperation of multi-DoF devices,

when using both concatenated and coupled implementations of the PO-PC pair.
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Moreover, a dynamically decoupling control strategy was presented. Such ap-

proach allows the control of redundant manipulators in a hierarchical manner, where

a secondary task is performed in the null space of the main one. Numerical valida-

tion demonstrated the efficacy of such approach in controlling the Cartesian space of

an aerial manipulator while keeping the flying base joints as close to zero as possible

and using one of the robotic arm joints to increase the manipulability of the system.

Finally, by using the dynamically decoupled controller, the coupled PO-PC im-

plementation, and the proposed multi-DoF drift compensator, time-delayed bilateral

teleoperation of the Cartesian space of a redundant aerial manipulator was simu-

lated. The efficacy of the proposed multi-DoF approach in compensating the drift

and preserving the tracking performance of the local controller has been demon-

strated in the presence of 700 ms round-trip delays.

Future work will involve studying meaningful haptic feedback and null-space

controller passivation for applying bilateral teleoperation techniques to the null space

of redundant aerial manipulators.
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[37] OTT, C., DIETRICH, A., ALBU-SCHÄFFER, A. “Prioritized multi-task com-

pliance control of redundant manipulators”, Automatica, v. 53, pp. 416–

423, 2015.

[38] DIETRICH, A., OTT, C., ALBU-SCHÄFFER, A. “An overview of null space
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