
SECURITY OF CYBER-PHYSICAL SYSTEMS AGAINST ACTIVE AND

PASSIVE NETWORK ATTACKS: A DISCRETE EVENT SYSTEM APPROACH

Publio Macedo Lima

Tese de Doutorado apresentada ao Programa

de Pós-graduação em Engenharia Elétrica,

COPPE, da Universidade Federal do Rio de

Janeiro, como parte dos requisitos necessários

à obtenção do t́ıtulo de Doutor em Engenharia

Elétrica.

Orientadores: Marcos Vicente de Brito

Moreira

Lilian Kawakami Carvalho

Rio de Janeiro

Agosto de 2021

SECURITY OF CYBER-PHYSICAL SYSTEMS AGAINST ACTIVE AND

PASSIVE NETWORK ATTACKS: A DISCRETE EVENT SYSTEM APPROACH

Publio Macedo Lima

TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO

LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA

DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS

REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR

EM CIÊNCIAS EM ENGENHARIA ELÉTRICA.

Orientadores: Marcos Vicente de Brito Moreira

Lilian Kawakami Carvalho

Aprovada por: Prof. Marcos Vicente de Brito Moreira

Profa. Lilian Kawakami Carvalho

Prof. José Eduardo Ribeiro Cury

Prof. Antonio Eduardo Carrilho da Cunha

Prof. Claudio Miceli de Farias

Prof. Gustavo da Silva Viana

RIO DE JANEIRO, RJ – BRASIL

AGOSTO DE 2021

Lima, Publio Macedo

Security of Cyber-Physical Systems Against Active

and Passive Network Attacks: A Discrete Event System

Approach/Publio Macedo Lima. – Rio de Janeiro:

UFRJ/COPPE, 2021.

XII, 85 p.: il.; 29, 7cm.

Orientadores: Marcos Vicente de Brito Moreira

Lilian Kawakami Carvalho

Tese (doutorado) – UFRJ/COPPE/Programa de

Engenharia Elétrica, 2021.

Referências Bibliográficas: p. 79 – 85.

1. Security. 2. Discrete event systems. 3. Cyber-

Physical Systems. I. Moreira, Marcos Vicente de Brito

et al. II. Universidade Federal do Rio de Janeiro, COPPE,

Programa de Engenharia Elétrica. III. T́ıtulo.

iii

Agradecimentos

Gostaria de agradecer aos meus pais, Mario Jorge Lima e Maria Antônia Macedo

Lima, pelo suporte financeiro e emocional. Também gostaria de agradecer a mi-

nha irmã, Nádia Helena Lima de Menezes, meus irmãos, Hudson Macedo Lima e

Túlio Macedo Lima, e minha namorada, Tamara Bunheirão Monteiro, pelo suporte

emocional.

Gostaria de agradecer também aos meus orientadores, Marcos Vicente de Brito

Moreira e Lilian Kawakami Carvalho, que estiveram comigo durante a pós-graduação

e me ajudaram a chegar a esse ponto.

Agradeço ao Conselho Nacional de Desenvolvimento Tecnológico e Cient́ıfico

(CNPq) pelo suporte financeiro.

iv

Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários

para a obtenção do grau de Doutor em Ciências (D.Sc.)

SEGURANÇA DE SISTEMAS CIBER-FÍSICOS CONTRA ATAQUES ATIVOS

E PASSIVOS EM REDES: UMA ABORDAGEM DE SISTEMAS A EVENTOS

DISCRETOS

Publio Macedo Lima

Agosto/2021

Orientadores: Marcos Vicente de Brito Moreira

Lilian Kawakami Carvalho

Programa: Engenharia Elétrica

Um dos maiores desafios para aplicações de sistemas ciber-f́ısicos (SCF) em in-

dústrias inteligentes é garantir a segurança contra ataques cibernéticos, que podem

ser classificados como ativos ou passivos. Neste trabalho é considerado que um SCF

pode ser descrito como um sistema a eventos discretos (SED). Do ponto de vista

de ataques ativos, são considerados ataques do tipo man-in-the-middle nos canais

de sensor e/ou canais de controle, em que o atacante pode ler, apagar, inserir ou

modificar dados nos canais atacados. Para proteger contra esse tipo de ataque é

proposta a criação de dois módulos de segurança: (i) um baseado em detecção do

ataque e; (ii) um módulo maximamente permisśıvel, ou seja, que restringe o mı́nimo

posśıvel o funcionamento do sistema atacado. Para mitigar ataques passivos, em

que o atacante espiona o canal de comunicação do sistema, é proposto um novo

esquema de criptografia baseado em eventos. Além disso, é definida a propriedade

de confidencialidade para SEDs, associada à capacidade de garantir que somente o

emissor e o receptor de uma mensagem transmitida sejam capazes de entendê-la.

Condições necessárias e suficientes para garantir essa propriedade são apresentadas,

bem como métodos para gerar uma criptografia satisfazendo a confidencialidade do

sistema.

v

Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Doctor of Science (D.Sc.)

SECURITY OF CYBER-PHYSICAL SYSTEMS AGAINST ACTIVE AND

PASSIVE NETWORK ATTACKS: A DISCRETE EVENT SYSTEM APPROACH

Publio Macedo Lima

August/2021

Advisors: Marcos Vicente de Brito Moreira

Lilian Kawakami Carvalho

Department: Electrical Engineering

One of the most important challenges for the application of cyber-physical sys-

tems (CPS) in smart industries is ensuring its security against cyber attacks that

can be classified as passive or active. In this work it is considered that the CPS

can be abstracted as a Discrete-Event System (DES). Relating to active attacks, the

protection against man-in-the-middle attacks in the sensor and/or control channel

are considered, where the attacker can read, delete, insert or modify data in attacked

channels. In order to protect from this type of attack it is proposed the creation

of two security module: (i) a module based on the detection of attacks, and (ii) a

maximally permissive module, i.e., a module that restricts the minimum possible

amount the operation of the attacked system. In order to mitigate passive attacks,

where the attacker eavesdrops the communication channel of the system, it is pro-

posed a new cryptographic scheme based on events. We also define the property

of confidentiality of DESs, which is associated with the capability of ensuring that

only the sender and the intended receiver are able to understand the transmitted

message. Necessary and sufficient conditions to ensure this property, and methods

to generate the cryptographic schemes ensuring confidentiality of the system are

presented.

vi

Contents

List of Figures ix

List of Tables xi

List of Symbols xii

1 Introduction 1

2 Basic concepts 6

2.1 Discrete event systems . 6

2.2 Information Security . 14

3 Security against active communication network attacks 16

3.1 Communication Network Attacks . 17

3.1.1 System and Security Structure 17

3.1.2 Model of the plant subject to sensor channel attacks 19

3.1.3 Realization of the supervisor subject to supervisory control

channel attacks . 20

3.1.4 Automaton model of the attackable networked system 21

3.1.5 Unsafe Region and Unsafe Boundary 23

3.2 Problem Formulation . 26

3.3 An intrusion detection based approach 28

3.3.1 NA-Safe Controllability . 28

3.3.2 NA-Safe controllability verification 29

3.3.3 Implementation of the Security Module 32

3.4 Maximally permissive approach . 39

3.4.1 NA-Secure Systems . 42

3.4.2 Online security supervisor . 50

3.4.3 Computational complexity analysis 54

3.5 Conclusions . 54

vii

4 Security against passive communication network attacks 56

4.1 Defense Strategy . 57

4.2 Confidentiality of DES . 59

4.3 Transition-based encryption functions 62

4.4 Confidentiality verification . 63

4.5 Transition-based encryption function design 66

4.6 Conclusions . 76

5 Conclusions 77

Bibliography 79

viii

List of Figures

2.1 Example 1: Automaton G. 8

2.2 Example 2: Observer Gobs = Obs(G,Σo). 9

2.3 Example 3: Modified automaton G. 10

2.4 Example 3: Estimator E(G). 11

2.5 Example 4: Accessible part of automaton G, Ac(G). 12

2.6 Example 5: Automaton G1. 12

2.7 Example 5: Automaton G2. 13

2.8 Example 5: Parallel composition G = G1 ‖ G2. 13

2.9 Example 6: Reverse automaton Gr. 13

3.1 Attackable Networked System (ANS). 17

3.2 Plant model . 19

3.3 Attacked plant model . 20

3.4 Supervisor . 21

3.5 Realization of the attacked Supervisor. 21

3.6 Controlled System . 22

3.7 Attacked controlled system . 22

3.8 Attacked closed loop system model Ta of Example 11, computed con-

sidering Σca = {b, e}, Σo = {a, c, d, h}. 25

3.9 Closed loop system model T of Example 11 25

3.10 Security supervisor for an ANS. 28

3.11 Verifier . 32

3.12 Railway example. 35

3.13 Plant model G for the railway example. 35

3.14 Supervisor H. 36

3.15 Closed-loop system T = G‖H for the railway example. 36

3.16 Plant model under attack Ga. 36

3.17 Supervisor model under attack Ha. 37

3.18 Closed-loop system model under attack Ta for the railway example. . 37

3.19 Unsafe automaton model TU . 38

3.20 Safe automaton model TS = T ′S. 38

ix

3.21 Observer of TS. 39

3.22 Automaton G of Example 16. 47

3.23 Supervisor realization H of Example 16. 47

3.24 Close loop system model T of Example 16. 47

3.25 Modified attacked closed-loop system automaton T ′a 48

3.26 Modified closed-loop system automaton T ′. 48

3.27 Attacked closed loop system model Ta. 49

3.28 Renamed automaton T ′ρ obtained from T ′. 50

3.29 Part of Verifier automaton V of Example 16. 50

4.1 Cyber attack in industrial network. 56

4.2 Cyber attack in the sensor channel of a supervisory control system. . 58

4.3 Defense Strategy. 60

4.4 Example 19: Automata Go and Gc. 62

4.5 Example 20: Plant model Go. 63

4.6 Example 20: Automaton Gc obtained using the transition-based en-

cryption function FT applied to automaton Go of Figure 4.5. 63

4.7 Example 21: E(Go) (a) and E(Gc) (b). 66

4.8 Example 21: Verifier V = E(Go) ‖ E(Gc). 66

4.9 Example 22: Automaton Go. 70

4.10 Example 22: E(Go). 70

4.11 Example 22: Gm. 70

4.12 Example 22: Gr
m. 71

4.13 Example 22: T4. 71

4.14 Example 23: Cipher automaton Gc corresponding to the encryption

function FT obtained using Algorithm 10. 74

4.15 Example 23: Current state estimator of automaton Gc, E(Gc). 75

4.16 Example 23: Verifier automaton V = E(Go)‖E(Gc). 75

x

List of Tables

3.1 Meaning of the states of G. 35

3.2 Computational complexity of Algorithms 5, 6, and 7. 52

xi

List of Symbols

FE Event-Based Encryption Function, p. 61

FT Transition-Based Encryption Function, p. 63

G Deterministic automaton, p. 8

G1 ‖ G2 Parallel composition between automata G1 and G2, p. 13

L(G) Language generated by automaton G, p. 8

L/s Post language of L after s, p. 8

Obs(G,Σo) Observer of automaton G considering the set of observable

events Σo, p. 10

Po(s) Natural Projection of sequence s, p. 8

UR(x) Unobservable reach of a state x, p. 10

Υ Attackable Networked System, p. 19

E(G) Current-state estimator of automaton G, p. 11

ΓG(x) Feasible event function of on G in state x, p. 9

Σ? Kleene-closure of Σ, p. 7

Σc Set of controllable events, p. 9

Σo Set of observable events, p. 9

Σuc Set of uncontrollable events, p. 9

Σuo Set of unobservable events, p. 9

|s| The length of a sequence s, p. 7

G Nondeterministic automaton, p. 8

ε Empty sequence, p. 7

xii

Chapter 1

Introduction

Security in the context of communication networks has been addressed in the lit-

erature with different definitions. In the context of Information Technology (IT),

it is defined as the protection of assets (PFLEEGER and PFLEEGER, 2002), the

collection of tools designed to protect data (STALLINGS, 2006), or the guaran-

tee of certain specifications (KUROSE and ROSS, 2011). Moreover, three desired

properties for security communications are defined as: Confidentiality, Integrity and

Availability, denoted as the CIA triad (KUROSE and ROSS, 2011; PFLEEGER

and PFLEEGER, 2002; STALLINGS, 2006). Confidentiality represents that only

the sender and the intended receiver should be able to understand the contents of

the transmitted message. Integrity assures that messages are received as sent, with

no duplication, insertion, modification, reordering, or replays. Availability is defined

as the property of a system, or a system resource, being accessible and usable upon

demand by an authorized system entity. These properties are also defined in the

X-800 and the RFC2828 standards (SHIREY, 2000; X-800, 1991). Aside from these

three properties for communication security, KUROSE and ROSS (2011) also define

operational security, which is associated with the protection of the operation of a

system, such as preventing harm in industrial sites.

Most computer security activity is designed to prevent malicious human-caused

harm (PFLEEGER and PFLEEGER, 2002). Since malicious agents want to cause

harm, it is used the term attack for malicious actions. Attacks can be classified

in two major categories: passive attacks and active attacks (WU et al., 2007). An

attack is classified as passive if it attempts to learn or make use of information from

the system without affecting system resources. On the other hand, an active attack

attempts to affect their operation or alter system resources (STALLINGS, 2006).

The advance of globalization brought new challenges to the industry, forcing pro-

cesses to become more efficient and flexible. From these requirements a new concept

was created for the industry, denoted by Smart Factory, or alternatively, denoted

by Industry 4.0 (GILCHRIST, 2016; WANG et al., 2016). This concept is used

1

to designate the current tendency in automation systems to exchange informations

in manufacture technologies. With the new concept of smart factories, automation

systems are more than ever using network communications, even in the lower levels

of the industry (GUBBI et al., 2013). The use of this type of communication in Au-

tomation Technology (AT) networks also increases the vulnerability to cyber attacks

(DA XU et al., 2014; GOU et al., 2013; HE et al., 2016; SINGH and SINGH, 2015).

Therefore, in the context of AT, security is becoming a major concern (BENCSÁTH

et al., 2012; COUTO et al., 2020; FARWELL and ROHOZINSKI, 2011; MOHAM-

MAD and LAKSHMISRI, 2018).

The framework used for Industry 4.0 is based on Cyber-Physical systems (CPS)

(JIRKOVSKY et al., 2017), which are systems that integrate computing and com-

munication capabilities to monitor and control physical processes (CASSANDRAS,

2016; LEE, 2008). It is also important to remark, that the security of CPS can

be addressed by considering different model formulations such as: (i) discrete lin-

ear time-invariant systems MO and SINOPOLI (2010, 2012); (ii) continuous linear

time-invariant systems HUANG and DONG (2018); (iii) discrete event systems; or

(iv) considering the communication network properties, e.g., considering the physi-

cal layer JADOON et al. (2021), or proposing the creation of a demilitarized zone

(DMZ) COUTO et al. (2020). Several overviews of security for cyber-physical sys-

tems have been presented in the literature (ASHIBANI and MAHMOUD, 2017;

CAO et al., 2020; HUMAYED et al., 2017; IGURE et al., 2006).

In this work, the system’s logical behavior of the CPS is modeled as a Discrete

Event System (DES), which are systems with discrete state space, and whose evo-

lution is driven by the occurrence of events (CASSANDRAS and LAFORTUNE,

2008). Events are representations of instantaneous occurrences, such as the pressing

of a button or a sensor state change. DESs can be used to model several systems,

such as industrial networks, manufacturing systems, traffic supervision, logistic, or

scheduling problems.

Several works in the literature propose strategies to model and thwart active at-

tacks in automation networks using the framework of Discrete Event Systems (CAR-

VALHO et al., 2018; GOES et al., 2017, 2020; LIMA et al., 2017; SU, 2018; THORS-

LEY and TENEKETZIS, 2006; ZHANG et al., 2018), and address the problem of

ensuring operational security, which can be interpreted as the prevention of damages

caused to the system. The first work that addresses active attacks in the context

of Stochastic Discrete Event Systems is presented by THORSLEY and TENEKET-

ZIS (2006), where the main objective is to design a supervisor that achieves the

specification in normal operation and after an attack. The attacks considered in

THORSLEY and TENEKETZIS (2006) can be interpreted as an interference in

the communication channel between the supervisor and the system, that could be

2

caused by an intruder attempting to damage the system. Latter, in SU (2018),

a robust supervisor is designed to enforce the control specification language under

sensor channel attacks, where it is considered that the attacker can replace the ob-

servation of an event with a bounded sequence of events. In SU (2018), attacks in

actuator channels are not considered. In GOES et al. (2017, 2020) and ZHANG

et al. (2018) the authors consider stealthy attacks in sensors. The authors, in LIMA

et al. (2017) and CARVALHO et al. (2018), deal with attacks in both sensors and

actuators. Both in CARVALHO et al. (2018) and in LIMA et al. (2017), the authors

use a conservative strategy, in which all controllable events are disabled when the

attack is detected and it can lead the system to an unsafe state, i.e., an state that

if reached presents a treat to the system.

In the context of DESs, passive attacks has been addressed as the problem of

opacity (BARCELOS and BASILIO, 2018, 2021; GUO et al., 2020; JI, 2019; LIN,

2011; MAZARÉ, 2004; SABOORI and HADJICOSTIS, 2007; WU and LAFOR-

TUNE, 2014). Opacity is defined as the capability of hiding a secret. This secret

can be a secret language (Language-based opacity) in a partial observation system

such that the attacker must always be unsure if a sequence in the secret language has

occurred, or a set of states (State-based opacity) where the attacker must be unsure

if the system is or has been in a secret state, based on the observation transmitted

by the system. The State-based opacity include initial-state opacity (SABOORI and

HADJICOSTIS, 2008), current-state opacity (SABOORI and HADJICOSTIS, 2013;

TONG et al., 2018), k-step opacity (SABOORI and HADJICOSTIS, 2011b) and

infinite-step opacity (SABOORI and HADJICOSTIS, 2011a; YIN et al., 2019). In

general, a system is said to be opaque if given any secret sequence, there exists a non-

secret sequence that is transmitted in the same way (WU and LAFORTUNE, 2014).

In addition, the authors in LIN (2011) show that several different discrete event sys-

tems problems can also be reduced to the opacity problem, namely, anonymity,

secrecy, observability, diagnosability, and detectability. In MAZARÉ (2004) it is

proposed the use of similarity in cryptographic protocols to enforce opacity. It is

important to remark that, in MAZARÉ (2004), the authors still assume that the

transmitted data is the same for secret or non-secret sequences, in order to ensure

opacity. This is not a problem if the secret information is not important for the

intended receiver. In this context, emerge in the literature the notions of utility

and privacy (WU et al., 2018), where utility refers to the generation of sequences

of events that are useful by the intended receiver and must not be confused with

other sequences, and privacy refers to hiding a secret behavior from an intruder for

example. However, if the useful information for the receiver must also be kept secret

from an intruder, then it is necessary to introduce a new notion that encompasses

both properties.

3

One method to ensure the security of data is cryptography. In the context of

DESs, cryptography is considered in FRITZ and ZHANG (2018); FRITZ et al.

(2019) in order to improve the network security. In FRITZ and ZHANG (2018)

the authors consider two types of active attacks, namely, replay attack and covert

attack, and propose a method for identifying an attacker by changing the transition

matrices of the Petri net model. However, this implementation may increase the

complexity of the transmission, since it needs the synchronization of the sender and

the receiver. In FRITZ et al. (2019) the authors relate to the passive attack problem

and adapt the Somewhat Homomorphic Encryption (SWHE) scheme (DYER et al.,

2017). The method proposed in FRITZ et al. (2019) replaces every transmitted bit

with a large integer, due to the public-key encryption proposed using large prime

numbers and relating to Euler’s totient function (LEHMER et al., 1932) to avoid

cryptanalysis, and therefore, making the transmission more expensive.

In this thesis, we present discussions and solutions for problems regarding cyber

attacks in industrial networks for active and passive attacks. We initially address the

problem of protecting the system against active cyber attacks, for which a model

of the attacked system is presented and a defense strategy is proposed, where a

security supervisor is created in order to prevent the system from reaching unsafe

states. In this regard, a security supervisor that disables all controllable events

if the system is under a detected attack and an unsafe state may be reached is

proposed. The property of NA-Safe Controllability is also proposed, which is related

to the existence of a security supervisor capable of protecting the system. However,

this approach may not be maximally permissive, i.e., may not disable events only

when necessary to prevent damage. For this reason, we also propose the creation of

another security supervisor, that disables only the events that leads the system to

states where damage cannot be prevented. This approach is related to the supervisor

range control problem, which is a known problem in the supervisor control theory

and can be solved, if a solution exists, in exponential time. We define then, a class of

systems, called NA-Secure Systems, for which a solution for a maximally permissive

security supervisor can be computed in polynomial time.

In this thesis, we also address the problem of security of CPSs against passive

attacks in the network. In this regard, a model for an eavesdropping attacker esti-

mation is presented. We also present the property of confidentiality of discrete event

systems, related to the capability of the system to prevent the attacker from correctly

estimating the occurrence of secret sequences in the system from the transmitted

message. In order to do so, we propose a defense strategy based on cryptography

for the transmission in an industrial communication channel, where the message,

can be modified by an encryption function before transmission and recovered by the

authorized receiver. We present a method for verification of confidentiality of DES

4

given an encryption function, and present a method for the creation of an encryp-

tion function that ensures confidentiality of DESs for a given secret language with

bounded sequences.

This thesis is organized as follows, in Chapter 2 we present some basic concepts

used throughout the thesis. We address the problem of security in CPSs against ac-

tive attacks in Chapter 3, where we consider a detection based approach in Section

3.3. Then, in Section 3.4, we then propose a maximally permissive approach. In

Chapter 4 We propose an event-based cryptographic scheme to mislead an attacker

that knows the internal model of the system, and define the property of Confiden-

tiality for discrete event systems. Finally in Chapter 5 the conclusions are drawn.

5

Chapter 2

Basic concepts

In this work we propose methods for improving the security of cyber-physical systems

(CPS) modeled as discrete-event systems (DES). Thus, in Section 2.1 we introduce

the notations and the background of DES used in this work. Since we also use

concepts of Information Technology (IT) to improve the security of CPS, we present

some background on the security of networks in Section 2.2.

2.1 Discrete event systems

Discrete event systems can be modeled by using different formalisms, such as Petri

nets and automata (CASSANDRAS and LAFORTUNE, 2008; HOPCROFT et al.,

2006; LAWSON, 2003). In this work, all systems are modeled by automata. Thus, in

this section we present the models of a deterministic and a nondeterministic automa-

ton. We also present the language of these automata, and some basic operations

using them.

Before introducing automata, it is important to define languages, which is a

formal way to represent DESs (CASSANDRAS and LAFORTUNE, 2008). DESs

are associated with an event set Σ, that can be interpreted as an “alphabet”, such

that the concatenation of events forms sequences that can be interpreted as “words”

of a language (notice that in the literature a sequence is also called“string”or“trace”)

(CASSANDRAS and LAFORTUNE, 2008). Thus, a language is a set of sequences

formed with the elements of Σ.

The length of a sequence s is the number of events that form it, counting multiple

occurrences of the same event, and it is denoted by |s|. The sequence with zero length

is called empty sequence and is denoted by ε. The language formed of all sequences

of finite length obtained from Σ plus the empty sequence ε is call the kleen-closure

of Σ denoted by Σ?.

6

Definition 1 (Language) (CASSANDRAS and LAFORTUNE, 2008) A language

defined over an event set Σ is a set of finite length sequences formed with events in

Σ. 2

Notice that, according to definition 1, any language L defined over Σ is a subset

of Σ?, i.e., L ⊆ Σ?.

A sequence s can be partitioned as s = tuv, where t and v are called a prefix

and a suffix of s, respectively. Notice that ε is always a prefix and a suffix of any

sequence. We can also define the post language after a sequence s in a language

L, L/s, as the set formed of the continuations of all sequences of L after s, i.e.,

L/s = {t ∈ Σ? : st ∈ L}.
The set of all possible prefixes of the strings in a language L ⊆ Σ? is called

prefix-closure of L, and is defined as L = {s ∈ Σ? : (∃t ∈ Σ?)[st ∈ L]}.
The natural projection is an important operation defined for sequences. Let

Σo ⊂ Σ be a set of events. Then, the projection Po : Σ? → Σ?
o is defined as Po(ε) = ε,

Po(σ) = σ, if σ ∈ Σo or Po(σ) = ε, if σ ∈ Σ \ Σo, and Po(sσ) = Po(s)Po(σ), for all

s ∈ Σ? and σ ∈ Σ. Notice that the projection Po(s) erases events that do not belong

to Σo in s ∈ Σ?. The projection operation can be extended to languages by applying

them to all sequences in the language (CASSANDRAS and LAFORTUNE, 2008),

Po(L) = {t ∈ Σ?
o : (∃s ∈ L)[Po(s) = t]}.

In the sequel we present the definition of a deterministic automaton.

Definition 2 A deterministic automaton is a five-tuple, G = (X,Σ, f, x0, Xm),

where X is the set of states, Σ is the finite set of events, f : X × Σ → X is

the transition function, x0 ∈ X is the initial state of the system, and Xm ⊆ X is

the set of marked states.

In this work we will not consider the set of marked states, i.e., we will define

Xm = ∅ for all automata, and therefore, a deterministic automaton can be repre-

sented by the four-tuple G = (X,Σ, f, x0).

The domain of the transition function f can be extended to X × Σ∗, where Σ?,

as usual: f(x, ε) = x, and f(x, sσ) = f(f(x, s), σ), for all s ∈ Σ∗ and σ ∈ Σ. The

language generated by G is defined as L(G) = {s ∈ Σ? : f(x, s) is defined}.

Definition 3 A nondeterministic automaton is the five-tuple G = (X,Σ ∪
{ε}, fnd, x0, Xm), where the elements of G have the same interpretation as in the

deterministic automaton G, with the exception of the nondeterministic transition

function fnd : X ×Σ ∪ {ε} → 2X . The initial set of states x0 in a nondeterministic

automaton can be a subset of the set of states X.

A nondeterministic automaton can be represented by the four-tuple G = (X,Σ∪
{ε}, fnd, x0) when there is no marked states, i.e., Xm = ∅.

7

1 2 3 4

5 6

7 8

a

e

e

e

c

b d

c

b

a

Figure 2.1: Example 1: Automaton G.

In order to define the language generated by G, it is necessary to extend the

domain of fnd to X × Σ∗, obtaining the extended transition function f end. Let

εR(x) denote the ε-reach of a state x, i.e., the set of states reached from x by

following transitions labeled with ε, including state x (CASSANDRAS and LAFOR-

TUNE, 2008). The ε-reach can be extended to a set of states B ⊆ X as εR(B) =

∪x∈BεR(x). The extended nondeterministic transition function f end : X ×Σ∗ → 2X ,

can be defined recursively as f end(x, ε) = εR(x), and f end(x, sσ) = εR[{z : z ∈
fnd(y, σ) for some state y ∈ f end(x, s)}]. Thus, the language generated by G can be

defined as L(G) = {s ∈ Σ∗ : (∃x ∈ x0)[f end(x, s) is defined]}.
The feasible event function of an automaton G is defined as ΓG : X → 2Σ, where

ΓG(x) = {σ ∈ Σ : fnd(x, σ) is defined}, for all x ∈ X.

A path of length k1 of G is defined as p = (x1, σ1, x2, . . . , σk1−1, xk1), where

xi ∈ X, for i = 1, . . . , k1, σi ∈ Σ, for i = 1, . . . , k1 − 1, and f(xi, σi) = xi+1, for

i = 1, . . . , k1 − 1. The concatenation of two paths p and p′ = (x′1, σ
′
1, x
′
2, . . . , x

′
k2

),

where x′i ∈ X, for i = 1, . . . , k2, and σ′i ∈ Σ, for i = 1, . . . , k2 − 1, is possible if

the last state of p is equal to the first state of p′, i.e., xk1 = x′1. The concatenation

operation is defined as p · p′ = (x1, σ1, x2, . . . , σk1−1, xk1 , σ
′
1, . . . , σ

′
k2−1, x

′
k2

).

The set of events Σ can be partitioned in two different manners, as Σ = Σc∪̇Σuc,

where Σc and Σuc are, respectively, the sets of controllable and uncontrollable events

of the system, and also as Σ = Σo∪̇Σuo, where Σo and Σuo denote, respectively,

the sets of observable and unobservable events of the system (CASSANDRAS and

LAFORTUNE, 2008). With a view to facilitating the visualization of the controllable

and/or observable events of the system, we adopt in this work the following graphical

representation for the arcs in the state transition diagram of an automaton: (i)

observable events are associated with solid arcs, and unobservable events with dashed

arcs; (ii) controllable events are associated with arcs with a tick, and uncontrollable

events are those associated with arcs without ticks.

Example 1 Let us consider the automaton G = (X,Σ, f, x0), depicted in Fig-

ure 2.1. In this case, X = {1, 2, 3, 4, 5, 6, 7, 8}, Σ = {a, b, c, d, e}, f(1, a) =

8

1,5

2,3,4

a

7,8

c

c

4
a

c

Figure 2.2: Example 2: Observer Gobs = Obs(G,Σo).

2, f(1, b) = 5, f(1, c) = 7, f(2, b) = 3, f(2, e) = 2, f(3, d) = 4, f(4, c) = 1, f(6, e) =

5, f(7, e) = 8, f(8, a) = 4, x0 = 1, and Xm = ∅, and therefore not repre-

sented. Moreover, Σ can be partitioned as Σo = {a, c} and Σuo = {b, d, e}, or

as Σc = {c, d, e} and Σuc = {a, b}. In addition the function ΓG can be defined from

f as ΓG(1) = {a, b, c},ΓG(2) = {b, e},ΓG(3) = {d},ΓG(4) = {c},ΓG(5) = ∅,ΓG(6) =

{e},ΓG(7) = {e}, and ΓG(8) = {a}. 2

It is important to remark that it is always possible to compute from a nondeter-

ministic automaton G, a deterministic automaton whose generated language is equal

to Po(L), where L = L(G) and Po is computed considering the set of unobservable

events Σuo. We adopt, in this work, the observer automaton presented in CASSAN-

DRAS and LAFORTUNE (2008), denoted as Obs(G,Σo) = (Xobs,Σo, fobs, x0,obs). In

order to compute Gobs, we first need to define the operation of obtaining the unob-

servable reach of a state x ∈ X, which is a generalization of the notion of ε− reach
(CASSANDRAS and LAFORTUNE, 2008).

Definition 4 (Unobservable reach) The unobservable reach of a state x ∈ X,

denoted by UR(x), is defined as:

UR(x) = {y ∈ X : (∃t ∈ Σ?
uo)(f(x, t) = y)}. (2.1)

The unobservable reach can also be defined for a set of states B ∈ 2X as:

UR(B) =
⋃
x∈B

UR(x). (2.2)

The observer automaton can be then computed by following the steps of algo-

rithm 1.

Example 2 Let us consider once again automaton G from Example 1, depicted in

Figure 2.1, where Σo = {a, c}. By following the steps from algorithm 1 is computed

the observer automaton Gobs = Obs(G,Σo), depicted in Figure 2.2. 2

9

Algorithm 1: Observer automaton

Input : G = (X,Σ, f, x0), Σo.
Output: Observer automaton Gobs = (Xobs,Σo, fobs, x0,obs).

1 Define x0,obs = UR(x0).

2 Xobs = {x0,obs} and X̃obs = Xobs.

3 X̄obs = X̃obs, X̃obs = ∅.
4 for each B ∈ X̄obs do
5 ΓGobs(B) =

(⋃
x∈B ΓG(x)

)
∩ Σo.

6 for each σ ∈ ΓGobs(B) do
7 fobs(B, σ) = UR({x ∈ X : (∃y ∈ B)[x = f(y, σ)]}).
8 end

9 X̃obs ← X̃obs ∪ fobs(B, σ).

10 end

11 Xobs ← Xobs ∪ X̃obs.
12 Repeat steps 3 to 11 until all accessible part of Gobs is constructed.

1 2 3 4

5 6

7 8

a

e

e

e

c

b d

c

b

a

Figure 2.3: Example 3: Modified automaton G.

We can then compute the current-state estimator of an automaton G, denoted as

E(G) = (XE ,Σ, fE , x0,E) SABOORI and HADJICOSTIS (2011a). The current-state

estimator of G = (X,Σ, f, x0) is computed in two steps: (i) obtain the nondeter-

ministic automaton G = (X,Σ, f,X) from G, by defining the initial state of G as

the set X; and (ii) compute E(G) = Obs(G,Σ).

Example 3 Let us consider again automaton G = (X,Σ, f, x0) from Example 1,

depicted in Figure 2.1. We can then compute the current-state estimator of G, by

firstly computing automaton G = (X,Σ, f,X), depicted in Figure 2.3, and then by

following the steps from algorithm 1 considering all events as observable E(G) =

Obs(G,Σ), depicted in Figure 2.4. 2

The uncontrollable reach of a state x ∈ X with respect to an automaton G and

a set of uncontrollable events Σuc is defined as Ruc(x,G,Σuc) = {y ∈ X : (∃t ∈
Σ?
uc)[f

e
nd(x, t) = y]}. For a set of states B ⊆ X, the uncontrollable reach is extended

as Ruc(B,G,Σuc) =
⋃
x∈B Ruc(x,G,Σuc).

10

1,2,3,4,5,6,7,8

a
c

2,4
3,5

b

1,7

d
e

2,5,8
e

2

b

3b

c

1
4

d

7

a

5b b

8

c

e e

a

a

a

d

c

b
e

c

Figure 2.4: Example 3: Estimator E(G).

The unary operation of taking the accessible part of an automaton is defined as

follows.

Definition 5 The operation of taking the accessible part of an automaton G =

(X,Σ, f, x0) is given by:

Ac(G) := (Xac,Σ, fac, x0)

where

Xac = {x ∈ X : (∃s ∈ Σ?)[f(x0, s) = x]},

fac = f |Xac×Σ→Xac ,

where fac = f |Xac×Σ→Xac , denotes the transition function f restricted to domain

Xac × Σ.

Example 4 Let us consider Automaton G from Example 1. The accessible part of

Automaton G is then presented in Figure 2.5. Notice that, state 6 is not accessible

since there is no sequence s ∈ Σ∗ that leads the system from the initial state 1 to

state 6, and therefore, it is removed from the accessible automaton Ac(G). 2

Let G1 = (X1,Σ1, f1, x0,1) and G2 = (X2,Σ2, f2, x0,2) be two deterministic au-

tomata. Then, the following parallel composition operation can be defined CAS-

SANDRAS and LAFORTUNE (2008).

11

1 2 3 4

5

7 8

a

e

e

c

b d

c

b

a

Figure 2.5: Example 4: Accessible part of automaton G, Ac(G).

1 2
a

c

e

6

b
c

4

c

5
e

a

3
b

Figure 2.6: Example 5: Automaton G1.

Definition 6 The parallel composition of G1 and G2 is given by:

G1 ‖ G2 = Ac(X1 ×X2, E1 ∪ E2, f1‖2, (x0,1, x0,2))

where

f1‖2((x1, x2), σ) :=

(f1(x1, σ), f2(x2, σ)), if σ ∈ ΓG1(x1) ∩ ΓG2(x2)

(f1(x1, σ), x2), if σ ∈ ΓG1(x1) \ Σ2

(x1, f2(x2, σ)), if σ ∈ ΓG2(x2) \ Σ1

undefined, otherwise.

Example 5 Let us consider automata G1 and G2 depicted in Figure 2.6 and 2.7

respectively. Then the parallel composition G = G1 ‖ G2 is depicted in Figure 2.8.

It is important to remark that, State (2, 2) of G represents that the current state

of automaton G1 is 2, and since event e is not defined in G2 and is feasible in

state 2 of G1, then e is also feasible in state (2, 2) of G. On the other hand, state

(6, 5) of G represents that the current state of automaton G1 is 6 and the current

state of automaton G2 is 5. From automaton G1 Γ(6) = {c} and from automaton

G2 Γ(5) = {a}, then, since a and c are defined in both G1 and G2, no events are

feasible in state (6, 5) of automaton G. 2

12

1

5

6

c

b

a
3 4

b d
2

c

a

a

Figure 2.7: Example 5: Automaton G2.

1,1 2,2 3,3 3,4

6,5

4,6 5,6

a

e

e

c

b d

c

b

a

Figure 2.8: Example 5: Parallel composition G = G1 ‖ G2.

The reversed automaton of G = (X,Σ ∪ {ε}, fnd, x0) is the automaton obtained

by reversing all of its transitions, formally defined as Gr = (X,Σ ∪ {ε}, f rnd, xr0),

where y ∈ f rnd(x, σ) if, and only if, x ∈ fnd(y, σ), for all x, y ∈ X and σ ∈ Σ ∪ {ε},
and xr0 is undefined WU and LAFORTUNE (2013).

Example 6 Considering automaton G from example 5, depicted in Figure 2.8. The

reverse automaton Gr is depicted in Figure 2.9. Notice that, in the reversed automa-

ton the initial state is undefined. 2

Let T be a rooted tree. Then, the height of T is the maximum length of a path

that starts at the root and proceeds downward through descendants to a leaf. The

1,1 2,2 3,3 3,4

6,5

4,6 5,6

a

e

e

c

b d

c

b

a

Figure 2.9: Example 6: Reverse automaton Gr.

13

depth of a node y of T , is the length of the simple path from the root to y COMER

(2009); HOPCROFT et al. (2006).

2.2 Information Security

The basic principles of security for CPSs are confidentiality, integrity, and availability

KUROSE and ROSS (2011). These concepts are better described in the sequel.

• Confidentiality

Confidentiality refers to the capability of the system to prevent unauthorized

entities to access information transmitted in a channel, more specifically, a

system is confidential if only the sender and the intended receiver can under-

stand the data transmitted in a channel. Since eavesdroppers can intercept

messages transmitted in a channel, in order to ensure confidentiality, some

kind of encryption must be used KUROSE and ROSS (2011).

• Integrity

Integrity refers to data and resources of the system not being modified or

deleted without authorization. Integrity is violated when an attack or a fault

modify information transmitted in a channel.

• Availability

Availability refers to any resource of the system being available when requested

by an authorized entity. Availability is in general compromised by denial of

service (DOS) attacks. In this work we do not consider availability problems.

The concept of cryptography is widely used in IT to improve security of systems

KUROSE and ROSS (2011); PFLEEGER and PFLEEGER (2002); STALLINGS

(2006). In the sequel, we present the background of cryptography necessary to

understand this work.

In this work, We denote an original message by plain text and a ciphered message

by cipher text, and the method to convert a plain text into a cipher text is called

encryption. The method to recover a plain text from a cipher text is called decryp-

tion. Thus, cryptography can be defined as the study of methods of encryption and

decryption of messages STALLINGS (2006).

The messages transmitted from the sender to the receiver are modified in the

cryptographic system using a secret information. We call this secret information

‘key’ STALLINGS (2006). The study of retrieving the secret key by an attacker is

called cryptanalysis. In general, cryptanalysis uses some knowledge of the algorithm

14

or the system to recover the key. When a cryptanalysis try every possible key in

order to recover the plain text, it is called brute-force attack STALLINGS (2006).

Cryptography is classified into three independent dimensions STALLINGS

(2006). Firstly, it can be classified by the way it processes a plain text, where

cryptographic systems are divided in stream ciphers and block ciphers. Stream ci-

phers are encryption methods that cipher one element of the plain text at a time,

i.e., it processes the plain text continuously. On the other hand, in block ciphers,

the system processes a block of plain text at a time, i.e., it waits a certain amount

of inputs before processing the plain text. Secondly, cryptographic systems can be

classified by the number of keys used, i.e., if the algorithm to encrypt uses the

same key as the decryption algorithm, the system is classified as symmetric cipher,

or single-key cipher. However, if the key to encrypt is different from the key to

decrypt, the system is known as asymmetric cipher, or public-key cipher. Finally,

based on the algorithms used, it is considered that encryption algorithms are based

on two general principles, transposition, in which elements in the plain text are re-

arranged, and substitution, in which each element in the plain text is mapped into

another element. A system can also be classified as a product system if its algo-

rithm uses both substitution and transposition. Independently on the classification,

it is fundamental for a cryptographic system that no information is lost, i.e., the

encryption must be revertible.

15

Chapter 3

Security against active

communication network attacks

Initially, we consider the problem of intrusion detection and prevention of damages

caused by attacks in the context of supervisory control of Discrete Event Systems

(DESs). In LIMA et al. (2017) and LIMA (2017), we proposed automaton models of

the plant and supervisor subject to man-in-the-middle attacks in the sensor and/or

communication channels. In addition, we propose the use of a module to ensure

the security of the system, i.e., a module capable of preventing the system from

reaching states that may cause harm to the system without altering the behavior of

the non-attacked system. This module is called security supervisor.

In Section 3.3, the property of NA-Safe controllability, that is related with the

capability of detecting intrusions and preventing damages caused by man-in-the-

middle attacks, is introduced, and a verification algorithm was proposed. In LIMA

et al. (2017) it is not presented how the security supervisor can be implemented

in order to detect and prevent damages caused by cyber-attacks. In Section 3.3,

we extended the work presented in LIMA et al. (2017) as follows: (i) we prove the

correctness of the NA-Safe controllability verification algorithm proposed in LIMA

et al. (2017); (ii) we show how to implement the security supervisor against attacks

in the communication channels of CPSs; (iii) we show that NA-Safe controllability

is a necessary and sufficient condition for the existence of the security supervisor;

and (iv) we present a practical example, that has not been used in LIMA et al.

(2017), to illustrate the results of the work. The results presented in Section 3.3 are

published in LIMA et al. (2019).

In Section 3.4, we propose a new method for the design of the security supervisor,

where we add the objective of the security supervisor to be maximally permissive,

i.e., the security supervisor must disable events only when it is necessary to prevent

the system from being damaged. Then, a class of system in which the maximally

permissive security supervisor can be computed in polynomial time complexity is

16

Physical Plant G

Control Site 1 Control Site na
Measurement

Supervisor S

Control Channel
Attack Attack

Sensor Channel
Attack

Site 1
Measurement

Site ns

Figure 3.1: Attackable Networked System (ANS).

presented, called NA-Secure Systems. A verification method for confirming if a

system is NA-Secure is presented, and a method for the online implementation of a

maximally permissive securty supervisor is proposed. Finally, the complexity of the

algorithms proposed in this section are discussed. The results presented in Section

3.4 are published in LIMA et al. (2021).

This chapter is organized as follows. In Section 3.1, we present models for the

attacked system. In Section 3.2 we formulate the problem of intrusion detection and

prevention of damages caused by man-in-the-middle attacks in CPSs. In Section

3.3, we define NA-Safe controllability, and present the verification algorithm with

its proof of correctness. In Section 3.3.3, we present a necessary and sufficient

condition for the existence of the security supervisor, and a method for its online

implementation. We also present in Section 3.3.3 a practical example, from modeling

to implementation of the security supervisor. In Section 3.4 we present the condition

of maximally permissibility. In Section 3.4.1 we define NA-Security, and present an

algorithm to verify this property. In Section 3.4.2, we present the algorithm to

implement the security supervisor for the class of NA-Secure systems. In Section

3.4.3, we present the computational complexity of the methods proposed. Finally,

in Section 3.5, the conclusions of this chapter are drawn.

3.1 Communication Network Attacks

3.1.1 System and Security Structure

In this chapter, we consider a cyber-physical system composed of a physical plant

controlled by a supervisor as shown in Figure 3.1. We assume that the communi-

cation between supervisor and plant is carried out by using several different sensor

channels and supervisory control channels. The plant is modeled by a deterministic

17

automaton G = (X,Σ, f, x0), the realization of the supervisor S is modeled by a

deterministic automaton H = (XH ,Σ, fH , x0H), and the closed-loop system model

T = (XT ,Σ, fT , x0T) is obtained by the parallel composition T = G‖H. We also

refer to unsafe states, denoted by XUS ⊂ X, where unsafe states are states of the

plant that represent risk to operators or equipments, or can be associated with an

undesirable behavior. We assume that the supervisor is designed to avoid the plant

from reaching any unsafe state x ∈ XUS.

Let us consider that at least one communication channel in the networked su-

pervisory control system of Figure 3.1 is vulnerable to man-in-the-middle attacks,

i.e., the attacker can observe, hide, create or change the information that tran-

sits in the attacked communication channel. Let us also assume that both sensor

communication channels and supervisory control communication channels can be

attacked. Thus, the intruder can hide, insert or change events whose occurrence is

detected by sensors in the plant, and can modify the enabling action commanded

by the supervisor to the actuators of the plant, with the objective of driving the

system to reach unsafe states. We denote the sensor channels and the supervisory

control channels vulnerable to man-in-the-middle attacks, respectively, as chsi and

chaj , for i = 1, . . . , ns and j = 1, . . . , na, where ns is the number of vulnerable sensor

channels and na is the number of vulnerable supervisory control channels. The set

of observable events transmitted through channel chsi is denoted as Σsi ⊂ Σo and

the set of controllable events enabled through channel chaj is denoted as Σaj ⊂ Σc.

Then, the set of events associated with the vulnerable sensor channels is defined as

Σvs =
⋃ns
i=1 Σsi , and the set of events associated with the vulnerable supervisory

control channels is defined as Σva =
⋃na
j=1 Σaj .

We formally define an Attackable Networked System (ANS) as follows.

Definition 7 An Attackable Networked System is a tuple Υ = (G,H,Σvs,Σva),

where G is the automaton model of the plant, H is the realization of supervisor S,

and Σvs and Σva are the sets of events associated with the vulnerable sensor channels

and the vulnerable supervisory control channels, respectively. 2

The following assumption is considered for the correct modeling of the plant and

supervisor under network attacks.

A1. The sets of controllable and observable events are disjoint, i.e., Σo ∩ Σc = ∅.
Notice that Assumption A1 is not restrictive since any controllable and observ-

able event σ can be represented as a sequence σcσo, where σc is controllable and

unobservable, and σo is observable and uncontrollable. In this case, event σc repre-

sents the occurrence of event σ and σo represents the successful communication to

supervisor S of the occurrence of σ as shown in LIMA (2017).

18

0 1

4

2

5 6 73

c

a e

d

g

g

d

e

b

Figure 3.2: Model of the plant G.

3.1.2 Model of the plant subject to sensor channel attacks

In this section, we propose a nondeterministic automaton Ga, obtained from au-

tomaton G and the set of events associated with the vulnerable sensor channels Σvs,

that generates all possible sequences modified by the attacks in the sensor channels

LIMA et al. (2018).

Definition 8 (Model of the plant subject to sensor channel attacks) Let

G = (X,Σ, f, x0) and Σvs be the plant automaton and the set of events associated

with vulnerable sensor channels of an ANS Υ, respectively. Then, a nondetermin-

istic automaton that models all possible observations of the events generated by the

plant after sensor channel attacks is given by Ga = (X,Σ ∪ {ε}, fGa , x0), where fGa

is defined, for all x ∈ X and σ ∈ Σ ∪ {ε}, as:

fGa(x, σ) =

{f(x, σ)}, if σ ∈ ΓG(x) ∩ (Σ \ Σvs),

{x} ∪ {f(x, σ)}, if σ ∈ ΓG(x) ∩ Σvs,

{x}, if σ ∈ Σvs \ ΓG(x),

{f(x, σv) : σv ∈ ΓG(x) ∩ Σvs}, if σ = ε,

undefined, otherwise. 2

In Definition 8, self-loops are introduced in each state of the plant G, for sim-

ulating the ability of the attacker to create a new instance of observation for any

attacked event. Transitions labeled with ε are added in parallel to the transitions

labeled with attacked events, to simulate the ability to delete the observation of

an event. Notice that the ability to modify the observation of vulnerable events is

equivalent to deleting one event and creating another one. Thus, the modification

of the observation of an event is modeled by the self-loops and ε-transitions added

to G.

Example 7 Consider an ANS Υ = (G,H,Σvs,Σva) and XUS = {7}. Con-

sider that G is the automaton model of the plant, shown in Figure 3.2, where

Σ = {a, b, c, d, e, g} and, Σo = {a, b, d, g}, and consider that only one sensor chan-

nel, that transmits the observation of event g to the supervisor, is attacked, i.e.

19

0 1

4

2

5 6 73

c

a e

d

g

g

g

g g g

g

g

g

ε

ε

g

d

e

b

Figure 3.3: Model of the plant subject to sensor channel attacks Ga.

Σvs = {g}. Then, we can obtain, in accordance with Definition 8, the model of the

plant subject to sensor channel attacks Ga shown in Figure 3.3.

It is important to notice that Ga is a nondeterministic automaton, since it models

the false observation of events, when the plant does not change its state (modeled by

the self-loops labeled with events in Σvs), and also the addition of transitions labeled

with ε in parallel with all transitions labeled with an event in Σvs, to represent the

deletion of observation of events by the intruder. 2

3.1.3 Realization of the supervisor subject to supervisory

control channel attacks

We consider that the intruder has the ability to enable or disable vulnerable con-

trollable events associated with the actuators of the plant. Thus, in order to model

the attacks in the supervisory control channels of an ANS Υ = (G,H,Σvs,Σva), we

modify realization H of supervisor S by allowing the modifications that the intruder

can execute in the vulnerable controllable events of Σva. It is important to remark

that when the attacker disables controllable events, it only restricts the closed-loop

behavior of the system, since no new behavior of the attacked plant Ga can be gener-

ated. Hence, no unsafe state can be reached. Thus, in the problem considered in this

work, it is not important to model the disabling actions of the attack CARVALHO

et al. (2018); LIMA et al. (2018).

Definition 9 (Supervisor realization model after control attacks) Let H =

(XH ,Σ, fH , x0H) and Σva be the realization of supervisor S and the set of events

associated with vulnerable supervisory control channels of an ANS Υ, respectively. A

deterministic automaton that models supervisor S in the presence of control channel

attacks is defined as Ha = (XH ,Σ, fHa , x0H), where fHa is defined, for all x ∈ XH

20

x y z
d

a, g a a, g

e

b

g

Figure 3.4: Supervisor realization H.

x y z
d

a, b, d

e

b

g

c

a, g, d

c

a, g, b

c

Figure 3.5: Realization of the supervisor after control channel attacks Ha.

and σ ∈ Σ, as:

fHa(x, σ) =

fH(x, σ), if σ ∈ ΓH(x),

x, if σ ∈ (Σva ∪ Σuc) \ ΓH(x),

undefined, otherwise. 2

In Definition 9, we compute the supervisor of an attackable networked system

where the malicious agent has the ability to enable vulnerable events, represented by

the introduction of self-loops labeled with events in Σva. Notice that, since the ma-

licious agent can enable attacked events in Σva, these events become uncontrollable.

In addition, since the supervisor must be admissible, we add to all states x ∈ XH ,

self-loops labeled with all uncontrollable events σ /∈ ΓH(x).

Example 8 Consider the same ANS Υ = (G,H,Σvs,Σva) of Example 7, whose

plant G is shown in Figure 3.2, where Σc = {d, e} and Σo = {a, c}, and supervisor

realization H = (XH ,Σ, fH , x0H) is depicted in Figure 3.4. Let Σva = {c} be the set

of vulnerable controllable events. Then, using Definition 9, we obtain the realization

of the supervisor subject to control attacks Ha shown in Figure 3.5. Notice that Ha

is obtained from H by adding self-loops in the states x ∈ XH , labeled with the events

in Σva and Σuc that are not feasible in x. 2

3.1.4 Automaton model of the attackable networked system

Given an ANS Υ = (G,H,Σvs,Σva). The behavior of Υ in the presence of man-

in-the-middle attacks is modeled by nondeterministic automaton Ta = Ga‖Ha =

(XTa ,Σ ∪ {ε}, fTa , x0,Ta), referred here to as attacked closed-loop system model.

21

(0,x)
d

e

b

g
(1,y) (2,z)

Figure 3.6: Automaton for the closed-loop system (T).

(0,x)
d

e

g

(1,y)

(2,z)

b

g
g

(1,z)

g

(2,y)

ε

g

ε

g
g

(3,x)

c

g

(4,x)
dε

g g

(5,y)

(5,z)
g

g

(6,y)

(6,z)

g

a

a
g

(7,z) g

e

Figure 3.7: Automaton of the closed-loop system subject to network attacks Ta.

Since the malicious agent can enable attacked events in Σva, these events become

uncontrollable. This leads to the following definition of the set of non-vulnerable

controllable events Σca = Σc \Σva, and of uncontrollable events Σuca = Σuc ∪Σva of

the attacked closed-loop system model Ta. In addition, the set of unsafe states of Ta
is defined as XTaUS = {(x, y) ∈ XTa : x ∈ XUS}.

Example 9 Consider once again the ANS Υ = (G,H,Σvs,Σva) of Example 7,

where G be depicted in Figure 3.2, where Σo = {a, b, d, g} and XUS = {7}, and

the supervisor realization H be presented in Figure 3.4. Notice that there is no un-

safe state in the closed-loop system T = G‖H, depicted in Figure 3.6, which shows

that the supervisor avoids the reach of unsafe states as expected.

Consider now that Σvs = {g}, and Σva = {c}. Then, the attacked closed-loop

system Ta = Ga‖Ha, depicted in Figure 3.7, has the set of unsafe states XTaUS =

{(7, z)}. Namely, the intruder is capable of driving the system to reach an unsafe

state after cyber-attacks in the channels that communicate the occurrence of g, and

the enablement of c. 2

22

3.1.5 Unsafe Region and Unsafe Boundary

In the sequel, we introduce the concepts of unsafe region and unsafe boundary for an

ANS, considering the associated attacked closed-loop system model Ta, as follows.

Definition 10 Let Ta be the attacked closed-loop system model, where Σca and XTaUS
are the sets of controllable events and unsafe states of Ta, respectively. Then, the

unsafe region USR ⊆ XTa is defined as USR = Ruc(X
Ta
US, T ra ,Σuca), where T ra is the

reversed automaton of Ta. 2

According to Definition 10, for any state x ∈ USR, there exists a sequence of

uncontrollable events in Σ?
uca that lead the system from x to an unsafe state. Thus,

when the system reaches a state in the unsafe region, the security supervisor cannot

prevent it from reaching an unsafe state.

Definition 11 Let Ta be the attacked closed-loop system model, and USR be the

unsafe region of Ta. Then, the unsafe boundary USB ⊂ XTa is defined as USB =

{x ∈ XTa \ USR : (∃σ ∈ Σca,∃y ∈ USR)[y ∈ fTa(x, σ)]}. 2

Notice, according to Definition 11, that the unsafe boundary USB is formed of

those states x ∈ XTa that are not in the unsafe region USR, and there exists a

feasible controllable event σ ∈ Σca that leads the system to the unsafe region USR.

Example 10 Let us consider once again the automaton Ta depicted in Figure 3.7,

Considering that the set of unsafe states is XTaUS = {(7, z)}, then the unsafe region,

can be calculated as USR = {(7, z)}. Notice that, state (6, z) is not a part of the

unsafe region, since the event e that leads the system from state (6, z) to the unsafe

state (7, z) is controllable, i.e., e ∈ Σca. Moreover, state (6, z) is the only state in

Ta that have a feasible event which leads the Ta to the unsafe region, therefore, the

unsafe boundary can be computed as USB = {(6, z)}.

Based on Definitions 10 and 11 we can partition the language generated by the

attacked closed-loop system into five languages according to the detection of the

attack and the exposure of the system to threats.

Definition 12 Let Ta and T be the attacked and non attacked closed-loop systems

of an ANS Υ, respectively. Let, also, USB, USR and Po denote, respectively, the

unsafe boundary, the unsafe region and the projection that models the observation

of the supervisor. Then, every sequence s ∈ L(Ta) can be classified as:

• s belongs to the undetectable language, denoted as LU , if there exists ω ∈ L(T)

such that Po(s) = Po(ω);

23

• s belongs to the no risk language, denoted as LNR, if s /∈ LU and, ∀t ∈
L(Ta)/s, f eTa(x0,Ta , st) ∩ USR = ∅;

• s belongs to the non-imminent risk language, denoted as LNIR, if s /∈ (LU ∪
LNR), and f eTa(x0,Ta , s) ∩ (USR ∪ USB) = ∅;

• s belongs to the imminent risk language, denoted as LIR, if s /∈ (LU ∪ LNR),

f eTa(x0,Ta , s) ∩ USB 6= ∅, and f eTa(x0,Ta , s) ∩ USR = ∅;

• s belongs to the damage language, denoted as LD, if s /∈ (LU ∪ LNR), and

f eTa(x0,Ta , s) ∩ USR 6= ∅. 2

Notice that each sequence s ∈ L(Ta) belongs to a unique language presented in

Definition 12, i.e., L(Ta) = LU ∪̇ LNR ∪̇ LNIR ∪̇ LIR ∪̇ LD. The sequences in the

undetectable language LU represent the behavior of the system without attack, and

the behavior after an attack that cannot be distinguished from a sequence in the

non-attacked language L(T). The no risk language LNR is formed of the sequences

generated after an attack that can be distinguished from the sequences in the non-

attacked language, and that does not have any continuation that leads the system

to an unsafe state. Thus, the occurrence of sequences in LNR does not represent any

risk to the system. The non-imminent risk language LNIR is formed of the sequences

that satisfy three conditions: (i) it can be distinguished from the sequences in the

non-attacked language; (ii) there exists a continuation that leads the system to an

unsafe state; and (iii) if s ∈ LNIR is executed by the system, then its current state

does not belong to the unsafe boundary USB or unsafe region USR. On the other

hand, if s ∈ LIR is executed, the attack can be detected, and the system reaches

the unsafe boundary; therefore, the security supervisor must act immediately since,

as it can be seen from Definition 11, the current state is the last one where damage

can be prevented. Finally, if s ∈ LD is executed by the system, then a state in

the unsafe region is reached, which means that there exists at least one sequence

of uncontrollable and/or vulnerable events that leads the system to an unsafe state

and, therefore, damage can no longer be prevented.

Example 11 Consider the ANS Υ, where the attacked closed-loop system Ta is de-

picted in Figure 3.8, where Σo = {a, c, d, h}, Σca = {b, e} and Σuca = {a, c, d, g, h},
and the non-attacked closed-loop system T , depicted in Figure 3.9. It can be seen,

from Definitions 10 and 11, that USR = {(9, 2), (9, 3)} and USB = {(8, 2), (8, 3)}.
In order to illustrate the sets presented in Definition 12, consider the following se-

quences belonging to L(Ta): s1 = chgnd, s2 = ca, s3 = εgdc, s4 = εgdc(gdc)ngdd,

and s5 = s4e, where n ∈ N. Sequence s1 is generated when, due to an attack in

the supervisory control channel, event g is enabled after the occurrence of sequence

24

Figure 3.8: Attacked closed loop system model Ta of Example 11, computed consid-
ering Σca = {b, e}, Σo = {a, c, d, h}.

1 24 3
a

b,ege

c

h

d

Figure 3.9: Closed loop system model T of Example 11

25

ch, and n occurrences of event g takes place before the occurrence of d. Such a

sequence belongs to the undetectable language LU , since sequence w1 = chd ∈ L(T)

and Po(s1) = Po(w1) = chd. Sequence s2 is generated when the intruder creates a

fake observation of event a after the occurrence of event c. Such a sequence does

not belong to LU since Po(s2) = ca /∈ Po(L(T)) = {a} ∪ {c}{hd}?. In addition, as

it can be seen from Figure 3.8, ∀t2 ∈ L(Ta)/s2, f eTa(x0,Ta , s2t2) ∩ USR = ∅, and so,

s2 belongs to the no risk language LNR. Sequence s3 is neither in LU nor in LNR

since Po(s3) = dc /∈ Po(L), and t3 = gdde ∈ L(Ta)/s3 and f eTa(x0,Ta , s3t3) ∩ USR =

{(9, 3)} 6= ∅. However, f eTa(x0,Ta , s3) ∩ (USR ∪ USB) = ∅, and, consequently, s3

belongs to the non-imminent risk language LNIR. Finally, sequences s4 and s5 be-

long, respectively, to the imminent risk language LIR and the damage language LD,

since f eTa(x0,Ta , s4) = {(8, 3)} ⊂ USB and f eTa(x0,Ta , s5) = {(9, 3)} ⊂ USR, and

Po(s4) = Po(s5) = (dc)ndd /∈ Po(L(T)). 2

Examples 10 and 11, illustrate cases where a man-in-the-middle attack can reach

the unsafe region, and therefore, damage an ANS, which shows the need for changing

supervisor S or to implement a new layer of supervisors for ensuring the security of

the system. There are several strategies that can be used to prevent damages caused

by an attacker to the system.

Moreover, In CARVALHO et al. (2018), a security module, called Intrusion De-

tection Module, is designed to detect attacks online and, upon detection, to disable

all non-vulnerable controllable events of the system. Notice that, the method pro-

posed in CARVALHO et al. (2018) can be very conservative since, after detecting

an attack, the system may be in a state from which it is not possible to reach an

unsafe state, i.e., the system may have generated a sequence s ∈ LNR, and thus, no

action is needed to prevent damages to the system.

By using the Intrusion Detection Module proposed in CARVALHO et al. (2018),

an attack that inserts a sensor reading can stop the system, even when there is

no risk of reaching an unsafe state. A less conservative approach is proposed in

this chapter, where the definition of the safe language Ls(Ta) = {s ∈ L(Ta) : (∀t ∈
L(Ta)/s)[f eTa(x0,Ta , st)∩XTaUS = ∅]} is introduced. A security supervisor that disables

all controllable events when the attacked closed-loop system generates an observation

that does not belong to Po(L(T) ∪ Ls(Ta)) is presented.

3.2 Problem Formulation

In order to improve the supervisory control structure to prevent damages in the ANS

caused by man-in-the-middle attacks, we propose in this work a defense strategy that

aims to achieve the following objectives:

26

O1. While no man-in-the-middle attack occurs, the language of the closed-loop

system cannot be altered, i.e, the language generated by the supervised system

without network attacks must be equal to L(T).

O2. The closed-loop system cannot reach unsafe states even when man-in-the-

middle attacks take place.

Notice that the achievement of Objective O1 guarantees that, if the system is not

attacked, then the desired behavior is executed by the system. Thus, if Objective O1

is not considered, it necessarily implies in relaxing the system specifications, which

can, in practice, reduce the performance of the system in the absence of attacks.

A possible approach to ensure that an ANS does not reach unsafe states (Objec-

tive O2) is to replace the existing supervisor S with a new supervisor S ′ computed

by assuming Ga as the plant, and Σo and Σca as the sets of observable events and

controllable events, respectively. However, since S ′ is computed by assuming that

the events in Σva are uncontrollable, it never disables such events. Thus, this strat-

egy may fail in achieving Objective O1, since S ′ may allow undesirable occurrences

of sequences of events that do not belong to L(T), as illustrated in the following

example.

Example 12 Consider the same ANS Υ of Examples 7 to 9, where G and H are

depicted in Figures 3.2 and 3.4, respectively, Σo = {a, b, d, g}, Σc = {c, e}, Σvs =

{g}, and Σva = {c}.
It can be seen, from Figure 3.4, that supervisor S disables events c always, with a

view to preventing the occurrence of any sequence in L(G)\L(T), where T is depicted

in Figure 3.6. If we replace S with a new supervisor S ′ computed by assuming Ga as

the plant, and Σo = {a, b, d, g} and Σca = Σc \ Σva = {e} as the sets of observable

and controllable events, respectively, then, since event c became uncontrollable after

the cyber attack, S ′ never disables c. As a consequence, S ′ allows the execution of

sequences of L(G) that do not belong to L(T), even in the case that no attack occurs,

as, for example, sequences c and cgda. 2

Since replacing the existing supervisor S with a new supervisor S ′ may not be

effective to achieve Objective O1, we propose the implementation of the supervisory

control structure depicted in Figure 3.10, in which a new supervisor, called security

supervisor, denoted by Ψ, is connected to the existing supervisor S of the ANS

Υ = (G,H,Σvs,Σva). The security supervisor Ψ has the same event observation

as supervisor S, and a controllable event can occur in the plant if it is neither

disabled by supervisor S nor disabled by security supervisor Ψ. It is important

to remark that since the intruder can attack supervisory control channels, then

only non-vulnerable controllable events can be disabled by the security supervisor.

Therefore, the security supervisor is defined as a mapping Ψ : Po(L(Ta)) → 2Σca ,

27

Physical Plant G

Control Site 1 Control Site na
Measurement

Supervisor SSecurity
Supervisor

Control Channel
Attack Attack

Sensor Channel
Attack

Ψ

Site 1
Measurement

Site ns

Figure 3.10: Security supervisor for an ANS.

where, for a given sequence s ∈ L(Ta), Ψ(Po(s)) are the events that are disabled by

the security supervisor after the occurrence of s. Thus, the language generated by

the ANS modeled by Ta under the restrictions imposed by Ψ, denoted by L(Ψ/Ta),
is recursively defined as: (i) ε ∈ L(Ψ/Ta), and (ii) ∀s ∈ L(Ta) and ∀σ ∈ Σ, sσ ∈
L(Ψ/Ta)⇔ s ∈ L(Ψ/Ta) ∧ sσ ∈ L(Ta) ∧ σ /∈ Ψ(Po(s)).

In Section 3.3, we present an necessary and sufficient condition for the existence

of a security supervisor that is capable of ensuring Objectives O1 and O2.

3.3 An intrusion detection based approach

3.3.1 NA-Safe Controllability

NA-Safe controllability definition

Let us consider an ANS Υ = (G,H,Σvs,Σva), where Ta is the automaton model of the

attacked system, then, L(Ta) = Ls(Ta)∪̇Lus(Ta) denote the language generated by

Ta, where Ls(Ta) denotes the safe language, and Lus(Ta) denotes the unsafe language

of the system. Ls(Ta) is composed of traces s ∈ L(Ta) such that it is not possible to

reach an unsafe state in XTaUS after the occurrence of s, i. e., Ls(Ta) = {s ∈ L(Ta) :

(∀t ∈ L(Ta)/s)[f eTa(X0,Ta , st) ∩XTaUS = ∅]}. Lus(Ta) is composed of traces s ∈ L(Ta)
such that it is possible to reach an unsafe state in XTaUS after the occurrence of s,

i.e., Lus(Ta) = {s ∈ L(Ta) : (∃t ∈ L(Ta)/s)[f eTa(X0,Ta , st) ∩ XTaUS 6= ∅]}. Notice

that a trace in the unsafe language may be part of the non-attacked behavior of

the system, i.e., it may belong to the language generated by T , L(T), or even be

part of Ls(Ta). Therefore, the security supervisor must act only after distinguishing

traces of L(Ta) that will certainly reach an unsafe state, and do not belong to the

language generated by the system before an attack L(T). This leads to the following

28

definition of NA-Safe Controllability (LIMA et al., 2017).

Definition 13 (NA-Safe Controllability) L(Ta) is said to be NA-Safe Control-

lable with respect to T , Po : Σ? → Σ?
o, Σca and the set of unsafe states XTaUS if

(∀s ∈ L(Ta))[f eTa(X0,Ta , s) ∩ XTaUS 6= ∅] ⇒ (s = s1s2)[(∀ω ∈ L(T) ∪
Ls(Ta))[Po(s1) 6= Po(ω)] ∧ (Σca ∈ s2)]. 2

According to Definition 13, L(Ta) is NA-Safe Controllable if all traces s ∈ L(Ta),
that lead the system to an unsafe state in XTaUS, can be divided as s = s1s2, such

that: (i) s1 ∈ Lus(Ta) can be distinguished from any trace of L(T) and Ls(Ta); and

(ii) s2 ∈ Σ? has an event from Σca. These two conditions allow that unsafe traces

that certainly lead the system to an unsafe state be detected, and the reach of unsafe

states prevented by disabling the controllable events of Σca.

Notice that, a supervisor could be designed to disable all controllable events of

the plant after detecting the observation of traces that do not belong to Po(L(T)).

However, this approach would be more restrictive than the approach proposed in

this section, since the system can execute safe traces in Ls(Ta) after an attack that

do not represent danger to the system.

3.3.2 NA-Safe controllability verification

In order to present an algorithm for the verification of NA-Safe controllability, we

need to define two functions, namely, the rename function and the uncontrollable

reach function. In addition, it is necessary to define the renaming function ρ as

follows: ρ(σ) = σ, if σ ∈ Σo, and ρ(σ) = σρ, if σ ∈ Σuo.

Let G = (X,Σ, fnd, x0, Xm) be a nondeterministic automaton. The uncontrol-

lable reach is defined, for all state x ∈ X and a set of uncontrollable events Σuc, as

UR(x,Σuc) = {y ∈ X : (∃t ∈ Σ?
uc)[f

e
nd(x, t) = y]}. This function is extended to a

set of states B ⊆ X as UR(B,Σuc) =
⋃
x∈B UR(x,Σuc).

In order to verify the property of NA-Safe controllability, we need first to compute

automata TS and TU whose generated languages are L(T) ∪ Ls(Ta) and Lus(Ta),
respectively. These automata are constructed according to Algorithm 2.

The verification of NA-Safe controllability can be carried out by using the verifier

automaton proposed in MOREIRA et al. (2011) computed according to Algorithm

3.

In Algorithm 3, we describe a method for verifying the NA-Safe controllability

of L(Ta). The verification is based on the construction of the verifier automa-

ton V = TS‖TU,R, where the language generated by TS is L(T) ∪ Ls(Ta), and

the language generated by TU,R is composed of all renamed traces of L(TU), i.e.,

29

Algorithm 2: Construction of TS and TU .

Inputs : T = (XT ,Σ, fT , x0,T), Ta = (XTa ,Σ ∪ {ε}, fTa , X0,Ta), Σca, X
Ta
US.

Outputs: TS = (XTS ,Σ ∪ {ε}, fTS , X0,TS) TU = (XTU , Σ ∪ {ε}, fTU , X0,TU)
1 Define XTaUS as the set of marked states of Ta.
2 Define TU = CoAc(Ta) = (XU ,Σ ∪ {ε}, fU , X0,U , X

Ta
US), and unmark its

states.
3 Define XTa \XU as the set of marked states of Ta.
4 Define T ′S = CoAc(Ta), and unmark its states.
5 Construct automaton TS such that L(TS) = L(T ′S) ∪ L(T).

Algorithm 3: NA-Safe Controllability Verifier

Inputs : T = (XT ,ΣT , fT , x0T), Ta = (XTa ,Σ ∪ {ε}, fTa , X0,Ta), Σca,
XTaUS ⊂ XTa .

Output: NASafeCont ∈ {TRUE,FALSE}
1 Compute TU and TS by following Algorithm 2.
2 Construct automaton TU,ρ = (XU ,Σρ, fρ, x0U), where Σρ = ρ(Σ ∪ {ε}) and

fρ(x, ρ(σ)) = f(x, σ), ∀σ ∈ Σ ∪ {ε}.
3 Compute V = (XV ,ΣV , fV , x0V) = TS‖TU,ρ.
4 Compute the unsafe region USR, and unsafe boundary USB, as follows:
5 Define the reverse of Ta as T ra = (XTa ,Σ ∪ {ε}, f rTa , X0,Ta) where

f rTa(x, σ) = y ⇔ fTa(y, σ) = x, ∀x, y ∈ XTa , and ∀σ ∈ Σ ∪ {ε}.
6 Define the unsafe region from T ra as USR = UR(XTaUS,Σuca), where

Σuca = Σ \ Σca.
7 Define the unsafe boundary from T ra as

USB = {x ∈ XTa \ USR : (∃σ ∈ Σca) ∧ (∃y ∈ USR) [f rTa(y, σ) = x]}.
8 end
9 If there exists a state xV = (xS, xU) ∈ XV such that xU ∈ USR ∪ USB then

NASafeCont = FALSE, otherwise NASafeCont = TRUE.

30

L(TU,R) = R(L(TU)) = R(Lus(Ta))1. As shown in MOREIRA et al. (2011), all

traces of V are associated with a trace in L(T) ∪ Ls(Ta) and a trace in Lus(Ta)
that have the same projection. Thus, if a trace of V reaches a state xV = (xS, xU),

where xU ∈ USR ∪ USB, then there exist an unsafe trace in Lus(Ta), and a trace

in L(T) ∪ Ls(Ta) that cannot be distinguished, and since state xU is in the unsafe

boundary or in the unsafe region, it is impossible to prevent reaching an unsafe

state by disabling controllable events. In the sequel, we prove the correctness of

Algorithm 3.

Theorem 1 The language generated by Ta, L(Ta), is NA-Safe controllable with re-

spect to T , Po : Σ? → Σ?
o, Σca and XTaUS if, and only if, NASafeCont = TRUE.

Proof: (⇒) Let us first consider that NASafeCont = FALSE. Then, there exists

a state xV = (xS, xU) ∈ XV such that either xU ∈ USR, or xU ∈ USB. Since

V = TS‖TU,R, then, in accordance with MOREIRA et al. (2011), ∃ω ∈ L(TS) and

∃s1 ∈ L(TU) such that Po(ω) = Po(s1). If xU ∈ USB, then there exists an event

σ ∈ Σca such that f eTa(X0,Ta , s1σ)∩USR 6= ∅. According to the construction of USR,

there exists a trace s̄2 ∈ Σ?
uca such that f eTa(X0,Ta , s1σs̄2) ∩XTaUS 6= ∅. Thus, defining

trace s = s1σs̄2, we conclude that s violates Definition 13 since there exists ω ∈
L(T) ∪ Ls(Ta)) such that Po(s1) = Po(ω), and Σca /∈ s̄2. Therefore, language L(Ta)
is not NA-Safe controllable. On the other hand, if xU ∈ USR, then, ∃ω ∈ L(TS) and

∃s1 ∈ L(TU) such that Po(ω) = Po(s1) and f eTa(X0,Ta , s1)∩USR 6= ∅. According to the

definition of USR, there exists a trace s2 ∈ Σ?
uca, such that f eTa(X0,Ta , s1s2)∩XTaUS 6= ∅,

which violates Definition 13, and language L(Ta) is not NA-Safe controllable.

(⇐) Let NASafeCont = TRUE. Then, for all xV = (xS, xU) ∈ XV , we have

that xU /∈ USB and xU /∈ USR. Since, as shown in MOREIRA et al. (2011), the

verifier represents only the traces of L(TS) and L(TU) that have the same projection,

we conclude that for all traces s1 ∈ L(TU) that reaches a state in USB, Po(s1) /∈
Po(L(TS)). From the construction of USR and USB, each state x ∈ XTaUS of Ta
is reached from a state in USB through a trace s2 = σs̄2, where σ ∈ Σca and

s̄2 ∈ Σ?
uca. Therefore, for any trace s ∈ L(Ta) such that f eTa(X0,Ta , s) ∩ XTaUS 6= ∅,

there exist traces s1, s2 ∈ Σ? such that s = s1s2, Σca ∈ s2, and, ∀ω ∈ L(TS),

Po(s1) 6= Po(ω). Since, L(TS) = L(T) ∪ Ls(Ta), we conclude that language L(Ta) is

NA-Safe controllable.

Example 13 Let us consider again the plant automaton of Example 7, depicted in

Figure 3.2, where Σo = {a, b, d, g} and Σc = {c, e}, and assume that Σvs = {g} and

Σva = {c}. Then, automata T and Ta, shown in Figures 3.6 and 3.7, respectively,

1Here we consider the extension of the domain of function ρ to consider traces in Σ? as ρ(ε) = ε,
and ρ(sσ) = ρ(s)ρ(σ), for all s ∈ Σ?, and σ ∈ Σ.

31

(0,x),(0,x)
d

cR

(1,y),(1,y)
g

(2,z),(1,z)

(2,z),(1,z)

g ε

(0,x),(3,x)

b

ε
(0,x),(4,x)

d
(1,y),(5,y)

g
(2,z),(5,z)

(1,y),(2,y)
e, eR

ε

g

Figure 3.11: Verifier automaton V .

are computed as presented in Example 9. In this case, Σca = Σc \ Σva = {e}, and

XTaUS = {(7, z)}.
In the first step of Algorithm 3, automata TS and TU are computed by applying

Algorithm 2. In this case, TS is equal to T , depicted in Figure 3.6, and TU is equal

to Ta, depicted in Figure 3.7. Then, in Step 2 of Algorithm 3, automaton TU,R is

computed by renaming the events in Σuo of TU , and in Step 3, the verifier automaton

V, shown in Figure 3.11, is computed. In order to verify the NA-Safe controllability

of L(Ta), it is important to find the unsafe region USR and the unsafe boundary

USB of Ta. By following the procedure presented in Step 4 of Algorithm 3, we obtain

USR = {(7, z)} and, USB = {(6, z)}. Since the second component of all states of V
are not in the unsafe boundary USB, or in the unsafe region USR, then, we conclude

that language L(Ta) is NA-Safe controllable with respect to T , Po : Σ? → Σ?
o, Σca

and XTaUS. 2

3.3.3 Implementation of the Security Module

The security supervisor observes the same trace observed by the supervisor, and

then, it verifies if this trace belongs to Po(L(T) ∪ Ls(Ta)). If the observed trace

does not belong to Po(L(T) ∪ Ls(Ta)), then the security supervisor must send an

information to the supervisor to disable all controllable events in Σca, preventing

the reach of unsafe states. Thus, in order to implement the security supervisor, we

need first to compute automaton TS whose generated language is L(T) ∪ Ls(Ta).
This automaton is constructed as shown in Algorithm 2. After the computation of

automaton TS, the security supervisor operation can be implemented as follows.

We prove in the sequel that the NA-Safe controllability of L(Ta) is a necessary

and sufficient condition for the existence of the security supervisor.

Theorem 2 There exists a security supervisor, obtained according to Algorithm 4,

that is capable of preventing G from reaching an unsafe state in XUS if, and only if,

L(Ta) is NA-Safe controllable with respect to T , Po : Σ? → Σ?
o, Σca and XTaUS.

32

Algorithm 4: Security supervisor operation

1 Compute the initial state estimate of automaton TS, x0,Obs, and define the
current state estimate as
xc,Obs = x0,Obs.

2 Define the set of events Γc in the current state estimate xc,Obs that belong to
the active events as Γc =

⋃
x∈xc,Obs Γ(x).

3 Wait for the next event observation e:
4 if e /∈ Γc then
5 disable all controllable events of Σca.
6 else
7 update the current state estimate xc,Obs of automaton TS, and go

back to Step 2.
8 end

9 end

Proof:

(⇒) Assume that L(Ta) is not NA-Safe controllable. Then, according to Defi-

nition 13, there exits s ∈ L(Ta) such that f eTa(X0,Ta , s) ∩ XTaUS 6= ∅, and, for all s1

and s2 such that s = s1s2, at least one of the two conditions is true: (i) there exists

w ∈ L(T)∪Ls(Ta) such that Po(s1) = Po(w); (ii) s2 ∈ Σ?
uca. If condition (i) is true,

then it is impossible to obtain a security supervisor that can force the supervisor

to disable the controllable events after observing Po(s1), since Po(s1) cannot be dis-

tinguished from the observation of a trace w generated by the closed-loop system

without the occurrence of attacks (w ∈ L(T)), or from a trace w that belongs to

the prefix closure of the safe language (w ∈ Ls(Ta)). If condition (ii) is true, even if

the security supervisor forces the supervisor to disable all controllable events after

observing Po(s1), the system will reach an unsafe state, since s2 is composed only of

uncontrollable and/or vulnerable controllable events.

(⇐) According to Steps 2 and 3 of Algorithm 4, the security supervisor ver-

ifies if the trace observed by the supervisor belongs to Po(L(TS)) after each new

event observation, and, when the observed trace does not belong to Po(L(TS)), the

security supervisor forces the supervisor to disable all controllable events. Accord-

ing to Definition 13, if L(Ta) is NA-Safe controllable, then all traces s ∈ L(Ta)
such that f eTa(X0,Ta , s) ∩ XTaUS 6= ∅ can be partitioned as s = s1s2 where, for all

w ∈ L(T)∪Ls(Ta), Po(w) 6= Po(s1) and Σca ∈ s2. Therefore, the security supervisor

will be capable of forcing the supervisor to disable all controllable events after the

observation of Po(s1), since Po(s1) 6∈ Po(L(T) ∪ Ls(Ta)) = Po(L(TS)). As a conse-

quence, the system will not reach an unsafe state in XUS, since s2 has at least one

controllable event that can be disabled by the supervisor, and cannot be enabled by

the intruder.

According to Theorem 2, if L(Ta) is NA-Safe Controllable, then the security

33

supervisor implemented according to Algorithm 4 is capable of preventing damages

caused by cyber-attacks in the system. The idea of implementing a device that

prevents the system from reaching unsafe states is also presented in PAOLI and

LAFORTUNE (2005) in a different context. In PAOLI and LAFORTUNE (2005),

the authors address the problem of safe diagnosability, where a diagnoser is used to

prevent the system from reaching unsafe states after the occurrence of a fault event.

Differently from the security supervisor proposed in this work, the safe diagnoser

proposed in PAOLI and LAFORTUNE (2005) is constructed based on diagnosers

(SAMPATH et al., 1995). Consequently, in the worst-case, it grows exponentially

with the size of the plant. In the sequel, we present a simple example that illustrates

the systematical computation and implementation of the security strategy proposed.

Example 14 In order to illustrate the implementation of the security supervisor

following the method described in Algorithm 4, let us consider the railway system

shown in Figure 3.12, which consists of two tracks connected by a secondary line. In

Figure 3.12, sensors are represented by arrows, and identify the passing of a train

through a position in the track. The switches are represented by red lines in the

tracks, and change the direction of trains. Depending on the position of switch i,

Train 2 can move in the direction of Track 1, and depending on the position of switch

g, it can continue moving in the direction of Track 1 or return to Track 2. Train 1

cannot move in the direction of Track 2.

The desired behavior of the railway system is that Train 1 moves only in Track

1, and Train 2 moves only in Track 2. Thus, the supervisor objective is to avoid the

crashing of the trains, i.e., the objective is to keep Train 2 in Track 2.

In this example, the set of observable events is given by Σo = {a, b, d, e}, that

are associated with the observation of the position of the trains provided by sensors

placed in the tracks. The set of controllable events is given by Σc = {i, g, c}, where i

and g are associated with switches such that when i is enabled, Train 2 is deviated to

the secondary line, and when g is enabled, Train 2 moves in the direction of Track

1. Event c represents the entrance of Train 2 in Track 1. When event c is disabled,

Train 2 and Train 1, if it is close to the secondary line, are stopped to avoid their

collision. Thus, disabling event c is a last resort to prevent Train 2 to enter in

Track 1. Note that event c must be enabled during the non attacked operation of the

system.

With a view to designing the security supervisor for the system of Figure 3.12,

it is first necessary to obtain the automaton model for the plant depicted in Figure

3.13. Each state of G represents a position of Train 2 on the railway as shown in

Table 3.1, where state 8 represents that Train 2 has reached Track 1 and, therefore,

the set of unsafe states is given by XUS = {8}.

34

a

g

c

b
e

d

Train 1

Train 2

Track 1

Track 2

i
Figure 3.12: Railway example.

Table 3.1: Meaning of the states of G.

State Meaning
1 Train 2 in Track 2 before position d
2 Train 2 in the secondary line before position a
3 Train 2 between position a and switch g
4 Train 2 in the secondary line after position b
5 Train 2 in Track 2 after position d
6 Train 2 between switch g and position e
7 Train 2 between position e and Track 1
8 Train 2 in Track 1

1

3

4

5

6 7 8

2
i

a

g e c

b

d

d

Figure 3.13: Plant model G for the railway example.

35

1 2

b, e, a b, d, e

d

c c

Figure 3.14: Supervisor H.

1,1 5,2
d

Figure 3.15: Closed-loop system T = G‖H for the railway example.

A supervisor H that avoids that Train 2 reaches Track 1, is shown in Figure

3.14. Note that, event c is enabled in all states of H, since the disablement of c may

cause the sudden stop of Train 1. The closed-loop system T = G ‖ H is depicted

in Figure 3.15. Note that, as expected, the unsafe state of the plant (state 8) is not

reachable in the non attacked closed-loop system behavior.

Let us consider now that the set of vulnerable observable events is Σvs = {a}.
Thus, according to Definition 8, the attacked plant model Ga is represented in Figure

3.16. Note that Ga is obtained from G by adding self-loops labeled with a to each state

of G to represent the capability of the malicious agent of creating observations of the

vulnerable event a. Moreover, transitions labeled with ε are also added in parallel to

the transitions labeled with a of G to represent the capability of the intruder of erasing

the observation of event a. The capability of changing the observation of an event

has the same effect as deleting its observation, and then creating the observation of

a new event. Thus, this type of modification is already represented by the self-loops

and ε-transitions of Ga.
Let Σva = {i, g} be the set of vulnerable actuator events. Then, the supervisor

under attack Ha is represented in Figure 3.17. For the construction of the attacked

supervisor we use Definition 9, where the supervisory channel attack is modeled

by adding self-loops labeled with the vulnerable actuator events in the states of H,

1

3

4

5

6 7 8

2
i

g e c

b

d

d

a

a

a a
a a

a

a

ε

a

Figure 3.16: Plant model under attack Ga.

36

1 2

b, e, a b, d, e, a

d

i, g

c

i, g

c

Figure 3.17: Supervisor model under attack Ha.

1,1

4,15,2

2,1 3,1 6,1 8,17,1

a

a

i ε g e c

d

d

b
a

a

aaaaa

Figure 3.18: Closed-loop system model under attack Ta for the railway example.

to represent that these events become uncontrollable after the attack, and self-loops

labeled with uncontrollable events such that the supervisor remains admissible.

The attacked closed-loop system Ta =

Ga‖Ha is represented in Figure 3.18. Note that state (8, 1) of Ta represents

that Train 2 has reached Track 1, i.e., the attack can make the plant reach the

unsafe state 8. In this example, following the steps of Algorithm 3, it can be verified

that L(Ta) is NA-Safe controllable. Thus, according to Theorem 2, it is possible to

implement a security supervisor that prevents the plant from reaching unsafe state

8.

In order to implement the security supervisor, it is first necessary to compute

automaton TS following the steps of Algorithm 2. In Steps 1 and 2 of Algorithm 2,

we compute automaton TU , depicted in Figure 3.19, by removing from Ta the states

from which it is not possible to reach the unsafe state (8, 1), i.e., in this example,

states (5, 2) and (4, 1). The computation of automaton T ′S, depicted in Figure 3.20, is

carried out by following Steps 3 and 4 of Algorithm 2. In this example, states (6, 1),

(7, 1), and (8, 1) are removed from Ta to obtain automaton T ′S. Now, following Step 5

of Algorithm 2, TS is constructed. In this example, TS = T ′S. Once automaton TS has

been obtained, the security supervisor is implemented by using Algorithm 4, which

performs the online state estimate of TS after the observation of events executed by

the plant. If an observed event is not feasible in the current state estimate, then

the attack is detected and all non vulnerable controllable events are disabled by the

security supervisor.

37

1,1 2,1 3,1 6,1 8,17,1

a

i ε g e c

a

aaaaa

Figure 3.19: Unsafe automaton model TU .

1,1

4,15,2

2,1 3,1

a

i ε

d

d

b
a

a

aaa

Figure 3.20: Safe automaton model TS = T ′S.

The behavior of the security model can be analyzed from the observer automa-

ton of TS depicted in Figure 3.21. Consider that system G is in its initial state

1, and the attack has not occurred yet. Thus, the current state estimate of TS
is {(1, 1), (2, 1), (3, 1)}. Then, assume that the intruder enables event i, which

makes Train 2 deviates to the secondary line, and erases the observation of event

a. As a consequence, the security supervisor is not capable of detecting the intru-

sion since no change occurs in the state estimate. However, notice that, in state

{(1, 1), (2, 1), (3, 1)} of the observer of TS, the feasible events are a, b, and d, and,

consequently, if the intruder enables event g (which is unobservable) after trace ia

has been executed by the plant, then event e is observed by the security supervisor

after Train 2 has crossed switch g. Since e is not feasible in the current state esti-

mate, event c is disabled by the security supervisor, and Train 2 is stopped without

reaching Track 1.

Note that if the attacker does not enable event g after enabling event i and delet-

ing the observation of event a, then Train 2 goes back to Track 2, and event b is

observed. In this case, the security supervisor does not force the disablement of the

non vulnerable controllable events in Σca, since the attack has not been efficient,

i.e., the plant has reached, after the attack, a state from which it is not possible to

reach its unsafe state anymore. This shows an advantage of the method proposed

in this work with respect to the method presented in CARVALHO et al. (2018). In

CARVALHO et al. (2018), all controllable events are disabled when the attack is

detected, even if the attack cannot cause damages to the system.

38

(5,2)

a

(1,1),(2,1),(3,1) (4,1)
d

b

d

a a

Figure 3.21: Observer of TS.

Although a simple defense strategy can be obtained by inspection of this small

example, that is, to disable event c after the observation of event e, it is useful to

illustrate how to systematically compute and implement the security supervisor for

complex and large systems for which a security supervisor cannot be straightforwardly

obtained. Another contribution of the work is the verification of which communica-

tion channels must have a higher level of hardware protection against cyber-attacks

to prevent the plant from reaching unsafe states. In this example, if disabling event c

is not desired, then it can be verified by using the method proposed in this work that

the supervisory control communication channel that transmits event g must have a

higher level of protection against attacks.

3.4 Maximally permissive approach

Although the approach proposed in LIMA et al. (2019) is more permissive than the

one proposed in CARVALHO et al. (2018), it can still be conservative, as illustrated

by the following example.

Example 15 Consider the system presented in Example 11 of Section 3.3, and the

attacked closed-loop system Ta depicted in Figure 3.8. Let us consider sequence

s3 = gdc ∈ L(Ta). As shown in Example 11, sequence s3 belongs to LNIR, and

thus, there is no imminent risk of reaching an unsafe state in XTaUS. However, it

can be checked that Po(s3) = dc is neither in Po(L(T)) nor in Po(Ls(Ta))), and,

consequently, the security supervisor proposed in LIMA et al. (2019) disables all

non-vulnerable controllable events after the occurrence of s3, and so, it restricts the

system operation by preventing subsequent occurrences of event e. Notice that, in

this example, the sequences gdcen for any n ∈ N lead the attacked closed-loop system

to state (2, 3), i.e., the plant reaches state 2, which is not an unsafe state of the

plant. However, the security supervisor proposed in LIMA et al. (2019) unnecessarily

prevent the occurrences of these sequences. 2

We then propose a new security supervisor that acts solely when it observes a

sequence in Po(LIR) of Definition 12. In addition, in order to be more permissive than

39

the methods proposed in CARVALHO et al. (2018) and LIMA et al. (2019), instead

of disabling all non-vulnerable controllable events, the security model proposed in

this chapter disables only those controllable events that may lead the system to the

unsafe region USR.

We may now formulate the following security supervisory control problem.

Problem 1 (Maximally-Permissive Security Problem (MPSP)) Given an

ANS Υ = (G,H,Σvs,Σva), whose non-attacked closed-loop and attacked closed-loop

system models are represented by T and Ta, respectively, and a set of unsafe states

XTaUS, synthesize a security supervisor Ψ that satisfies the following requirements:

R1. L(T) ⊆ L(Ψ/Ta);

R2. For all s ∈ L(Ψ/Ta), fTa(x0,Ta , s) ∩XTaUS = ∅;
R3. There is no security supervisor Ψ′ that satisfies Requirements R1 and R2 such

that L(Ψ/Ta) ⊂ L(Ψ′/Ta). 2

Requirement R1 ensures that the language generated by the closed-loop system

is equal to L(T) when no attack occurs (Objective O1). This is so because security

supervisor Ψ must allow the occurrence of every sequence in L(T), and supervisor

S ensures that the ANS generates L(T) when no attack occurs. Requirement R2

ensures that unsafe states are never reached (Objective O2). According to Require-

ment R3, the security supervisor Ψ must be maximally-permissive in order to allow

that sequences generated after network attacks, that do not belong to the language

generated by the closed-loop system model T , be executed, if these sequences do not

drive the closed-loop system to unsafe states. Thus, if the attack is not efficient, in

the sense that it is not capable of damaging the system, the security supervisor will

not stop the system operation.

It is important to remark that Problem 1 can be formulated as a maximally

permissive range control problem (MPRCP) LIN and WONHAM (1988); YIN and

LAFORTUNE (2017). The MPRCP consists in computing a supervisor S for a plant

G that satisfies three conditions: (i) the behavior of the system under supervisory

control does not exceed the legal behavior defined by an upper bound language K,

i.e., L(S/G) ⊆ K; (ii) the required behavior, described by a lower bound language

R, is contained in the behavior of the controlled system, i.e., R ⊆ L(S/G); and (iii)

there is no other supervisor S ′ that satisfies (i) and (ii), and L(S/G) ⊂ L(S ′/G),

i.e., S is maximally permissive. Thus, Problem 1 can be reduced to MPRCP by

assuming Ta as the plant and defining R = L(T) and K = L(T̃a), where T̃a =

(XTa \ XTaUS,Σ ∪ {ε}, fT̃a , x0,Ta), with fT̃a(x, σ) = fTa(x, σ) \ XTaUS, for all x ∈ XTa \
XTaUS and σ ∈ Σ ∪ {ε} if fTa(x, σ) \ XTaUS 6= ∅, and undefined, otherwise. Notice

that T̃a models the attacked closed-loop system without the unsafe states. In YIN

and LAFORTUNE (2017), a solution to MPRCP is computed using a structure

40

called All Inclusive Controller (AIC) YIN and LAFORTUNE (2016). The AIC

is a game structure that includes all supervisors S such that L(S/G) ⊆ K for a

given specification K. The construction of the AIC has computational complexity

O(|X||Σ|2|X|+|Σ|), where |X| and |Σ| are the cardinalities of the sets of states and

events of the plant, respectively. Thus, the solution to MPRCP proposed in YIN and

LAFORTUNE (2017) is exponential with respect to the number of states and events

of the system. In addition, the methods presented in the literature for the verification

of the existence of a solution to the MPRCP have also exponential complexity with

the number of system states MASOPUST (2018); YIN and LAFORTUNE (2017).

With a view to circumventing the complexity problem, in Section 3.4, we in-

troduce a class of systems, called NA-Secure Systems, for which there exists a

polynomial-time solution to MPSP (Problem 1). In addition, determining if a system

belongs to the class of NA-Secure systems can also be carried out in polynomial-time.

In LIMA et al. (2019) as presented in Section 3.3, a method to thwart man-

in-the-middle attacks in both sensor and actuator channels is presented, where all

controllable events are disabled only if the system may reach an unsafe state. This

defense strategy does not restrict the system behavior if the attack cannot cause

damages to the system.

In LIMA et al. (2018), two notions of network attack security for DESs, called

Detectable Network Attack Security and Undetectable Network Attack Security,

associated with the capability of disabling some controllable events to prevent the

system from reaching unsafe states, are presented. Based on these notions, a security

supervisor to prevent the reach of unsafe states, without altering the non-attacked

language of the system, is proposed.

In this section, we propose a new defense strategy that thwarts man-in-the-middle

attacks in the sensor and/or control communication channels in supervisory control

systems. We propose the design of a security supervisor that disables controllable

events only if there is a real risk of damaging the system, without interrupting un-

necessarily the system operation. Moreover, the security supervisor proposed in this

part of this work operates together with the existing supervisor, instead of substi-

tuting it. By doing so, the combined supervisory control policy can be made more

permissive, without altering the non-attacked closed-loop behavior. The main dif-

ference between the security supervisor proposed in Section 3.3 and the security

supervisor proposed in this section, is that in Section 3.3 all controllable events are

disabled when the attack is detected and may lead the system to unsafe states,

whereas, in this section, the proposed security supervisor disables only those con-

trollable events that lead the system to an imminent risk scenario. In addition, the

proposed security supervisor, in some cases, can prevent the system from reaching

unsafe states even without the attack detection, i.e., the method proposed in this

41

work can also be used to protect the system against stealthy attacks GAO et al.

(2019); GOES et al. (2017). This strategy is less restrictive than the one proposed

in Section 3.3, in the sense that the system behavior may execute more sequences

after an attack, without reaching unsafe states. Thus, the system may execute safe

sequences while the threat is eliminated, or eventually the system returns to its

non-attacked closed-loop behavior after the actuation of the security supervisor. We

also introduce in this work a class of systems, called NA-Secure Systems, for which

a security supervisor, that thwarts attacks in the network without altering the non-

attacked closed-loop behavior, can be computed in polynomial time. A polynomial

time algorithm to verify the NA-Security property is proposed.

It is important to remark that the security supervisor proposed in this section

is an improvement of the security supervisor presented in LIMA et al. (2018), since

in the work presented in this section we propose a security supervisor that does not

interfere with the non-attacked closed-loop system, and is also maximally permissive.

part of this work was published in LIMA et al. (2021).

In summary, the main contributions of the work presented in this section are:

(i) the proposal of a new defense strategy against cyber-attacks with polynomial

computational complexity; (ii) the definition of NA-Security; (iii) the proposal of a

method for the verification of this property; and (iv) the discussion of the compu-

tational complexity of the methods proposed in this work.

3.4.1 NA-Secure Systems

In this section, we introduce a language property, called network attack security

(NA-Security), that is used to define a class of ANS called NA-Secure Systems. Such

a property is associated with the capability of a security supervisor of preventing the

ANS from reaching unsafe states (Requirement R2 of Problem 1), without altering

the non-attacked closed-loop behavior (Requirement R1 of Problem 1). We also

present a polynomial-time algorithm for the verification of NA-Security.

NA-Security

In order to define NA-Security, firstly we introduce the concepts of unsafe region

and unsafe boundary for an ANS, considering the associated attacked closed-loop

system model Ta, as follows.

Definition 14 (NA-Security) Let T and Ta be the non-attacked closed-loop sys-

tem and the attacked closed-loop system models of an ANS, respectively. Then, L(Ta)
is said to be NA-Secure with respect to L(T), Po : Σ? → Σ?

o, and the set of unsafe

states XTaUS if

42

(∀s ∈ L(Ta))[f eTa(x0,Ta , s) ∩ USR 6= ∅]⇒ CNA

where CNA is given as:

(∃t1σ ∈ {s}, t1 ∈ Σ?, σ ∈ Σca, f
e
Ta(x0,Ta , t1) ∩ USB 6= ∅, f eTa(x0,Ta , t1σ) ∩ USR 6=

∅)[(∀ω ∈ L(T), Po(t1) = Po(ω))(ωσ /∈ L(T))]. 2

According to Definition 14, L(Ta) is NA-Secure if all sequences s ∈ L(Ta) that

leads the system to a state in the unsafe region USR, have a prefix t1σ such that:

(i) t1 leads the system to a state in USB; (ii) t1σ leads the system to a state in USR;

(iii) t1 is distinguishable from any sequence ω in L(T) such that ωσ ∈ L(T), and;

(iv) σ is a non-vulnerable controllable event. In the following theorem we show that

NA-Security is a sufficient condition for the existence of a security supervisor that

solves Problem 1.

Theorem 3 Let T and Ta be the non-attacked closed-loop system and the attacked

closed-loop system models of an ANS, respectively. If L(Ta) is NA-Secure with respect

to L(T), Po, and XTaUS, then there exists a security supervisor Ψ that is a solution to

MPSP (Problem 1).

Proof: Suppose that L(Ta) is NA-Secure, and consider supervisor Ψmin :

Po(L(Ta)) → 2Σca defined as Ψmin(t) = {σ ∈ Σca : P−1
o (t){σ} ∩ L(T) = ∅}. Notice

that, Ψmin disables any controllable event σ after observing t ∈ Po(L(Ta)) such that

there is no sequence ωσ in L(T) with Po(ω) = t. Thus, L(T) ⊆ L(Ψmin/Ta) and, con-

sequently, Ψmin satisfies Requirement R1 of Problem 1. Since L(Ta) is NA-Secure,

then, according to Definition 14, every sequence s that leads the system to an unsafe

state has a prefix t1σ ∈ {s}, where f eTa(x0,Ta , t1)∩USB 6= ∅, f eTa(x0,Ta , t1σ)∩USR 6= ∅,
σ ∈ Σca, and, for every sequence ω ∈ L(T) ∩ P−1

o (Po(t1)), ωσ /∈ L(T). Then, ac-

cording to the definition of Ψmin, after the observation of Po(t1), Ψmin disables σ

preventing s from occurring, which implies that Ψmin satisfies Requirement R2 of

Problem 1. Finally, Requirement R3 of Problem 1 is trivially satisfied, since, if

there is a security supervisor that satisfies R1 and R2, then there is a maximally-

permissive security supervisor, not necessarily equal to Ψmin, that also satisfies R1

and R2.

We can now define the class of NA-Secure systems.

Definition 15 An attackable networked system Υ = (G,H,Σvs,Σva) is said to be

NA-Secure if its associated attacked closed-loop language L(Ta) is NA-Secure with

respect to L(T), Po, and XTaUS. 2

Theorem 3 shows that if Υ belongs to the class of NA-Secure systems or, equiva-

lently, if its associated attacked closed-loop language L(Ta) is NA-Secure, then there

exists a maximally permissive security supervisor for Υ. In the sequel, we present a

method for the verification of NA-Security.

43

Verification of NA-Security

In accordance with Definition 14, a language L(Ta) is NA-secure if any sequence in

L(Ta) that leads the system to a state in the unsafe region USR satisfies condition

CNA. Since, for the verification of NA-Security, it is sufficient to know if the sequence

generated by the system leads it to a state in the unsafe region USR, then all states

in USR can be merged forming a new state usr. Thus, we define automaton T ′a =

Ac(XTa∪{usr},Σ∪{ε}, fT ′a , x0,T ′a), where: (i) the new state usr represents the unsafe

region; (ii) for all x ∈ XTa and σ ∈ Σ ∪ {ε}, fT ′a(x, σ) = (fTa(x, σ) \ USR) ∪ {usr},
if fTa(x, σ) ∩ USR 6= ∅, and fT ′a(x, σ) = fTa(x, σ), otherwise, and fT ′a(usr, σ) is

undefined for all σ ∈ Σ, and; (iii) x0,T ′a = x0,Ta , if x0,Ta∩USR = ∅, and x0,T ′a = {usr},
otherwise. Notice that, in the construction of T ′a , some states of the unsafe boundary

USB can be removed by the accessible operation, and thus, the unsafe boundary of

T ′a is defined as US ′B = USB ∩XT ′a , where XT ′a is the set of states of T ′a .

In the sequel we present Algorithm 5 for the construction of the verifier au-

tomaton to be used in the verification of NA-Security (Algorithm 6), based on the

verifier proposed in MOREIRA et al. (2011). In order to do so, we need first to com-

plete the language generated by the non-attacked closed-loop automaton T , which

leads to automaton T ′ = (XT ′ ,Σ, fT ′ , x0,T ′), where XT ′ = XT ∪ {xd}, x0,T ′ = x0,T ,

fT ′(x, σ) = fT (x, σ), if fT (x, σ) is defined, and fT ′(x, σ) = xd, otherwise, for all

x ∈ XT and σ ∈ Σ, and fT ′(xd, σ) = xd, for all σ ∈ Σ. Notice that L(T ′) = Σ?,

and that the sequences that reach xd are those sequences that do not belong to

the non-attacked behavior L(T). In addition, it is necessary to define the renaming

function ρ as follows: ρ(σ) = σ, if σ ∈ Σo, and ρ(σ) = σρ, if σ ∈ Σuo.

Algorithm 5: Verifier Automaton

input : T ′, T ′a .
output: V = (XV ,ΣV , fV , x0,V)

1 Construct the renamed automaton T ′ρ = (XT ′ ,Σρ, fρ, x0,T ′), where

Σρ = {ρ(σ) : σ ∈ Σ} and fρ(x, ρ(σ)) = fT ′(x, σ), ∀x ∈ XT ′ and ∀σ ∈ Σ.
2 Compute V = T ′ρ‖T ′a .

Notice that the renaming of the unobservable events of T ′, generating automaton

T ′ρ, transforms these unobservable events into private events of T ′ρ. Thus, only the

observable events are synchronized in the computation of V . As a consequence,

only the sequences of T ′ρ and T ′a that have the same observation are mapped into V
CARVALHO et al. (2017).

After the construction of verifier automaton V in accordance with Algorithm

5, we can verify if the corresponding ANS is NA-Secure by using Algorithm 6. In

order to facilitate the readability of Algorithm 6, we denote the first (resp. second)

44

component of a state xv ∈ XV by x1
v (resp. x2

v), i.e., xv = (x1
v, x

2
v), where x1

v ∈ XT ′

and x2
v ∈ T ′a . In addition, we define sets USVB = {xv ∈ XV : x2

v ∈ US ′B} and USVR =

{xv ∈ XV : x2
v = usr} to denote the sets of states of V whose second component is in

US ′B, and is equal to usr, respectively. We also define set XVd = {xv ∈ XV : x1
v = xd}

formed of the states of V whose first component is equal to xd.

Algorithm 6: NA-Security Verification

input : V = (XV ,ΣV , fV , x0,V) and Σca.
output: NASec ∈ {True, False}

1 if x2
0,V 6= usr then

2 NASec = True
3 USVB = {xv ∈ XV : x2

v ∈ US ′B}
4 USVR = {xv ∈ XV : x2

v = usr}
5 XVd = {xv ∈ XV : x1

v = xd}
6 for xv ∈ USVB do
7 for σ ∈ Σca ∩ ΓV(xv) do
8 if fV(xv, σ) ∩ USVR 6= ∅ and fV(xv, ρ(σ)) ∩XVd = ∅ then
9 NASec = False

10 Stop the algorithm.

11 end

12 end

13 end

14 else
15 NASec = False
16 end

In line 1 of Algorithm 6, if the second component of the initial state of V , x2
0,V is

equal to state usr, then NASec is set as False. On the other hand, in the case that

x2
0,V is different from state usr, we firstly set NAsec = True (line 2), and construct

sets USVB (line 3), USVR (line 4), and XVd (line 5). In the sequel, we verify if there is

a state in USVB such that there exists a feasible non-vulnerable controllable event σ

that leads to a state in USVR, for which event ρ(σ) does not lead to a state in XVd .

In the case that such a state in USVB exists, we redefine NAsec as False and stop

the algorithm, otherwise, NAsec remains True.

Theorem 4 A language L(Ta) is NA-Secure with respect to L(T), Po, and XTaUS if,

and only if, Algorithm 6 returns NASec = True.

Proof: Algorithm 6 returns NASec = True if, and only if, the following two

conditions are met:

C1. x0,T ′a 6= {usr};

C2. There do not exist xv ∈ USVB and σ ∈ Σca∩ΓV(xv) such that fV(xv, σ)∩USVR 6=
∅ and fV(xv, ρ(σ)) ∩XVd = ∅;

45

Notice that if C1 is false, then x2
0,V = usr and, thus, NASec = False in line 14. In

addition, if C2 is false, then NASec = False in line 9. Thus, we will show that L(Ta)
is NA-Secure if, and only if, Conditions C1 and C2 hold true.

(⇒) Suppose that Condition C1 is false, i.e., x0,T ′a = {usr}. Then, according

to the construction of T ′a , x0,Ta ∈ USR, which implies that f eTa(x0,Ta , ε) ∩ USR 6= ∅.
Thus, condition CNA of Definition 14 is not satisfied for s = ε ∈ L(Ta).

Suppose now that Condition C2 is false. Then, there exist a state xv = (x1
v, x

2
v) ∈

USVB and an event σ ∈ Σca∩ΓV(xv) such that fV(xv, σ)∩USVR 6= ∅ and fV(xv, ρ(σ))∩
XVd = ∅. According to the construction of V (CARVALHO et al., 2017, Lemma

1), there exist s = t1σ ∈ L(T ′a) and ωσ ∈ L(T ′) such that f eT ′a(x0,T ′a , t1) = x2
v,

fT ′(x0,T ′ , ω) = x1
v, and Po(ω) = Po(t1). In addition, we can conclude that: (i)

x1
v 6= xd and fT ′(x0,T ′ , ωσ) 6= xd since fV(xv, ρ(σ)) ∩ XVd = ∅; (ii) f eT ′a(x0,T ′a , t1) ∩
US ′B 6= ∅ since xv ∈ USVB, and so, x2

v ∈ US ′B, and; (iii) usr ∈ f eT ′a(x0,T ′a , t1σ) since

fV(xv, σ) ∩ USVR 6= ∅. Thus, according to the definitions of T ′ and T ′a , we can

rewrite the above conclusions in terms of T and Ta, as follows: (i) ω, ωσ ∈ L(T),

(ii) f eTa(x0,Ta , t1)∩USB 6= ∅, and (iii) f eTa(x0,Ta , t1σ)∩USR 6= ∅. Thus, t1σ does not

satisfy condition CNA of Definition 14 for s = t1σ ∈ L(T ′a) ⊆ L(Ta).
Notice that, according to the construction of T ′a , the unsafe region USR is merged

into state usr of T ′a , which has no feasible event. This implies that, t1σ is the unique

prefix of s such that usr ∈ f eT ′a(x0,T ′a , t1σ), or equivalently, f eTa(x0,Ta , t1σ)∩USR 6= ∅.
Therefore, we can conclude that L(Ta) is not NA-Secure.

(⇐) Consider now that both Conditions C1 and C2 hold true. Then, according

to Condition C1 and the definition of T ′a , x0,Ta∩USR = ∅, which implies, according to

Definitions 10 and 11, that all sequences s ∈ L(Ta) such that f eTa(x0,Ta , s)∩USR 6= ∅
have one prefix t1σ ∈ {s} with t1 ∈ Σ? and σ ∈ Σca such that f eTa(x0,Ta , t1)∩USB 6= ∅,
and f eTa(x0,Ta , t1σ)∩USR 6= ∅, and additionally, for all t′ ∈ {t1}, f eTa(x0,Ta , t

′)∩USR =

∅, i.e., t1σ is the prefix of s with smallest length that leads the system to a state in

the unsafe region USR.

Notice that t1σ ∈ L(T ′a) since usr ∈ f eT ′a(x0,T ′a , t1σ). In addition, according to

the construction of V (CARVALHO et al., 2017, Lemma 1), for all ω ∈ L(T ′)

such that Po(ω) = Po(t1), there is a set of states Xω
t1

:= {(x1
v, x

2
v) ∈ XV : x1

v =

fT ′(x0,T ′ , ω)∧x2
v = f eT ′a(x0,T ′a , t1)}. Moreover, there exists at least one state xv ∈ Xω

t1

such that xv ∈ USVB and fV(xv, σ)∩USVR 6= ∅. Since T ′ is a deterministic automaton,

then a unique state is reached in V from state xv after the execution of event ρ(σ),

i.e., fV(xv, ρ(σ)) = {(fT ′(x1
v, ρ(σ)), x2

v)}.
Thus, since Condition C2 is by hypothesis true, then fV(xv, ρ(σ)) =

{(fT ′(x1
v, ρ(σ)), x2

v)} ∩ XVd 6= ∅. In addition, since fV(xv, ρ(σ)) is a singleton, then

fV(xv, ρ(σ)) ⊆ XVd , which implies, according to the definition of T ′, that ωσ /∈ L(T).

Therefore, it can be concluded that, for all ω ∈ L(T) such that Po(ω) = Po(t1),

46

1 2 3 4

5 6 7 8

a

e
ee

c

c

b d
d

Figure 3.22: Automaton G of Example 16.

1 2
a

d, e

bc

Figure 3.23: Supervisor realization H of Example 16.

ωσ /∈ L(T).

Example 16 Let us consider the ANS Υ = (G,H,Σvs,Σva), where G and H are

shown in Figures 3.22 and 3.23, respectively, where the set of events is defined as

Σ = {a, b, c, d, e}, where the set of controllable events is Σc = {d, e} and the set

of observable events is Σo = {a, c}. Also consider the set of unsafe states to be a

singleton XUS = {8}. Then, the closed-loop system model without network attacks

is computed as T = G ‖ H, depicted in Figure 3.24. Let us consider that the set

of vulnerable sensor and actuator channels attacks are such that, Σvs = {c} and

Σva = {d}. Then, we obtain the attacked closed-loop system model Ta = Ga ‖ Ha

presented in Figure 3.27. Notice that Σca = {e} and XTaUS = {(8, 1), (8, 2)}.
According to Algorithm 5, in order to obtain the verifier automaton V we need

first to construct automata T ′a and T ′ depicted in Figures 3.25 and 3.26, respectively.

Then, we compute automaton T ′ρ, presented in Figure 3.28, by renaming its unob-

servable events. Finally, we construct verifier V, whose part is depicted in Figure

3.29. The complete automaton V is not depicted in Figure 3.29 due to its size, since

it has 46 states and 240 transitions.

According to Algorithm 6, we first check if x2
0,V 6= usr. Since

x0,V = {((1, 1), (1, 1))}, we proceed to line 2, where NASec is ini-

tially set as True. In the sequel, in lines 3 to 5, we define

1,1
4,2

3,2
2,2a

d

b

e

c

Figure 3.24: Close loop system model T of Example 16.

47

1,1

4,2

1,22,2a

εb

e
c

a

3,22,1

c

d

c

4,1 ε

c

c

3,1
b

d

c
c

c

c

5,2

5,1c

d

e

c

c

6,2

6,1

ε

c
ε

c

7,2

7,1

c

c

c
e

usr

d

c

Figure 3.25: Modified attacked closed-loop system automaton T ′a .

1,1

4,2

3,22,2a

d

b

e

c

xd

c
d, e b

d
c, a

e

b

c, a

a
d, eb

a, c

b

d, e

Figure 3.26: Modified closed-loop system automaton T ′.

48

1,1

4,2

1,22,2a

εb

e
c

a

3,22,1

c

d

c

4,1 ε

c

c

3,1
b

d

c
c

c

c

5,2

5,1c

d

e

c

c

6,2

6,1

ε

c
ε

c

7,2

7,1

c

c

c

e 8,2

8,1

c

c

d

c

Figure 3.27: Attacked closed loop system model Ta.

sets USVB = {((2, 2), (7, 2)), ((3, 2), (7, 2)), ((4, 2), (7, 2)), (xd, (7, 2))},
USVR = {((2, 2), usr), ((3, 2), usr), ((4, 2), usr), (xd, usr)},
and XVd = {(xd, (1, 1)), (xd, (1, 2)), (xd, (2, 1)), (xd, (2, 2)),

(xd, (3, 1)), (xd, (3, 2)), (xd, (4, 1)), (xd, (4, 2)), (xd, (5, 1)),

(xd, (5, 2)), (xd, (6, 1)), (xd, (6, 2)), (xd, (7, 1)), (xd, (7, 2)), (xd, usr)}. Finally,

we verify if there exists a transition from a state in USVB that satisfies the

condition presented in line 8 of Algorithm 6. To this end, consider state

xv = ((2, 2), (7, 2)) ∈ USVB. As illustrated in Figure 3.29, there is a transition la-

beled with event e from xv to state ((2, 2), usr) ∈ USVR, and thus, fV(xv, e)∩USVR 6= ∅.
In addition, it can be seen, from Figure 3.29, that there is a self-loop in state xv

labeled with renamed event eρ, and so, fV(xv, eρ) = {((2, 2), (7, 2))}, which implies

that fV(xv, eρ) ∩XVd = ∅. Thus, NASec is set as False in line 9, and the algorithm

stops. Therefore, according to Theorem 4, L(Ta) is not NA-Secure. Notice that,

this result comes from the fact that state xv is reached after the occurrence of

sequence sv = abdde ∈ L(V), that corresponds to the synchronization of sequences

t1 = abdde ∈ L(T ′a) and ω = a ∈ L(T ′), which can be obtained by applying

projections PΣ : Σ?
V → Σ? and PΣρ : Σ?

V → Σ?
ρ to sv, respectively. Thus, by defining

s = t1e, then s reaches a state in the unsafe region of Ta and violates condition

CNA of Definition 14, since Po(t1) = Po(ω) and ωe ∈ L(T). 2

49

1,1

4,2

3,22,2a

dρ

bρ

eρ

c

xd

c
dρ, eρ

bρ

dρ
c, a

eρ

bρ

c, a

a
dρ, eρ

bρ

a, c

bρ

dρ, eρ

Figure 3.28: Renamed automaton T ′ρ obtained from T ′.

(2,2),(7,2)

(1,1),(1,1) (2,2),(2,2) (2,2),(3,2) (2,2),(4,2)

(2,2),(usr)

a b d

d

ε

ee ε (2,2),(5,2)(2,2),(6,2) (2,2),(1,2)

e, eρ eρ eρ

eρ

eρ

eρeρ

Figure 3.29: Part of Verifier automaton V of Example 16.

3.4.2 Online security supervisor

In this section, we propose an online synthesis of a security supervisor Ψ, that can be

implemented in polynomial time, based on the attacked closed-loop system model Ta,
for NA-Secure systems. In order to do so, we first define function Γus : XTa → 2Σca ,

where, for all state x ∈ XTa , Γus(x) = ∅, if x /∈ USB, and Γus(x) = {σ ∈ Σca :

fTa(x, σ) ∩ USR 6= ∅}, otherwise. Notice that Γus(x) returns all controllable events

that are feasible in x and lead the system to a state in the unsafe region USR. Thus,

if a state x in the unsafe boundary USB belongs to the current state estimate of Ta,
then the security supervisor must disable those controllable events in Γus(x). This

strategy is summarized in Algorithm 7.

In Algorithm 7, Function controlDecision is used for the online implementation

of a security supervisor Ψ, which computes set Σdis ∈ 2Σca formed of the events to be

disabled in the plant, and the current state estimate of Ta, denoted as xc,Obs. In line 1,

this function is executed when the system is initialized to compute the first event set

Σdis to be disabled by Ψ in line 2. To this end, the inputs of controlDecision are

defined as the attacked closed-loop system model Ta, the empty sequence ε, and the

initial state of Ta, x0,Ta . After the observation of an event σ ∈ Σo (line 3), in line 4,

controlDecision is executed to compute the new control action to be issued by Ψ.

50

Thus, its inputs are set as Ta, the last event observation σ, and the state estimate

of Ta before the observation of σ. In line 5, Algorithm 7 returns to line 2.

In Function controlDecision, we first compute state set yc,Obs (line 7), which is

formed with the states of Ta reached after the occurrence of transitions from states

in xc,Obs labeled with σ. In the sequel, we update the current state estimate xc,Obs

by assuming that all events are enabled in the plant. Based on the updated xc,Obs,

we compute set Σdis by using function Γus. If Σdis 6= ∅, i.e., some events will be

disabled by Ψ, then we recalculate the current state estimate xc,Obs by assuming

that only those events in Σ \ Σdis will be enabled in the plant.

Algorithm 7: Online implementation of Ψ

1 [Σdis, xc,Obs] = controlDecision(Ta, ε, x0,Ta).
2 Disable all events in Σdis.
3 Wait for the next event observation σ ∈ Σo.
4 [Σdis, xc,Obs] = controlDecision(Ta, σ, xc,Obs).
5 Go back to line 2.
6 Function controlDecision(Ta, σ, xc,Obs):
7 Set yc,Obs = {y ∈ XTa : (∃x ∈ xc,Obs)[y ∈ fTa(x, σ)}.
8 Set xc,Obs = Ruo(yc,Obs, Ta,Σuo).
9 Construct set Σdis = {σ ∈ Σca : (∃x ∈ xc,obs)[σ ∈ Γus(x)]}.

10 if Σdis 6= ∅ then
11 Recalculate the current state estimate as

xc,Obs = Ruo(yc,Obs, Ta,Σuo \ Σdis).
12 end
13 return [Σdis, xc,Obs]

Lemma 1 Let Ψ be the security supervisor implemented in accordance with Al-

gorithm 7. Let sequence sσ ∈ L(Ta), with s ∈ L(Ψ/Ta) and σ ∈ Σ. Then,

sσ /∈ L(Ψ/Ta) if, and only if, σ ∈ Σca and there exists s′ ∈ L(Ψ/Ta), not nec-

essarily different from s, such that Po(s
′) = Po(s), f eTa(x0,Ta , s

′) ∩ USB 6= ∅ and

f eTa(x0,Ta , s
′σ) ∩ USR 6= ∅.

Proof: (⇒) Suppose that sσ /∈ L(Ψ/Ta). Then, σ ∈ Ψ(Po(s)). Thus, we can infer,

from line 2 of Algorithm 7, that, σ ∈ Σca and, after the observation of sequence

Po(s), there exist x ∈ xc,Obs such that σ ∈ Γus(x), which implies, according to the

definition of Γus, that x ∈ USB and fTa(x, σ) ∩ USR 6= ∅. Since, at each iteration

of Algorithm 7, the current state estimate xc,Obs is refined in line 11 by taking into

account the events disabled by Ψ, we can conclude that there exists s′ ∈ L(Ψ/Ta),
not necessarily different from s, such that x ∈ f eTa(x0,Ta , s

′) and Po(s
′) = Po(s).

(⇐) Suppose that σ ∈ Σca, and there exists s′ ∈ L(Ψ/Ta), not necessar-

ily different from s, such that Po(s
′) = Po(s), f eTa(x0,Ta , s

′) ∩ USB 6= ∅ and

f eTa(x0,Ta , s
′σ) ∩ USR 6= ∅. Thus, since Po(s

′) = Po(s), after the occurrence of s, the

51

Table 3.2: Computational complexity of Algorithms 5, 6, and 7.

Automaton No. of states No. of transitions
Ga |X| |X|(|Σ|+ 2|Σvs|)
Ha |XH | |XH | · |Σ|
Ta |X| · |XH | (|X| · |XH |)2 · (|Σ|+ 1)
T |X| · |XH | |X| · |XH | · |Σ|
T ′a (|X| − |XUS|) · |XH |+ 1

(
(|X| − |XUS|) · |XH |

)2 · (|Σ|+ 1)
T ′ |X| · |XH |+ 1 (|X| · |XH |+ 1) · |Σ|
V |XT ′a | · |XT ′| (|XT ′a | · |XT ′ |)2 · (|Σ|+ 1)

Overall complexities
Algorithm 5 O((|XT ′a | · |XT ′|)2 · |Σ|)
Algorithm 6 O(|XV |2 · |Σ|)
Algorithm 7 O(|XTa |2 · |Σ|)

current state estimate of Ta includes all states in f eTa(x0,Ta , s
′). Therefore, accord-

ing to line 9 of Algorithm 7, we can conclude that σ ∈ Ψ(Po(s)), which ultimately

implies that sσ /∈ L(Ψ/Ta).

Theorem 5 Let Υ = (G,H,Σvs,Σva) be an NA-Secure ANS. The security supervi-

sor Ψ implemented online in accordance with Algorithm 7 is a solution to MPSP,

i.e., Ψ satisfies Requirements R1, R2 and R3 of Problem 1.

Proof: The proof will be partitioned into three parts: in parts (a) and (b) we

assume that Ψ does not satisfy Requirements R1 and R2, respectively, and we show

that these assumptions lead to contradictions, and; in part (c) we show that, any

security supervisor Ψ′ that is more permissive than Ψ does not satisfy Requirement

R2.

(a) Suppose that Ψ does not satisfy Requirement R1, i.e., L(T) 6⊂ L(Ψ/Ta).
Since L(T) ⊆ L(Ta) and Ψ disables only events in Σca, then, there exists ωσ ∈
L(T), with ω ∈ Σ? and σ ∈ Σca, such that ω ∈ L(Ψ/Ta) and ωσ /∈ L(Ψ/Ta). In

addition, according to Lemma 1, there exists t1 ∈ L(Ψ/Ta) such that Po(t1) = Po(ω),

f eTa(x0,Ta , t1) ∩ USB 6= ∅ and f eTa(x0,Ta , t1σ) ∩ USR 6= ∅. Thus, by defining sequence

s = t1σ, we can infer that f eTa(x0,Ta , s) ∩ USR 6= ∅ and s does not satisfy Condition

CNA of Definition 14, which is a contradiction since Υ is NA-secure.

(b) Suppose now that Ψ does not satisfy Requirement R2. Then, there exists

s′ ∈ L(Ψ/Ta) such that f eTa(x0,Ta , s
′) ∩ XTaUS 6= ∅. Thus, according to Definition 10,

there exists s ∈ L(Ψ/Ta) such that f eTa(x0,Ta , s) ∩ USR 6= ∅. Since Ta is NA-secure

with respect to L(T), Po and XTaUS, s has at least one event σ ∈ Σca. Thus, without

loss of generality, we can partition s as s = t1σs
′′ where t1, s

′′ ∈ Σ?, σ ∈ Σca,

f eTa(x0,Ta , t1σ)∩USR 6= ∅ and, ∀t′ ∈ {t1}, f eTa(x0,Ta , t
′)∩USR = ∅, i.e., t1 is the largest

prefix of s that does not lead Ta to a state in the unsafe region USR. Moreover, it

can be seen, according to Definition 11, that f eTa(x0,Ta , t1) ∩ USB 6= ∅. Notice that,

52

after the occurrence of sequence t1, the current state estimate xc,Obs, computed in

line 8 of Algorithm 7, contains all states in f eTa(x0,Ta , t1), and thus, there will exist

x ∈ xc,Obs such that σ ∈ Γus(x). Therefore, according to line 9 of Algorithm 7, Ψ

disables σ after the occurrence of t1, which is a contradiction since, from the initial

hypothesis, s = t1σs
′′ ∈ L(Ψ/Ta).

(c) Suppose a security supervisor Ψ′ such that L(Ψ/Ta) ⊂ L(Ψ′/Ta). Then, there

exists t ∈ L(Ψ′/Ta)\L(Ψ/Ta). Thus, t can be partitioned as t = t′σt′′, with t′, t′′ ∈ Σ?

and σ ∈ Σca, such that t′ ∈ L(Ψ/Ta) and t′σ /∈ L(Ψ/Ta). According to Lemma 1,

there exists s′ ∈ L(Ψ/Ta) such that Po(s
′) = Po(t

′), f eTa(x0,Ta , s
′) ∩ USB 6= ∅, and

f eTa(x0,Ta , s
′σ) ∩ USR 6= ∅. In addition, we can infer that s′ ∈ L(Ψ′/Ta) since,

according to the initial hypothesis, L(Ψ/Ta) ⊂ L(Ψ′/Ta), and, since σ /∈ Ψ′(Po(s
′)) =

Ψ′(Po(t
′)), then s′σ ∈ L(Ψ′/Ta). Therefore, Ψ′ does not satisfy Requirement R2,

since Ta reaches states in USR after sequence s′σ.

Example 17 Let us consider the same ANS Υ presented in Example 16, and con-

sider now that event b is observable, i.e., the set of observable events is Σo = {a, b, c}.
It can be seen, by using Algorithm 6, that L(Ta) is NA-Secure with respect to

L(T), Po, and XTaUS. Thus, the security supervisor presented in Algorithm 7 can

be used to avoid the system from reaching unsafe states. In order to illustrate

the operation of Algorithm 7, let us consider the execution of a sequence by the

plant. According to Algorithm 7, we first compute, by using Function controlD-

ecision, the initial state estimate of Ta and the initial control action of the se-

curity supervisor. In order to do so, we compute, in lines 7 and 8 of Func-

tion controlDecision, yc,Obs = x0,Ta = {(1, 1)}, and the initial state estimate

xc,Obs = Ruo({(1, 1)}, Ta,Σuo) = {(1, 1), (5, 1)}. Since Γus(x) = ∅ for all x ∈ xc,Obs,
we obtain Σdis = ∅ in line 9. Thus, no event is initially disabled by the security su-

pervisor Ψ. Suppose now that event a ∈ Σo is executed by the system. Thus, after the

observation of a, the state estimate is updated, by using controlDecision in line

3, to xc,Obs = {(2, 2)}, and, since Γus((2, 2)) = ∅, the control action of Ψ remains

equal to Σdis = ∅. Suppose now that event b is executed in the sequel. Thus, we ob-

tain yc,Obs = {(3, 2)} and xc,Obs = {(3, 2), (4, 2), (1, 2), (5, 2), (6, 2), (7, 2), usr}. Since

Γus((7, 2)) = {e}, then we obtain Σdis = {e}, i.e., security supervisor Ψ disables

event e after the observation of sequence ab, preventing the system from reaching

a state in the unsafe region. Thus, for example, the attacker may try to generate

sequence s = abdcdece ∈ L(G) by hiding the observation of both occurrences of c

in s. In this case, the supervisor H enables events d and e after the observation of

ab. However, after the observation of Po(s) = ab, the security supervisor disables

event e and only the prefix of s, s′ = abdcd, can be executed, and the unsafe state is

not reached. Notice that the attack considered in this case would be stealthy, since

sequence ab belongs to Po(L(T)). 2

53

In the next section we show that the verification of NA-security (Algorithm

6), and the implementation of the online security supervisor (Algorithm 7) can be

performed with polynomial complexity, differently from the maximally permissive

range control approach, which has exponential complexity.

3.4.3 Computational complexity analysis

Table 3.2 shows the maximum number of states and transitions of all automata that

must be computed in order to obtain the verifier automaton V , and to perform the

online implementation of security supervisor Ψ.

Since automaton T ′ρ, computed in line 1 of Algorithm 5, has the same numbers

of states and transitions as T ′, and V = T ′ρ ‖ T ′a , the number of transitions of V
is bounded by (|XT ′a | · |XT ′|)2 · (|Σ| + 1). Thus, the computational complexity of

Algorithm 5, is O((|XT ′a | · |XT ′ |)2 · |Σ|).
The computational complexity of Algorithm 6 is determined by the loop in lines

6 to 12, where, in the worst case, all states of V are visited and, for each state,

|Σ| · |XV | transitions are checked. Therefore, Algorithm 6 is O(|XV |2 · |Σ|).
Notice that each line of function controlDecision in Algorithm 7 can be com-

puted with linear complexity in the number of transitions of Ta. Thus, the com-

putational complexity of Function controlDecision is O(|XTa|2 · |Σ|). Therefore,

both the initialization (line 1) and the iterative steps (lines 2 to 5) of Algorithm 7

are O(|XTa|2 · |Σ|).

3.5 Conclusions

In this chapter, we propose a defense strategy to thwart man-in-the-middle attacks

in Cyber-Physical Systems by using the framework of Discrete-Event Systems. In

order to do so we proposed the implementation of a security supervisor that is capa-

ble of preventing damages caused by attacks in sensor and/or control communication

channels of Cyber-Physical Systems. Models of the plant subject to sensor channel

attacks, and of the supervisor subject to control channel attacks are obtained. We

also present the definition of NA-Safe controllability, that leads to a necessary and

sufficient condition for the existence of a security supervisor, and propose algorithms

for the verification of NA-Safe controllability and the construction of the security

supervisor. A practical example is used to illustrate how to systematically com-

pute and implement the security supervisor. The work presented in Section 3.3 is

published in LIMA et al. (2019). However, the security supervisor proposed is not

maximally permissive, therefore, in Section 3.4 we aim to create a more permissive

security supervisor.

54

In Section 3.4, we formalize the class of Attackable Networked Systems that are

NA-Secure, which is associated with the existence of a solution to the Maximally-

Permissive Security Problem (MPSP). If the system is NA-Secure, then the security

supervisor proposed in this work disables the occurrence of events only on a possible

imminent risk scenario, and it does not affect the non-attacked closed-loop system

behavior. We also propose an algorithm to verify the NA-Security property. In

contrast to the approaches for MPRCP, which have exponential complexity with

respect to the number of states and events of the system, the approach proposed in

this work is polynomial with respect to the number of states and linear with respect

to the number of events of the system. The work presented in Section 3.4 has been

published in LIMA et al. (2021).

An extension of this work would be to consider the case when the system is not

NA-Secure. In this case, it may be necessary to restrict the closed-loop behavior to

guarantee that the system does not reach unsafe states. By doing so, the closed-loop

system may block. Thus, a future research topic is to design a security supervisor

that prevents the system from reaching blocking states and unsafe states.

In the work presented in Chapter 3, we dealt with the problem of attacks that

can alter data transmitted in a sensor channel or in a supervisory control channel,

where we are able to protect the system from being damaged by this attack, with

the help of a security supervisor. However, the ensuring of the operation security of

a system is not the only concern that needs to be taken in account when protecting a

system against attacks. In Chapter 4 we consider a different kind of attack, namely

eavesdrop attack, where the objective of the attacker is not to damage the system,

instead the attacker wants to gather information of the system.

55

Chapter 4

Security against passive

communication network attacks

In this work, we considered active attacks in Chapter 3, we also need to consider

passive attacks in the communication channels of CPS, as depicted in Figure 4.1,

i.e., we consider that the communication channel between the plant and the intended

receiver can be invaded by an attacker that eavesdrops the transmitted messages in

order to identify the occurrence of a secret behavior of the system. This secret

behavior may represent, for instance, a sequence of operations that the intruder

cannot know, or the reach of a specific state in which the system is more vulnerable

to an active attack.

This work is an extension of the work presented in LIMA et al. (2020) where it

is introduced the notion of confidentiality, that encompasses the notions of privacy

and utility at the same time. In the confidentiality definition, only the sender and

intended receiver should be able to understand the contents of the secret transmit-

ted message KUROSE and ROSS (2011). Since eavesdroppers may intercept the

Figure 4.1: Cyber attack in industrial network.

56

message, the message must be somehow encrypted so that an intercepted message

cannot be understood by an interceptor. Encryption is the process of transforming a

message, plain text, into something illegible, cipher text, and by doing so, preventing

the intruder from understanding the signals transmitted through the communication

channel STALLINGS (2006). The work presented in this chapter was submitted to

possible publication to Springer Journal “Discrete Event Dynamic Systems” (LIMA

et al., 2021 (submitted)).

In this work we introduce a new defense strategy based on cryptography that

does not change the structure of the transmitted messages, i.e., for every event that

would be transmitted in the plain text a single event is transmitted in the cipher text.

Then, the increase in the amount of transmitted data through the communication

channels is avoided, which is important for some CPSs. In order to do so, the

observation of events by the sensors of the plant are encrypted before transmission,

and then decrypted in the receiver’s site. Since the encryption is carried out in the

event level, we call this type of cryptography as event-based cryptography. We also

introduce the property of confidentiality of DES with respect to a secret language

and an encryption function, and present a necessary and sufficient condition for this

property. We propose a test to verify confidentiality of DES. In addition, we derive

a method for designing an encryption function for a DES when the secret language

is formed only of sequences with length bounded by a given number n ∈ N. This

secret language, may represent, for instance, that the secret behavior corresponds

to the initialization procedure of a system, or the passage of a vehicle through a

specific place where it is easier for the malicious agent to perform an attack.

This chapter is organized as follows. In Section 4.1, we propose a defense strategy

against cyber attacks in the communication channels of a CPS. In Section 4.2, we

formalize the property of confidentiality of DES, associated with the capability of

protecting the transmitted events by using encryption functions. In Section 4.3,

we introduce the transition-based encryption functions. In Section 4.4, we present a

necessary and sufficient condition for confidentiality, and show a method for verifying

this property of DESs. In Section 4.5 we derive a method for designing an encryption

function that ensures confidentiality. Finally, in Section 4.6, the conclusions are

drawn.

4.1 Defense Strategy

In the work presented in this chapter, we consider that the communication is carried

out using a wired or wireless network, as shown in Figure 4.1, where the sender

and the receiver can represent different entities in an industrial network, e.g., the

sender may be an industrial plant and the receiver a controller or supervisor, or

57

Figure 4.2: Cyber attack in the sensor channel of a supervisory control system.

the sender may be a controlled system and the receiver a diagnoser or observer.

For example, in Figure 4.2, we consider the case where the sender is a plant with

model P , and the receiver is a supervisor S with realization given by H. Then,

the controlled system is modeled by G = P‖H. The channel that is used to send

information, gathered by sensors, from the plant to the supervisor, is called sensor

channel. Let us consider that this channel is vulnerable to attacks, as shown in

Figure 4.2, and that the attacker can observe all events transmitted from the plant

to the supervisor. Thus, assuming that the intruder knows the controlled plant

model G, and that he/she observes only the events that are communicated through

the sensor channel, then the observed model from the attacker’s point of view is

Go = Obs(G,Σo) = (Xo,Σo, fo, x0,o), where Σo is the set formed of the events that

are communicated through the sensor channel.

The objective of the attacker is to estimate that a sequence in the secret language,

denoted as LS ⊂ Lo, has occurred based on the observation of the events gathered

by the sensors of the plant. We assume that LS is a regular language, and make the

following assumptions regarding the attacker capabilities: (i) the attacker can read

all signals transmitted through the communication channel from the sender to the

receiver, i.e., the attacker and receiver observe the same events; (ii) the attacker

knows the sender model Go; and (iii) the current state of the system is unknown

when the attacker starts to observe it.

In this work, we propose a defense strategy based on cryptography to guarantee

that, given that a secret sequence s ∈ LS has been executed by the system, the

attacker is not able to estimate the occurrence of any sequence in the secret language

LS. We denote by plain event any event not modified by an encryption function, and

58

by cipher event those modified by encryption functions. We also use this terminology

for sequences and languages.

In Figure 4.3, we present the defense strategy that encrypts an observable event

σ ∈ Σo, generating the cipher event σc before it is transmitted to the receiver, and

the application of its inverse encryption at the receiver’s site in order to recover

σ from σc. The encryption function and decryption functions are responsible for

ensuring the confidentiality of the transmitted data, and these functions can be

implemented in a computer after the sender and in a computer before the receiver,

or it can be implemented directly on the sender and receiver as a separated function

independent from their intended operation.

Notice that the encryption function cannot mislead the receiver. Thus, the plain

sequence s must be recoverable from the cipher sequence sc, i.e., the cryptography

function must be invertible in order to the receiver be able to read, and eventually

actuate correctly on the system. In addition, since the receiver may need to actuate

just after the observation of an event executed by the system (e.g., if the receiver is a

supervisor), it is important that one cipher event be transmitted to the receiver after

every occurrence of an observable event in the plant. This procedure is guaranteed

in this work by considering only stream encryption functions, i.e., the encryption

function considered in this work encrypts one observable event at a time.

It is important to remark that, differently from FRITZ et al. (2019), the defense

strategy proposed in this work does not increase the amount of data transmitted

in the communication channel, since, after encryption of an observed plain event,

a cipher event is transmitted through the communication channel. Thus, by using

an event-based cryptography, it is not necessary to change the structure of the

transmitted data.

4.2 Confidentiality of DES

In this section, we formally present the definition of confidentiality of DES. In order

to do so, it is first necessary to define function Suf : Σ∗ → 2Σ∗ , which returns the

set of all suffixes of a sequence s ∈ Σ∗ given by:

Suf(s) = {s2 ∈ Σ∗ : (∃s1 ∈ Σ∗)[s = s1s2]}.

The suffix operation can be extended to a language L ⊆ Σ∗ as Suf(L) = {s2 ∈ Σ∗ :

(∃s ∈ L)(∃s1 ∈ Σ∗)[s = s1s2]}.
Since, by assumption, the attacker may start the observation of the sequence

of events at any time, then the attacker observes a suffix of the cipher sequence sc

transmitted by the plant, s′ ∈ Suf(sc). Based on the observation of s′, and the

59

Figure 4.3: Defense Strategy.

knowledge of the system model Go, the attacker estimates the sequences of Lo that

may have occurred. If s′ cannot be a suffix of any sequence in Lo, then the estimated

language is equal to the empty set. On the other hand, the attacker estimates all

sequences of Lo that have a suffix equal to s′. Let us denote the set of all estimated

sequences from the observation of s′ by Le,s′ = {s ∈ Lo : s′ ∈ Suf(s)}. Notice

that, if Le,s′ ⊆ LS and Le,s′ 6= ∅, the attacker estimates that a secret sequence has

occurred. Therefore, after the occurrence of a secret sequence, it is important to

mislead the attacker by either making Le,s′ = ∅ or Le,s′ ∩ (Lo \ LS) 6= ∅.

Example 18 Let us consider that the language generated by the system is Lo =

(ab+ ca)c∗, and that the secret language is LS = {ab, ca}. Let us also consider that

the system executes and transmits to the receiver sequence s = ca. Thus, depending

on when the attacker starts to eavesdrop the system, any suffix of Suf(s) = {ε, a, ca}
can be observed. Consider that the observed sequence is s′ = a. Then, since the

attacker knows language Lo, the attacker estimates the occurrence of the sequences

in Le,a = {a, ca}. Since a /∈ LS, then the attacker is not certain about the occurrence

of a secret sequence. However, if the observed sequence is s′ = ca, then Le,ca = {ca},
and the attacker is certain about the occurrence of a secret sequence. 2

The property of confidentiality depends on the definition of an encryption func-

tion FE : Σ∗o → Σ∗o that transforms a plain sequence s ∈ Lo ⊆ Σ∗o into a cipher

sequence sc ∈ Σ∗o. The encryption function must be invertible in order to ensure

confidentiality, i.e., there must exist a decryption function F−1
E : Σ∗o → Σ∗o such that

60

F−1
E (FE(s)) = s,∀s ∈ Lo. If the encryption function is applied to all sequences of

Lo, then we obtain the cipher language Lc = {FE(s) : s ∈ Lo}. The automaton that

generates Lc is denoted as Gc.

In the sequel, we formally define the property of confidentiality of DES.

Definition 16 A language Lo is said to be confidential with respect to the secret

language LS ⊂ Lo and encryption function FE if:

[∀s ∈ LS][∀s′ ∈ Suf(FE(s))]⇒ (s′ /∈ Suf(LS)) ∨ (s′ ∈ Suf(Lo \ LS)). 2

According to Definition 16, a system is said to be confidential if after the oc-

currence of a sequence s ∈ LS: (i) the attacker does not estimate that a sequence

in LS has occurred, i.e., s′ /∈ Suf(LS) for all s′ ∈ Suf(FE(s)); or (ii) there ex-

ists s′ ∈ Suf(FE(s)) such that s′ ∈ Suf(LS), but there also exists a non secret

sequence in the estimated language Le,s′ , i.e., s
′ ∈ Suf(Lo \LS). Therefore, if either

the attacker cannot estimate a secret sequence by observing s′, or if the attacker is

uncertain about the occurrence of a secret sequence, the system is said to be confi-

dential with respect to the secret language LS and encryption function FE. In other

words, the confidentiality of the system is violated if, and only if, the system has

executed a secret sequence and the attacker is certain that a secret sequence of LS

has occurred.

Example 19 Let Go be the automaton of the system depicted in Figure 4.4(a),

and consider the secret language LS = {ab, ca}. Notice that, in this example, after

executing ab or ca, the system will not execute any sequence in the secret language,

and therefore, the sequences generated after ab or ca do not lead to the violation

of confidentiality. Let us consider an encryption function FE which changes the

observation of sequences in Go such that sequence ab is encrypted as ba, and ca is

encrypted as ab. Automaton Gc, that models the cipher language Lc, is depicted

in Figure 4.4(b). In order to verify confidentiality we need to consider both secret

sequences, (i) sequence ab, and (ii) sequence ca. Let us first consider that the system

executes sequence ab and that the attacker has started to observe the system when

the plant was in the initial state 1. Thus, the attacker observes the transmitted

sequence ba. After observing ba the attacker is not able to estimate the current state

of the system since there is no sequence in Lo whose suffix is ba, i.e., Le,ba = ∅.
Let us now suppose that the attacker has started to observe the system only after b

has been transmitted, and therefore, the attacker observes only event a. In this case,

Le,a = {a, ca}, and the attacker does not know if the plant was in the initial state 1,

and after the occurrence of event a reached state 2, or if the plant was in state 3,

and is now in state 4. Thus the attacker is not certain about the occurrence of the

secret sequence ca. In this case, the occurrence of sequence ab is kept confidential

from the attacker by using encryption function FE.

61

1

2

4

a b

3c a
1

2

4
b a

3a b

(a) (b)

5c 5c

c c

Figure 4.4: Example 19: Automata Go and Gc.

Let us consider now that plant has generated sequence ca, observed by the attacker

as ab. After observing ab the attacker would estimate Le,ab = {ab}, and is certain

that a secret sequence has been generated by Go. Although ab is not the sequence

generated by Go, it is a secret sequence that leads to the same state of the plant as

sequence ca. Thus, according to Definition 16, Lo is not confidential with respect to

the secret language LS and encryption function FE. 2

4.3 Transition-based encryption functions

An encryption function FE is classified as transition-based if for all s, s′ ∈ Lo such

that fo(x0,o, s) = fo(x0,o, s
′), then FE(sσ) = FE(s)σc and FE(s′σ) = FE(s′)σc, where

σc ∈ Σo, i.e., the events labeling the transitions of Go are encrypted in the same

way independently of the sequence of events that has been executed before. As

a consequence, the domain of transition-based encryption functions can be rede-

fined generating the encryption function FT : Xo × Σo → Σo. In this case, the

inverse encryption function F−1
T : Xo ×Σo → Σo is such that F−1

T (x, σc) = σ, where

FT (x, σ) = σc. The domain and codomain of FT can be extended to Xo×Σ∗o and Σ∗o,

respectively, as FT (x0,o, sσ) = FT (FT (x0,o, s), σ), for all sσ ∈ Lo, and FT (x, ε) = ε,

for all x ∈ Xo.

Using the transition-based encryption function FT , an automaton that generates

the cipher language Lc can be obtained from Go as Gc = (Xo,Σo, fc, x0,o), where

fc(x, σc) = fo(x, σ), with σc = FT (x, σ), for all x ∈ Xo and σ ∈ ΓGo(x).

The following result provides a necessary and sufficient condition for a transition-

based encryption function be invertible.

Theorem 6 Let Gc be the cipher automaton obtained from Go = (Xo,Σo, fo, x0,o),

using the transition-based encryption function FT , as Gc = (Xo,Σo, fc, x0,o), where

fc(x, σc) = fo(x, σ), with σc = FT (x, σ), for all x ∈ Xo and σ ∈ ΓGo(x). Then,

the transition-based encryption function FT is invertible if, and only if, Gc does not

have more than one transition labeled with the same event departing from any of its

states.

62

1

2

3
a b

c

Figure 4.5: Example 20: Plant model Go.

1

2

3
c a

b

Figure 4.6: Example 20: Automaton Gc obtained using the transition-based encryp-
tion function FT applied to automaton Go of Figure 4.5.

Proof: (⇒) The proof is by contraposition. Let us consider that Gc has at two

transitions departing from the same state x of Gc labeled with the same event σc.

Since Go is deterministic, and Gc and Go have the same transition structure, then

there are two different events σ1, σ2 ∈ Σo such that FT (x, σ1) = FT (x, σ2) = σc,

which implies that the inverse F−1
T (x, σc) cannot be defined.

(⇐) Consider that each transition departing from the same state x in Gc has

a different label σc ∈ Σo. Thus, since Go is deterministic, then it is possible to

obtain a one-to-one correspondence between the events labeling the transitions of

Go departing from state x, and the events labeling the corresponding transitions of

Gc departing from x, which implies that FT is invertible.

Example 20 Let Go = (Xo,Σo, fo, x0,o), depicted in Figure 4.5, be the system au-

tomaton, and consider that the secret language is formed of all sequences that reach

state 3, i.e., LS = (abc)∗ab. A transition-based encryption function FT can be de-

fined such that FT (1, a) = c, FT (2, b) = a, and FT (3, c) = b. Let us now consider

that the attacker observes the cipher sequence ca, transmitted by the system. Since

the attacker knows the system model Go, the attacker estimates that the system has

reached state 2. However, in fact, the system has executed sequence ab, reaching the

secret state 3. The model of the encrypted system Gc obtained from Go and FT is

depicted in Figure 4.6. 2

In the following section, we present an algorithm to verify the confidentiality of

DES for transition-based encryption functions.

4.4 Confidentiality verification

In order to obtain a method for the verification of confidentiality of DES, a possible

approach is to associate the secret sequences of LS with the states reached in the

63

system model Go after the execution of these sequences. Let XS = {x ∈ Xo : (∃s ∈
LS)[x = fo(x0,o, s)]} denote the set of secret states of Go, and assume that there

does not exist a sequence s′ ∈ Lo \ LS such that x = fo(x0,o, s
′) and x ∈ XS. It is

important to remark that if this assumption is not true, then, since it is assumed

that LS is a regular language, it is always possible to obtain a modified automaton

G′o, by splitting the set of states as necessary, for which the assumption is valid

CASSANDRAS and LAFORTUNE (2008); WU and LAFORTUNE (2013). Thus,

the set of states of Go can be partitioned as Xo = XS∪̇XNS, where XNS = {x ∈
Xo : (∃s ∈ Lo \ LS)[x = fo(x0,o, s)]} denotes the set of non-secret states of Go.

In this work, we obtain a verifier for the property of confidentiality of DES

inspired by the verifier for codiagnosability proposed in MOREIRA et al. (2011).

Since we assume that the current state of the system is unknown when the at-

tacker starts to eavesdrop the communication channels between sender and receiver,

we need to present the current-state estimator of an automaton G, denoted as

E(G) = (XE ,Σ, fE , x0,E) SABOORI and HADJICOSTIS (2011a). The current-state

estimator of G = (X,Σ, f, x0) is computed in two steps: (i) obtain the nondeter-

ministic automaton G = (X,Σ, f,X) from G, by defining the initial state of G as

the set X; and (ii) compute E(G) = Obs(G,Σ).

The set of states of the current-state estimator of the plant Go, E(Go) =

(XoE ,Σo, foE , x0,oE), can be partitioned as XoE = XoE,S∪̇ XoE,NS∪̇XoE,U , where XoE,S

is the set formed only of secret states of XS, XoE,NS is formed only of non-secret

states of XNS, and XoE,U is formed of states of XS and XNS. The language generated

by E(Go) is formed of all suffixes of the sequences of Lo, i.e., L(E(Go)) = Suf(Lo).

It is also possible to define the current-state estimator of the cipher automaton

Gc as E(Gc) = (XcE ,Σo, fcE , x0,cE). The set of states of E(Gc) can also be partitioned

as XcE = XcE,S∪̇ XcE,NS∪̇XcE,U , where XcE,S is formed only of secret states of XS,

XcE,NS is formed only of non-secret states of XNS, and XcE,U is formed of states of

XS and XNS. It is not difficult to see that x0,cE = x0,oE . The language generated by

E(Gc) is formed of all suffixes of the cipher sequences of Lc, i.e., L(E(Gc)) = Suf(Lc).

Algorithm 8: Confidentiality verifier

Inputs : Go = (Xo,Σo, fo, x0,o) and Gc = (Xo,Σo, fc, x0,o).
Output: Verifier V = (XV ,Σo, fV , x0,V).

1 Compute E(Go).
2 Compute E(Gc).
3 V = E(Go) ‖ E(Gc).

In Algorithm 8, the verifier automaton V is computed from the current-state esti-

mators of the closed-loop system Go and the cipher system Gc. The state estimate of

the cipher system Gc represents the actual system state estimate after the execution

64

of a sequence s ∈ Suf(Lo), observed as the cipher sequence sc ∈ Suf(FT (x0,o, s)).

The state estimate of Go, on the other hand, represents what the attacker estimates

from the observed cipher sequence sc. Thus, the parallel composition between the

current-state estimators compares, after each new observed event, the system states

that the attacker estimates from Go with the actual system state estimate. In the

sequel we present a necessary and sufficient condition for the confidentiality of a

DES based on the verifier automaton computed in Algorithm 8.

Theorem 7 Let V be computed according to Algorithm 8. Then, Lo is confidential

with respect to LS and FT if, and only if, for all xV = (xoE , xcE) ∈ XV such that

xoE ∈ XoE,S, we have that xcE ∈ XcE,NS.

Proof: (⇒) The proof is by contraposition. Let us suppose that there is a state

(xoE , xcE) ∈ XV such that xoE ∈ XoE,S and xcE 6∈ XcE,NS. Then, the observed

sequence is a suffix s′ ∈ Suf(LS) such that s′ 6∈ Suf(Lo \ LS), i.e., the attacker

estimates that a secret sequence has been executed by the system. If, in this case,

xcE belongs to XcE,S or XcE,U , then there exists a sequence s ∈ LS such that s′ ∈
Suf(FE(s)), which violates Definition 16 of confidentiality of the DES.

(⇐) If for all xV = (xoE , xcE) ∈ XV such that xoE ∈ XoE,S, we have that xcE ∈
XcE,NS, then, there does not exist s ∈ LS such that s′ ∈ Suf(FE(s)), i.e., the plant

has not executed a secret sequence, and the attacker would estimate wrongly that a

secret behavior has occurred.

According to Theorem 7, the confidentiality of a DES can be verified by searching

in the verifier V a state xV = (xoE , xcE) such that xoE is formed only of secret states

in XS, which means that the attacker is certain that a secret sequence has been

executed, and xcE has at least one secret state of XS, which means that it is possible

that the system has indeed generated a secret sequence. If there exists a state

satisfying these conditions, then the language of the system Lo is not confidential

with respect to LS and FE. Otherwise, Lo is confidential.

Example 21 Let us consider again automaton Go and the cipher automaton Gc of

Example 20, presented in Figures 4.5 and 4.6, respectively. The secret language is

given by LS = (abc)∗ab, and, consequently, XS = {3} and XNS = {1, 2}. Following

Steps 1 and 2 of Algorithm 8, we compute the current-state estimators E(Go) and

E(Gc), depicted in Figures 4.7(a) and 4.7(b), respectively. In this case, we have

that XoE,S = XcE,S = {{3}}, XoE,NS = XcE,NS = {{1}, {2}}, and XoE,U = XcE,U =

{{1, 2, 3}}.
Verifier V = E(Go) ‖ E(Gc), is presented in Figure 4.8. Since the unique state

xV = (xoE , xcE), where xoE = {3} ∈ XoE,S is state ({3}, {1}), and {1} ∈ XcE,NS,

then Lo is confidential with respect to the encryption function FE and LS. 2

65

{1,2,3}
a

{1}

{2}{3}

c

b a c

b

{1,2,3}
c

{1}

{2}{3}

b

a c b
a

(a) (b)

Figure 4.7: Example 21: E(Go) (a) and E(Gc) (b).

({1,2,3},{1,2,3})
a

({1},{2})c

b a
c

b ({2},{3})({3},{1})

Figure 4.8: Example 21: Verifier V = E(Go) ‖ E(Gc).

In Section 4.5, we present a method for designing a transition-based encryption

function FT that ensures confidentiality, when it is possible, for a given system Go.

4.5 Transition-based encryption function design

A first approach for designing a transition-based encryption function FT is to choose,

among all possibilities, an encryption function such that Lo is confidential with

respect to FT and LS. This would require to test all possibilities of encryption

functions by changing the event labels of the transitions of Gc, and verifying if Lo

is confidential with respect to FT and LS. The problem with this strategy is that

the number of possible transition-based encryption functions may be very large. In

the worst-case, Go is complete, i.e., all events in Σo are feasible for all states of Go.

Since the cipher automaton Gc must have at most one transition labeled with the

same event departing from each one of its states to ensure that FT is invertible, then

for each state x ∈ Xo of Gc, it is only possible to permute the events that labels

the transitions that depart from x. Thus, for each state x there are |Σo|! possible

encryptions, considering only this state. If we consider now all states of Gc, then

there exist (|Σo|!)|Xo| possible transition-based encryption functions for Go, which

makes the direct search for one encryption function that ensures confidentiality

infeasible when Go has a large number of events and states. Notice that, the brute

force method has complexity O((|Σo|!)|Xo| × 22|Xo| × |Σo|), since the computation of

verifier V has complexity O(22|Xo| × |Σo|).
In this section, we present a method for computing a transition-based encryption

function FT , if it exists, when the length of the secret sequences of LS are bounded

66

by a given number n ∈ N. It is important to remark that the secret language

LS may represent, in this case, that the secret states belong to the initialization

procedure of a system, or the reach of a secret state that represents a given place in

the trajectory of a vehicle, or even any secret language in an acyclic system. The

proposed method implements a backtracking strategy which may avoid testing some

encryption functions, reducing the computational cost of obtaining FT . In order to

do so, let us first define a state-mapping automaton, denoted by Gm, created from

Go as, Gm = (Xo,Σm, fm, x0,o), where Σm = {σx : σ ∈ ΓGo(x)}, and fm(x, σx) =

fo(x, σ), for all x ∈ Xo and σ ∈ ΓGo(x). Notice that Gm is equal to Go except that

the events of Gm are the events of Go renamed to map the states from which the

transitions depart. By doing so, since Go is deterministic, then each transition of

Gm, labeled with σx is uniquely identified by the event σ and associated state x.

The secret states of Gm are defined as the same secret states of Go.

In Algorithm 9, we define a set of rules that the encryption of events associated

with each transition of Gm must satisfy to ensure system confidentiality, generating

an encrypted automaton Gc. In order to do so, it is important to define the height

of a tree T , and the depth of a node y of T , as the number of edges between the root

node and its furthest leaf, and the number of edges between the root node and y,

respectively COMER (2009).

In Algorithm 9, in Steps 1 to 9, we compute the set of sequences that the at-

tacker declares as secret sequences, LDS, which is formed of sequences that may

compromise the system confidentiality, i.e., if the attacker observes any sequence

in LDS, then he/she is certain that the system is at a secret state. In addition,

according to Definition 16, any suffix s′ of any ciphered secret sequence may not

belong to Suf(LS) or it must have at least one non-secret sequence with the same

suffix s′. Notice that, if t ∈ LDS leads the estimator of the system E(Go) from its

initial state x0,oE to a completely secret state xcs ∈ XoE,S, then, both t ∈ Suf(LS)

and t /∈ Suf(Lo \ LS). Thus, in order for a system to be confidential for all s ∈ LS,

any sequence s′ ∈ Suf(FT (x0,o, s)) must not belong to LDS. In Step 10 of Algorithm

9 we compute the state-mapping automaton Gm, which is an auxiliary automaton

in order to construct the rules for ensuring confidentiality. In Step 11 the reversed

automaton of Gm is calculated. In Step 12 we initialize the list of rules R. In Steps

13 to 23, we construct trees Txs associated with each secret state xs ∈ XS, whose

nodes are labeled with pairs composed of a state x and a path such that it is pos-

sible to reach the secret state xs from x following this path. After identifying all

sequences s of LDS, in Steps 24 to 26 a rule is added to R that states that every

ciphered sequence sc of length ns, generated from any suffix of Gm that reaches a

secret state xs, must be different from the sequences s ∈ LDS of the same length

ns, i.e., [sc 6= s]. Finally, in Steps 29 to 31, additional rules are added to ensure

67

Algorithm 9: Confidentiality verification rules

Inputs : LS, Go = (Xo,Σo, fo, x0,o).
Output: List of rules R.

1 Compute E(Go) = (XoE ,Σo, foE , x0,oE).
2 Define LDS = ∅
3 for each sequence s in LS do
4 for each s′ ∈ Suf(s) do
5 if foE(x0,oE , s

′) = xs where xs ∈ XoE,S then
6 LDS ← LDS ∪ {s′}
7 end

8 end

9 end
10 Compute the state-mapping automaton Gm

11 Compute the reverse of Gm, Gr
m = (Xo,Σm, f

r
m, x0,o).

12 Initialize the list of rules R
13 Create a tree Txs for each secret state xs ∈ XS, formed only of the root

associated with the pair (xs, pxs), where pxs = (xs, ε, xs).
14 for each sequence s in LDS do
15 Set ns = ‖s‖
16 for each xs ∈ XS do
17 while ns > height(Txs) do
18 for each node y of Txs, whose associated pair is (x, py), such that

depth(y) = height(Txs) do
19 for each transition x′ = f rm(x, σx′) of Gr

m do
20 Create a new node y′ as a child of y labeled with (x′, py′)

where py′ = (x′, σ, x) · py.
21 end

22 end

23 end
24 for each node y of Txs such that depth(y) = ns, whose associated pair

is (x, py) with py = (y1, σ1, . . . , σk−1, yk), do
25 Add to R the rule [sc 6= s], where

sc = FT (y1, σ1)FT (y2, σ2) . . . FT (yk−1, σk−1)
26 end

27 end

28 end
29 for each state x ∈ Xo do
30 Add to R the rule [FT (x, σ1) 6= FT (x, σ2)] for all σ1, σ2 ∈ ΓGo(x) where

σ1 6= σ2.
31 end

68

that the encryption function FT is deterministic, i.e., if the rules created in Steps

29 to 31 are not satisfied, then FT is not invertible, and therefore, it is not a valid

transition-based encryption function.

Theorem 8 Lo is confidential with respect to LS and a transition-based encryption

function FT if, and only if, all rules of R generated by using Algorithm 9 are satisfied.

Proof: Notice that if the rules of Steps 29 to 31 are not satisfied, then FT is not

invertible, which means that it is not an encryption function by definition. Thus,

we assume from now on that the rules created in Steps 29 to 31 are all satisfied.

(⇒) The proof is by contraposition. Let us consider that a rule of R, [sc 6= s],

is not satisfied. Then, there exist a sequence s ∈ LDS and a ciphered sequence sc,

obtained by using the transition-based encryption function FT , such that s = sc.

Since s ∈ LDS, then, if the attacker starts eavesdropping the communication channel

and observes sc = s, he/she is certain that the system has reached a secret state

of XS. Since, according to Steps 24 to 26 of Algorithm 9, the ciphered sequence sc

is a suffix of a sequence of Gm that actually reaches a secret state, then Lo is not

confidential with respect to LS and FT .

(⇐) The proof is by contraposition. Now let us consider that the system is

not confidential, i.e., there exists s ∈ LS and s′ ∈ Suf(FT (x0,o, s)), such that

s′ ∈ Suf(LS) and s′ /∈ Suf(Lo \ LS). Since s′ ∈ Suf(LS) and s′ /∈ Suf(Lo \ LS),

then, in Steps 3 to 9 of Algorithm 9, s′ is added to LDS. Since s′ ∈ LDS, then there

exists a sequence s′′ ∈ Suf(s) with the same length as s′, such that there exists a

node y in a tree Txs , labeled with the pair (x, py), whose sequence of events associated

to py is s′′. Since s′ ∈ Suf(FT (x0,o, s)) and ‖s′‖ = ‖s′′‖, then s′ = FT (x, s′′). This

implies, in Step 25, in the creation of the rule [sc 6= s′] associated with node y, where

sc = FT (x, s′′) = s′, which cannot be satisfied.

Example 22 Consider the plant Go of Example 19, depicted in Figure 4.4(a), re-

produced again in Figure 4.9, where state 4 is the unique secret state. Notice that, if

we consider the encryption function that generates Gc depicted in Figure 4.4(b), the

system is not confidential, as shown in Example 19. In this regard we can use Go and

the secret language LS = {ab, ca} to create a set of rules so that we can calculate an

encryption function FT such that Lo is confidential with respect to FT and LS. Firstly

we compute E(Go), which is depicted in Figure 4.10. From this estimator and the

secret language LS we compute LDS = {b, ab, ca}. The next step is to compute the

state-mapping automaton Gm, depicted in Figure 4.11, based on Go. Notice that the

transitions of Gm are labeled with events σx ∈ Σm, where x ∈ Xo. From automaton

Gm, the reversed automaton Gr
m, depicted in Figure 4.12, is computed. Then, the

tree T4 is obtained. The root node of T4 (depth 0), is associated with the unique secret

69

1

2

4

a b

3c a
5c

c

Figure 4.9: Example 22: Automaton Go.

a bc

{1, 2, 3, 4, 5}

{2, 4}{3, 5} {4}b

a

{5}c
c

c

c

Figure 4.10: Example 22: E(Go).

state 4 and path (4, ε, 4). Then, considering transition f rm(4, b2) = 2, the node with

depth 1 with label (2, (2, b, 4, ε, 4)) is created. Continuing the steps of Algorithm 9, the

complete tree T4, presented in Figure 4.13, is computed. From tree T4, the rules that

must be satisfied to ensure confidentiality are obtained. In order to do so, each se-

quence s ∈ LDS generates one rule associated with each node of T4 with depth equal to

the length of s. For example, for b ∈ LDS, the rules [FT (2, b) 6= b] and [FT (3, a) 6= b]

are created. Thus, following the Steps 24 to 26, the list of rules is computed as

R = [[FT (2, b) 6= b], [FT (3, a) 6= b], [FT (1, a)FT (2, b) 6= ab], [FT (1, c)FT (3, a) 6= ab],

[FT (1, a)FT (2, b) 6= ca], [FT (1, c)FT (3, a) 6= ca], [FT (1, a) 6= FT (1, c)]], where the

rule [FT (1, a) 6= FT (1, c)] is added in Steps 29 to 31 of Algorithm 9 to ensure that

the encryption function be invertible.

Notice that, the encryption function FT such that FT (1, a) = b, FT (1, c) = a,

FT (2, b) = a, and FT (3, a) = c satisfies all rules of R. Thus, defining FT (4, c) = c

and FT (5, c) = c to complete the encryption function, then, according to Theorem 8,

Lo is confidential with respect to FT and LS. 2

Notice that Algorithm 9 provides all rules that the encryption function FT must

satisfy to ensure confidentiality. However, depending on the system complexity, it

1

2

4

a1 b2

3c1 a3

5
c4

c5

Figure 4.11: Example 22: Gm.

70

1

2

4

a1 b2

3c1 a3

5
c4

c5

Figure 4.12: Example 22: Gr
m.

1, (1, c, 3, a, 4, ε, 4)

2, (2, b, 4, ε, 4)

4, (4, ε, 4)

Depth 1

Depth 0

Depth 2

3, (3, a, 4, ε, 4)

1, (1, a, 2, b, 4, ε, 4)

Figure 4.13: Example 22: T4.

may be difficult to find a solution that satisfy all rules, since there are, in the worst

case, (|Σo|!)|Xo| transition-based encryption function candidates. In these cases, we

can use the recursive Algorithm 10, which uses a backtracking strategy (BIERE

et al., 2009; KNUTH, 1975; KUMAR, 1992) to find a solution FT , if it exists. The

main advantage of the backtracking is that it ensures correctness by enumerating

all possibilities, and it also ensures efficiency by never visiting a node more than

once (SKIENA, 2020). Algorithm 10 may reduce the computational cost of finding

a solution FT , since it can avoid, in some cases, testing several encryption function

candidates.

In Step 1 of Algorithm 10, function F ′T is created associating to each pair (x, σ) ∈
Xo×Σo, such that fo(x, σ) is defined, event σx ∈ Σm, i.e., event σ of transition (x, σ)

of Go is encrypted with the label of the corresponding transition of Gm, σx. Then,

in Step 2, the initialization of function C is carried out flagging all transitions of Go

with number 0. Function C is used in the algorithm to flag the transitions of Go

that have been explored with 1, and the others that have not been explored with

0. In Step 3, the recursive Function FTSearch is called, where the outputs of this

function are the encryption function candidate FT and the boolean variable D. If

in the output of function FTSearch in Step 3 of Algorithm 10, D is true, then FT

is an encryption function that satisfies all rules. On the other hand, if D is false,

then there does not exist a transition-based encryption function FT such that Lo is

confidential with respect to FT and LS.

In Function FTSearch, a recursive search for an encryption function FT that

ensures confidentiality is carried out. In Steps 1 and 2 of Function FTSearch, a

transition (x, σ) that has not been explored is chosen, and then, in Step 3, this

71

Algorithm 10: Computation of the transition-based encryption function
FT

Inputs : Σo, Σm, R, fo.
Output: Transition-based encryption function FT .

1 Create function F ′T : Xo × Σo → Σo ∪ Σm, where F ′T (x, σ) = σx,
∀(x, σ) ∈ Xo × Σo such that fo(x, σ) is defined, and F ′T (x, σ) is undefined,
otherwise

2 Create function C : Xo × Σo → {0, 1}, where C(x, σ) = 0, ∀(x, σ) ∈ Xo × Σo

such that fo(x, σ) is defined, and C(x, σ) is undefined, otherwise
3 [FT , D] = FTSearch(F ′T ,Σo, R, C)
4 if D = False then
5 FT does not exist
6 end

Function [F ′′T , D] = FTSearch (F ′T ,Σo, R, C):
1 if ∃(x, σ) ∈ Xo × Σo: C(x, σ) = 0 then
2 Choose a transition (x, σ) ∈ Xo × Σo such that C(x, σ) = 0
3 Define C(x, σ) = 1
4 D = False
5 for σ′ ∈ Σo do
6 if D=False then
7 Define D = True
8 Define F ′T (x, σ) = σ′

9 F ′′T ← F ′T
10 for each rule r = [sc 6= s] of R do
11 Compute sc using F ′T instead of FT
12 if [sc = s] then
13 D = False
14 end

15 end
16 if D = True then
17 [F ′′T , D]=FTSearch(F ′T ,Σo, R, C)
18 end

19 end

20 end

21 else
22 F ′′T = F ′T
23 D = True

24 end

25 end

72

transition is flagged as already explored, i.e., C(x, σ) = 1. In Step 5, an event

σ′ ∈ Σo is chosen to encrypt event σ such that F ′T (x, σ) = σ′. Then, in Steps 10 to

15, it is verified if this choice violates any rule in R considering F ′T as the encryption

function. It is important to remark that some transitions (x, σ) are encrypted as

σx, which implies that all rules such that σx belongs to sc are clearly different from

s, and consequently, are true. If some rule is false, then another event σ′ ∈ Σo is

chosen for encrypting σ. On the other hand, if all rules are satisfied, then, in Step

17, Function FTSearch is called again in order to encrypt another transition that

has not been explored yet. It is important to remark that the algorithm performs

as a depth-first search. Thus, at each step of the algorithm, we verify if the current

choice for the encryption function until this step is valid. If any rule is violated,

then all other encryption function candidates that have the same encryption for the

transitions already explored, are also not valid, and are not checked in Algorithm

10. In the exhaustive search method, we would check all possible candidates since

we do not have this information. This reduces the number of verifications that are

carried out in comparison with the exhaustive search algorithm. If a solution to the

problem is found, i.e., the algorithm finds a valid encryption function after going

through all transitions of Go, then, in Steps 22 and 23, Function FTSearch returns

the encryption function and the boolean variable D true.

Example 23 Let us consider the plant Go of Example 19, depicted in Figure 4.9,

and LS = {ab, ca}. As seen in Example 21 the list of rules R is given as

R = [[FT (2, b) 6= b], [FT (3, a) 6= b], [FT (1, a)FT (2, b) 6= ab], [FT (1, c)FT (3, a) 6= ab],

[FT (1, a)FT (2, b) 6= ca], [FT (1, c)FT (3, a) 6= ca], [FT (1, a) 6= FT (1, c)]] .

Then, it is possible to use Algorithm 10 to find a transition-based encryption function

FT such that Lo is confidential with respect to FT and LS. In order to do so, In Step

1 of Algorithm 10 we initialize function F ′T as F ′T (1, a) = a1, F
′
T (1, c) = c1, F

′
T (2, b) =

b2, F
′
T (3, a) = a3, F

′
T (4, c) = c4, F

′
T (5, c) = c5, where Σm = {a1, c1, b2, a3, c4, c5}. In

Step 2, we initialize function C as C(1, a) = C(1, c) = C(2, b) = C(3, a) = C(4, c) =

C(5, c) = 0, and C(x, σ) is undefined for all other pairs (x, σ) ∈ Xo × Σo. Then,

in Step 3 function FTSearch is called. Considering now Function FTSearch, in

Steps 1 and 2 we choose a transition (x, σ) such that C(x, σ) = 0. Let us consider

that (x, σ) = (1, a) has been chosen. Then, in Steps 3 and 4 of Function FTSearch

we define C(1, a) = 1 and D as False. In Step 5 of Function FTSearch an event

σ′ ∈ Σo is chosen. Let us consider that σ′ = a. Then, in Step 8, F ′T (1, a) = a,

and, in Step 9, we define F ′′T as a copy of F ′T . In Steps 10 to 15, each rule of R

is tested considering the encryption provided by F ′T , i.e., R = [[b2 6= b], [a3 6= b],

[ab2 6= ab], [c1a3 6= ab], [ab2 6= ca], [c1a3 6= ca], [a 6= c1]]. It is important to

73

1

2

4
b a

3a c

5c

c

Figure 4.14: Example 23: Cipher automaton Gc corresponding to the encryption
function FT obtained using Algorithm 10.

remark that events c1, b2, a3 are not defined in Σo, therefore, for a rule [sc 6= s], if

c1, b2, or a3 appears in sc, the rule is automatically satisfied since Σo ∩ Σm = ∅.
In this case all rules are satisfied, and function FTSearch is called again. Let us

consider that the transition (x, σ) chosen now is (1, c). Then, in Step 5 we can

choose σ′ = a, and define F ′T (1, c) = a. Thus, F ′′T = F ′T is such that F ′′T (1, a) =

a, F ′′T (1, c) = a, F ′′T (2, b) = b2, F
′′
T (3, a) = a3, F

′′
T (4, c) = c4, F

′′
T (5, c) = c5. In Steps 10

to 15 each rule is computed with the new encryption function candidate F ′T which is

updated to R = [[b2 6= b], [a3 6= b], [ab2 6= ab], [aa3 6= ab], [ab2 6= ca], [aa3 6= ca],

[a 6= a]]. In this case, the rule [a 6= a] is False, which shows that (1, c) cannot be

encrypted as a, which implies that in Step 13 D is set as False. Since D is false,

then the function returns to Step 5 to choose another σ′ ∈ Σo. Let us consider that

now σ′ = b. Then, F ′T (1, c) = b, and by consequence, the new list of rules is given

as R = [[b2 6= b], [a3 6= b], [ab2 6= ab], [ba3 6= ab], [ab2 6= ca], [ba3 6= ca], [a 6= b]].

In this case all rules are satisfied, and therefore, in Step 17 we call a new instance

of FTSearch. Let us consider that transition (2, b) is chosen, and event σ′ = a.

Hence, F ′T (2, b) = a and the updated list of rules is R = [[a 6= b], [a3 6= b], [aa 6= ab],

[ba3 6= ab], [aa 6= ca], [ba3 6= ca], [a 6= b]]. Since all rules are satisfied, then

a new instance of FTSearch is called. Now, let us consider that transition (3, a)

is chosen, and σ′ = a. Then the list of rules is updated to R = [[a 6= b], [a 6= b],

[aa 6= ab], [ba 6= ab], [aa 6= ca], [ba 6= ca], [a 6= b]]. Since no rules are violated,

we call again FTSearch. Since the only transitions remaining to be explored are

(4, c) and (5, c), and all rules have already been satisfied, then F ′T (4, c) and F ′T (5, c)

can be equal to any event σ ∈ Σo. Let us consider that F ′T (4, c) = F ′T (5, c) = a.

In Algorithm 10, function FTSearch returns the values D = True and

FT (1, a) = a, FT (1, c) = b, FT (2, b) = a, FT (3, a) = a, FT (4, c) = a, and

FT (5, c) = a, which is a transition-based encryption function that satisfies all rules

R, and therefore, is a solution to the confidentiality problem.

It is important to remark that this choice of FT ensures the confidentiality of the

system language, as expected according to Theorem 8, but also leads the attacker to

estimate the empty set depending on the observed sequence of events. In order to see

this fact, let us construct the cipher automaton Gc using the encryption function FT ,

74

a bc

{1, 2, 3, 4, 5}

{3, 4}{4, 5} {4}c

{5}c c

c

{2}a

Figure 4.15: Example 23: Current state estimator of automaton Gc, E(Gc).

({1,2,3,4,5},{1,2,3,4,5})
a

b c

({2,4},{3,4}) ({4},{2}) ({3,5},{4,5})
c

({5},{4,5})
c

({5},{5})c c

Figure 4.16: Example 23: Verifier automaton V = E(Go)‖E(Gc).

depicted in Figure 4.14. Then, as presented in Section 4.4, it is possible to test the

confidentiality by constructing the current-state estimator of Go, E(Go), depicted in

Figure 4.10, and the current-state estimator of Gc, E(Gc), depicted in Figure 4.15.

Then the verifier can be constructed as V = E(Go)‖E(Gc), which is shown in Figure

4.16. Notice that, there is only one state (xo, xc) in V such that xo = {4}, i.e., the

attacker believes that a secret sequence has occurred when the observed sequence is b.

However, after transmitting b the state actually reached by the system is state 2. In

addition, after the transmission of b, it is possible for the system to transmit event

a, as shown in Figure 4.14. In this case, the attacker estimates the empty set. This

fact is clear from Figure 4.16, since sequence ba is not feasible in the verifier.

It is also important to remark that, in this example, there are 486 encryption

function candidates. However, using Algorithm 10, only seven verifications of the

rules were needed to obtain an encryption function FT that ensures the confidentiality

of Lo, which shows that Algorithm 10 may significantly reduce the computational cost

of computing FT . 2

75

4.6 Conclusions

In the work presented in this chapter, we propose a defense strategy, based on an

event-based cryptography, to prevent attackers from obtaining secret information

from the communication channel between sender and receiver of a CPS. We define

transition-based encryption functions, which changes the transmitted events in order

to prevent the attacker from correctly estimating that a secret sequence has been

executed by the system. This encryption function must be invertible in order to

the receiver be capable of recovering the sequence generated by the sender. We

also introduce the notion of confidentiality of DES, associated with the capability

of the encrypted system to hide a secret from the attacker. A method to verify

this property is proposed, and we present a method for designing an encryption

function to ensure the confidentiality of a cyber-physical system with respect to a

secret language formed only of sequences with length bounded by a given number.

Part of the work presented in Chapter 4 is presented in LIMA et al. (2020), and

an extended version of this work is currently under submission LIMA et al. (2021

(submitted).

76

Chapter 5

Conclusions

Considering the protection against active attacks, i.e., attacks that alter data in the

communication channel in a Cyber-Physical System, we considered in this work two

different approaches, (i) the NA-Safe Controllability case, where, after the attack

detection, we are able to prevent damages caused by the attack without altering

the non-attacked behavior of the system. This work was published in LIMA et al.

(2019). and (ii) the NA-Security approach, where we considered the possibility

that damages caused by active attacks can be prevented while ensuring maximally

permissibility. We showed that for a class of systems, denoted as NA-Secure Systems,

the maximally permissive security supervisor can be computed in polynomial time.

This approach is addressed in LIMA et al. (2021).

Regarding passive attacks, i.e., attacks where the intruder only gather informa-

tion without altering data from the attacked channel, the property of confidentiality

is proposed. As defined in Chapter 4, the confidentiality property is not trivially

verified. A direct verification, for a given system G, secret language LS, and encryp-

tion function FE, would be to analyze all secret sequences and their suffixes, and

compare with all encrypted sequences, since a single sequence can make the whole

system not confidential. Therefore, we propose in Chapter 4 a method to verify this

property. This approach is addressed in LIMA et al. (2020) whose expanded version

is submitted LIMA et al. (2021 (submitted)

Additionally, the definition of confidentiality proposed in Chapter 4 based on

encryption functions, therefore, it is important to represent encryption functions

on Discrete Event Systems (DES). Thus, we proposed a method to generate an

encryption functions for discrete event systems which ensures confidentiality of the

system.

Summarily, the main contributions of this work are listed in the sequel:

• We analyzed when it is possible to prevent damages caused by active attack

even without altering the non-attacked behavior, i.e., when a system is NA-

77

Safe Controllable, and then, created a security supervisor capable of preventing

this damages (LIMA et al., 2019).

• We optimized the security supervisor for ensuring maximally permissibility,

i.e., Computed security supervisors for the NA-Security systems. It is impor-

tant to remark that, this approach can be computed in polynomial time LIMA

et al. (2021).

• We proposed the formal definition property of Confidentiality for Discrete

Event Systems, related to only the sender and the intender receiver being able

to understand the message in a channel (LIMA et al., 2021 (submitted, 2020).

• We proposed conditions to verify the property of Confidentiality of Discrete

Event Systems, for a given plant, secret language, and encryption function

(LIMA et al., 2021 (submitted, 2020).

• We presented a method to generate transition based event-based encryption

functions (LIMA et al., 2021 (submitted).

Regarding future works we intend to further explore the passive attack issue,

where the attacker gather information from the plant, we intend to explore known

cryptographic schemes and adapt them to the framework of Discrete Event Systems

to improve the security of the transmission of data in the lower levels of the industry.

In this regard, we are also current studying a codification for I/O communication

systems, where any variation in the I/O vector is codded as an event, so that more

encryption schemes can be adapted to the framework of Discrete Event Systems.

78

Bibliography

ASHIBANI, Y., MAHMOUD, Q. H., 2017, “Cyber physical systems security: Anal-

ysis, challenges and solutions”, Computers & Security, v. 68, pp. 81–97.

BARCELOS, R. J., BASILIO, J. C., 2018,“Enforcing current-state opacity through

shuffle in event observations”, IFAC-PapersOnLine, v. 51, n. 7, pp. 100–

105.

BARCELOS, R. J., BASILIO, J. C., 2021, “Enforcing current-state opacity

through shuffle and deletions of event observations”, Automatica, v. 133,

pp. 109836.

BENCSÁTH, B., PÉK, G., BUTTYÁN, L., FELEGYHAZI, M., 2012,“The cousins

of stuxnet: Duqu, flame, and gauss”, Future Internet, v. 4, n. 4, pp. 971–

1003.

BIERE, A., HEULE, M., VAN MAAREN, H., 2009, Handbook of satisfiability, v.

185. IOS press.

CAO, L., JIANG, X., ZHAO, Y., WANG, S., YOU, D., XU, X., 2020, “A survey of

network attacks on cyber-physical systems”, IEEE Access, v. 8, pp. 44219–

44227.

CARVALHO, L. K., MOREIRA, M. V., BASILIO, J. C., 2017, “Diagnosability of

intermittent sensor faults in discrete event systems”, Automatica, v. 79,

pp. 315–325.

CARVALHO, L. K., WU, Y.-C., KWONG, R., LAFORTUNE, S., 2018, “Detec-

tion and mitigation of classes of attacks in supervisory control systems”,

Automatica, v. 97, pp. 121 – 133.

CASSANDRAS, C. G., 2016, “Smart cities as cyber-physical social systems”, En-

gineering, v. 2, n. 2, pp. 156–158.

CASSANDRAS, C. G., LAFORTUNE, S., 2008, Introduction to discrete event

systems. Secaucus, NJ, Springer.

79

COMER, D., 2009, Computer networks and internets. Upper Saddle River, NJ,

USA, Pearson/Prentice Hall.

COUTO, C., COUTO, G. C. K., DA CUNHA, A. E. C., 2020, “Análise da segu-

rança de redes em sistemas de automação e controle industriais: estudo

de caso com a planta MecatrIME”, Anais da Sociedade Brasileira de Au-

tomática, v. 2, n. 1.

DA XU, L., HE, W., LI, S., 2014, “Internet of things in industries: A survey”, IEEE

Transactions on industrial informatics, v. 10, n. 4, pp. 2233–2243.

DYER, J., DYER, M., XU, J., 2017, “Practical Homomorphic Encryption Over

the Integers for Secure Computation in the Cloud”. In: O’Neill, M. (Ed.),

Cryptography and Coding, pp. 44–76.

FARWELL, J. P., ROHOZINSKI, R., 2011, “Stuxnet and the future of cyber war”,

Survival, v. 53, n. 1, pp. 23–40.

FRITZ, R., ZHANG, P., 2018, “Modeling and detection of cyber attacks on discrete

event systems”, IFAC-PapersOnLine, v. 51, n. 7, pp. 285–290.

FRITZ, R., FAUSER, M., ZHANG, P., 2019, “Controller encryption for discrete

event systems”. In: 2019 American Control Conference (ACC), pp. 5633–

5638, PHILADELPHIA, CA, USA.

GAO, C., SEATZU, C., LI, Z., GIUA, A., 2019, “Multiple attacks detection on

discrete event systems”. In: 2019 IEEE International Conference on Sys-

tems, Man and Cybernetics (SMC), pp. 2352–2357.

GILCHRIST, A., 2016, Industry 4.0: the industrial internet of things. 1st ed.

Berkeley, Apress.

GOES, R. M., KANG, E., KWONG, R. H., LAFORTUNE, S., 2017, “Stealthy De-

ception Attacks for Cyber-Physical Systems”. In: Proceedings of the 56th

IEEE Conference on Decision and Control, pp. 4224–4230, Melbourne,

Australia.

GOES, R. M., KANG, E., KWONG, R. H., LAFORTUNE, S., 2020, “Synthesis

of sensor deception attacks at the supervisory layer of Cyber-Physical

Systems”, Automatica, v. 121, pp. 109172.

GOU, Q., YAN, L., LIU, Y., LI, Y., 2013, “Construction and strategies in IoT secu-

rity system”. In: IEEE international conference on green computing and

communications and IEEE internet of things and IEEE cyber, physical

and social computing, pp. 1129–1132.

80

GUBBI, J., BUYYA, R., MARUSIC, S., PALANISWAMI, M., 2013, “Internet

of Things (IoT): A vision, architectural elements, and future directions”,

Future generation computer systems, v. 29, n. 7, pp. 1645–1660.

GUO, Y., JIANG, X., GUO, C., WANG, S., KAROUI, O., 2020, “Overview of

Opacity in Discrete Event Systems”, IEEE Access, v. 8, pp. 48731–48741.

HE, H., MAPLE, C., WATSON, T., TIWARI, A., MEHNEN, J., JIN, Y.,

GABRYS, B., 2016, “The security challenges in the IoT enabled cyber-

physical systems and opportunities for evolutionary computing & other

computational intelligence”. In: 2016 IEEE Congress on Evolutionary

Computation (CEC), pp. 1015–1021.

HOPCROFT, J. E., MOTWANI, R., ULLMAN, J. D., 2006, Introduction to au-

tomata theory, languages, and computation. Boston, Addison Wesley.

HUANG, X., DONG, J., 2018, “Reliable control policy of cyber-physical systems

against a class of frequency-constrained sensor and actuator attacks”,

IEEE transactions on cybernetics, v. 48, n. 12, pp. 3432–3439.

HUMAYED, A., LIN, J., LI, F., LUO, B., 2017,“Cyber-physical systems security?A

survey”, IEEE Internet of Things Journal, v. 4, n. 6, pp. 1802–1831.

IGURE, V. M., LAUGHTER, S. A., WILLIAMS, R. D., 2006, “Security issues in

SCADA networks”, computers & security, v. 25, n. 7, pp. 498–506.

JADOON, A. K., LI, J., WANG, L., 2021, “Physical layer authentication for auto-

motive cyber physical systems based on modified HB protocol”, Frontiers

of Computer Science, v. 15, n. 3, pp. 1–8.

JI, Y., 2019, From Security Enforcement to Supervisory Control in Discrete Event

Systems: Qualitative and Quantitative Analyses. Tese de Doutorado.

JIRKOVSKY, V., OBITKO, M., MARIK, V., 2017, “Understanding Data Het-

erogeneity in the Context of Cyber-Physical Systems Integration”, IEEE

Transactions on Industrial Informatics, v. 13, n. 2, pp. 660–667.

KNUTH, D. E., 1975, “Estimating the efficiency of backtrack programs”, Mathe-

matics of computation, v. 29, n. 129, pp. 122–136.

KUMAR, V., 1992, “Algorithms for constraint-satisfaction problems: A survey”,

AI magazine, v. 13, n. 1, pp. 32–44.

KUROSE, J. F., ROSS, K. W., 2011, Computer networking: a top-down approach.

Addison Wesley.

81

LAWSON, M. V., 2003, Finite automata. Florida, CRC Press.

LEE, E. A., 2008, “Cyber physical systems: Design challenges”. In: 2008 11th IEEE

International Symposium on Object and Component-Oriented Real-Time

Distributed Computing (ISORC), pp. 363–369.

LEHMER, D., OTHERS, 1932, “On Euler’s totient function”, Bulletin of the Amer-

ican Mathematical Society, v. 38, n. 10, pp. 745–751.

LIMA, P. M., 2017, Security against network attacks in supervisory control systems.

Tese de Mestrado, Federal University of Rio de Janeiro.

LIMA, P. M., ALVES, M. V. S., CARVALHO, L. K., MOREIRA, M. V., 2021,

“Security of Cyber-Physical Systems: Design of a Security Supervisor to

Thwart Attacks”, IEEE Transactions on Automation Science and Engi-

neering. doi: 10.1109/TASE.2021.3076697.

LIMA, P. M., CARVALHO, L. K., MOREIRA, M. V., 2021 (submitted), “Ensuring

confidentiality of cyber-physical systems using event-based cryptography”,

Discrete Event Dynamic Systems.

LIMA, P. M., ALVES, M. V., CARVALHO, L. K., MOREIRA, M. V., 2017, “Se-

curity Against Network Attacks in Supervisory Control Systems”, IFAC-

PapersOnLine, v. 50, n. 1 (jul), pp. 12333–12338.

LIMA, P. M., CARVALHO, L. K., MOREIRA, M. V., 2018, “Detectable and Un-

detectable Network Attack Security of Cyber-physical Systems”, IFAC-

PapersOnLine, v. 51, n. 7, pp. 179–185.

LIMA, P. M., ALVES, M. V. S., CARVALHO, L. K., MOREIRA, M. V., 2019, “Se-

curity Against Communication Network Attacks of Cyber-Physical Sys-

tems”, Journal of Control, Automation and Electrical Systems, v. 30, n. 1

(feb), pp. 125–135.

LIMA, P. M., CARVALHO, L. K., MOREIRA, M. V., 2020, “Confidentiality

of Cyber-Physical Systems Using Event-Based Cryptography”. In: 21st

IFAC World Congress 2020, pp. 1761–1766, Berlin, Germany.

LIN, F., WONHAM, W., 1988, “On observability of discrete-event systems”, Infor-

mation Sciences, v. 44, n. 3, pp. 173 – 198.

LIN, F., 2011, “Opacity of discrete event systems and its applications”, Automatica,

v. 47, n. 3, pp. 496–503.

82

MASOPUST, T., 2018, “Complexity of Infimal Observable Superlanguages”, IEEE

Transactions on Automatic Control, v. 63, n. 1, pp. 249–254.

MAZARÉ, L., 2004, “Using unification for opacity properties”, Proceedings of the

4th IFIP WG1, v. 7, pp. 165–176.

MO, Y., SINOPOLI, B., 2010, “False data injection attacks in control systems”.

In: Preprints of the 1st workshop on Secure Control Systems, pp. 1–6,

Stockholm, Sweden.

MO, Y., SINOPOLI, B., 2012, “Integrity Attacks on Cyber-Physical Systems”.

In: Proceedings of the 1st International Conference on High Confidence

Networked Systems, pp. 47–54.

MOHAMMAD, S. M., LAKSHMISRI, S., 2018, “Security automation in Infor-

mation technology”, International Journal of Creative Research Thoughts

(IJCRT), v. 6.

MOREIRA, M. V., JESUS, T. C., BASILIO, J. C., 2011, “Polynomial time ver-

ification of decentralized diagnosability of discrete event systems”, IEEE

Transactions on Automatic Control, v. 56, n. 7, pp. 1679–1684.

PAOLI, A., LAFORTUNE, S., 2005, “Safe diagnosability for fault-tolerant super-

vision of discrete-event systems”, Automatica, v. 41, n. 8, pp. 1335–1347.

PFLEEGER, C. P., PFLEEGER, S. L., 2002, Security in computing. Prentice Hall

Professional Technical Reference.

SABOORI, A., HADJICOSTIS, C. N., 2007, “Notions of security and opacity in

discrete event systems”. In: 2007 46th IEEE Conference on Decision and

Control, pp. 5056–5061.

SABOORI, A., HADJICOSTIS, C. N., 2008, “Verification of initial-state opacity

in security applications of DES”. In: 2008 9th International Workshop on

Discrete Event Systems, pp. 328–333.

SABOORI, A., HADJICOSTIS, C. N., 2011a, “Verification of infinite-step opacity

and complexity considerations”, IEEE Transactions on Automatic Con-

trol, v. 57, n. 5, pp. 1265–1269.

SABOORI, A., HADJICOSTIS, C. N., 2011b, “Verification of K-step opacity and

analysis of its complexity”, IEEE Transactions on Automation Science

and Engineering, v. 8, n. 3, pp. 549–559.

83

SABOORI, A., HADJICOSTIS, C. N., 2013,“Current-state opacity formulations in

probabilistic finite automata”, IEEE Transactions on automatic control,

v. 59, n. 1, pp. 120–133.

SAMPATH, M., SENGUPTA, R., LAFORTUNE, S., SINNAMOHIDEEN, K.,

TENEKETZIS, D., 1995, “Diagnosability of discrete-event systems”,

IEEE Transactions on automatic control, v. 40, n. 9, pp. 1555–1575.

SHIREY, R., 2000, “RFC 2828: Internet security glossary”, The Internet Society,

v. 13.

SINGH, S., SINGH, N., 2015, “Internet of Things (IoT): Security challenges, busi-

ness opportunities & reference architecture for E-commerce”. In: 2015

International Conference on Green Computing and Internet of Things

(ICGCIoT), pp. 1577–1581.

SKIENA, S. S., 2020, The algorithm design manual. Springer International Pub-

lishing.

STALLINGS, W., 2006, Cryptography and network security, 4/E. Pearson Educa-

tion India.

SU, R., 2018, “Supervisor synthesis to thwart cyber attack with bounded sensor

reading alterations”, Automatica, v. 94, pp. 35–44.

THORSLEY, D., TENEKETZIS, D., 2006, “Intrusion detection in controlled dis-

crete event systems”. In: Proceedings of the 45th IEEE Conference on

Decision and Control, pp. 6047–6054, San Diego, CA, USA.

TONG, Y., LI, Z., SEATZU, C., GIUA, A., 2018, “Current-state opacity enforce-

ment in discrete event systems under incomparable observations”, Discrete

Event Dynamic Systems: Theory and Applications, v. 28, n. 2, pp. 161–

182.

WANG, S., WAN, J., ZHANG, D., LI, D., ZHANG, C., 2016, “Towards smart

factory for industry 4.0: a self-organized multi-agent system with big data

based feedback and coordination”, Computer Networks, v. 101, pp. 158–

168.

WU, B., CHEN, J., WU, J., CARDEI, M., 2007, “A survey of attacks and counter-

measures in mobile ad hoc networks”. In: Wireless network security, pp.

103–135.

84

WU, Y.-C., LAFORTUNE, S., 2013, “Comparative analysis of related notions of

opacity in centralized and coordinated architectures”, Discrete Event Dy-

namic Systems, v. 23, n. 3, pp. 307–339.

WU, Y.-C., LAFORTUNE, S., 2014, “Synthesis of insertion functions for enforce-

ment of opacity security properties”, Automatica, v. 50, n. 5, pp. 1336–

1348.

WU, Y.-C., RAMAN, V., RAWLINGS, B. C., LAFORTUNE, S., SESHIA, S. A.,

2018, “Synthesis of obfuscation policies to ensure privacy and utility”,

Journal of Automated Reasoning, v. 60, n. 1, pp. 107–131.

X-800, 1991, “Security Architecture for Open Systems Interconnection for CCITT

Applications.” .

YIN, X., LAFORTUNE, S., 2016, “Synthesis of Maximally Permissive Supervisors

for Partially-Observed Discrete-Event Systems”, IEEE Transactions on

Automatic Control, v. 61, n. 5, pp. 1239–1254.

YIN, X., LAFORTUNE, S., 2017, “Synthesis of maximally-permissive supervisors

for the range control problem”, IEEE Transactions on Automatic Control,

v. 62, n. 8, pp. 3914–3929.

YIN, X., LI, Z., WANG, W., LI, S., 2019, “Infinite-step opacity and K-step opacity

of stochastic discrete-event systems”, Automatica, v. 99, pp. 266–274.

ZHANG, Q., LI, Z., SEATZU, C., GIUA, A., 2018, “Stealthy Attacks for Partially-

Observed Discrete Event Systems”. In: 2018 IEEE 23rd International

Conference on Emerging Technologies and Factory Automation (ETFA),

v. 1, pp. 1161–1164.

85

	List of Figures
	List of Tables
	List of Symbols
	Introduction
	Basic concepts
	Discrete event systems
	Information Security

	Security against active communication network attacks
	Communication Network Attacks
	System and Security Structure
	Model of the plant subject to sensor channel attacks
	Realization of the supervisor subject to supervisory control channel attacks
	Automaton model of the attackable networked system
	Unsafe Region and Unsafe Boundary

	Problem Formulation
	An intrusion detection based approach
	NA-Safe Controllability
	NA-Safe controllability verification
	Implementation of the Security Module

	Maximally permissive approach
	NA-Secure Systems
	Online security supervisor
	Computational complexity analysis

	Conclusions

	Security against passive communication network attacks
	Defense Strategy
	Confidentiality of DES
	Transition-based encryption functions
	Confidentiality verification
	Transition-based encryption function design
	Conclusions

	Conclusions
	Bibliography

