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MODELOS ANALÍTICOS EQUIVALENTES LINEARIZADOS PARA
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Cleiton Magalhães Freitas

June/2020

Orientador: Edson Hirokazu Watanabe

Programa: Engenharia Elétrica

O Conversor Multinível Modular (MMC) vem desempenhando um papel impor-
tante na modernização dos sistemas de potência como um componente de HVDCs,
FACTs e em muitas outras aplicações. Devido à sua topologia, o MMC apresenta
um comportamento singular, mesmo em relação a outros conversores multiníveis
cc/ca, exigindo o desenvolvimento de modelos matemáticos para representá-lo em
diferentes análises. Grande destaque tem sido dado ao desenvolvimento de modelos
analíticos que além de reduzirem o custo computacional em simulações, também
permitem analisar a estabilidade do conversor e auxiliam no desenvolvimento de
técnicas de controle. Tendo em vista este contexto, esta tese tem como objetivo
propor modelos linearizados no domínio da frequência para o MMC, considerando
diferentes modos de controle e implementações. Particularmente, os modelos para
o MMC controlado por laço duplo de corrente / tensão em referenciais estáticos e
síncronos constituem as principais contribuições deste trabalho devido ao grau de
novidade deste modo de controle para conversores de alta potência e alta tensão. É
mostrado que os modelos desenvolvidos descrevem com precisão o comportamento
dinâmico do conversor, sendo adequados para análises transitórias e de estabilidade.
Também são apresentados na tese ações de controle para melhorar o desempenho do
MMC operando em condições distorcidas, entre as quais está o uso de controladores
feed-forward para produzir admitâncias e impedâncias virtuais. Nesse sentido, os
controladores feed-forward são derivados e os modelos analíticos atualizados para
incluir esses elementos virtuais.
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The Modular Multilevel Converter (MMC) has been playing an important role
in power system modernization as a component of voltage-source HVDCs, FACTs
and in plenty of other applications. Due to its topology, the MMC presents dis-
tinguishable behavior, even from the other multilevel ac/dc converters, requiring
the development of mathematical models for representing it in different analysis do-
main. The state-of-art front, indeed, concerns the development of analytical models
which could not only speed up simulations but also allow accessing the stability of
the converter and aid the development of control techniques. In view of that, this
thesis is focused on proposing linearized frequency-domain models for the MMC
considering different control modes and implementations. Particularly, the models
for the double-loop current/voltage controlled MMC in natural and in synchronous
reference frames constitute the major contributions of this work due to the novelty
of this control mode for high-voltage high-power converters. It is shown that the
derived models accurately describe the dynamic behavior of the converter, being
then suitable for transient and stability analysis. It is also presented in the thesis
control actions for improving the performance of the MMC operating in distorted
conditions, among which, the use of feed-forward controllers to produce virtual ad-
mittances and impedances. In this regard, the feed-forward controllers are derived
and the analytical models updated to account these virtual elements.
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Ĩkc Laplace-domain representation of ĩkc , p. 53
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c (s), p. 67
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o (s), p.
67
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Chapter 1

Introduction

In views of the increasing number of power-electronics-based systems widespread th-
roughout the generation, transmission, and distribution, it stands to reason that the
next-generation power grid is inherently linked to power electronic devices [1]. Some
application in which this devices play an important role include photovoltaic-[2–6]
and wind-based generation systems [7–9]; High Voltage Direct Current (HVDC)
transmission [10, 11] and Flexible AC Transmission System (FACTS) [12, 13]; mo-
tor drive [14], transportation electrification [15, 16]; energy storage systems [17, 18];
microgrids [19, 20] and etc. Different types of power-electronic converters are present
in this scenario, among them, the Modular Multilevel Converter (MMC) stands out.
This converter was firstly considered for applications in HVDC and FACTS [21];
however, its low-distorted ac voltages and reduced switching losses compared to
others topologies pave the way for using MMC in a variety of applications ran-
ging from motor drive [22, 23] to the integration of renewable sources to the power
system [24, 25].

One segment which is gathering a great deal of attention concerning the MMC is
the development of mathematical models for representing the converter in different
analysis. One of the possible focuses in this regard are the models for speeding
up simulations and even representing the MMC in real-time digital simulators. One
example in this context is the work of LIN and DINAVAHI [26] in which the authors
provided a transistor-level model for an MMC. The great challenge of the authors
was to represent the MMC, together with the model of an induction machine, which
would be driven by the converter, to guarantee the implementation in an FPGA-
based1real-time simulator. The same idea of representing the MMC in real-time
simulators are also found in the works of OULD-BACHIR et al. [27], SHEN and
DINAVAHI [28], LI and BÉLANGER [29], and ASHOURLOO et al. [30].

1FPGA - Field Programmable Gate Array - is a device in which its hardware is configurable by
software.
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1.1 State of the art

This section aims at presenting a brief, yet representative, literature review on analy-
tical models for the MMC. When it comes to analytical models, it is commonly found
in the literature both time- and frequency-domain approaches. Considering steady-
state time-domain models, for instance, ILVES et al. [31] developed a steady-state
analytical model for representing the interaction between the harmonic components
produced by the MMC in the time domain. Meanwhile, SHI et al. [32] modeled
the influence of unbalanced grid voltages into the ac-side second-order harmonic
voltages of the converter, still considering the steady-state condition. Also, ZHAO
et al. [33] proposed a mathematical model to describe the relationship between the
harmonic components on the ac side - coming by either non-linear loads distorted
voltages depending on whether the MMC is under voltage or current control - and
the harmonic components generated by the MMC.

Some examples considering the dynamics of the MMC in time-domain include
the work of PERALTA et al. [34]. They presented the model for an MMC-based
±320kV HVDC linking France and Spain but did not consider the dynamics of the
dc voltages of the submodules and did not included in the model the control loops of
the converters. WANG et al. [35], on the other hand, proposed a state-space model
based on switching functions which included the dynamics of the dc voltages of the
MMC. Also, their proposed model allowed the development of a new technique for
balancing the dc voltages of the submodules. HARNEFORS et al. [36] presented
a mathematical model that contemplates the internal dynamics of the converter,
that is, the dynamics of the sub-module capacitors and the effects caused by the
circulating currents. The only simplification used was to consider an equivalent
capacitor for each arm of the converter, instead of considering each capacitor of
each submodule. JAMSHIDIFAR and JOVCIC [37] presented a group of state-space
models for representing the MMC dynamics in the synchronous reference frame.
In a nutshell, each model is distinguished by its order, making each one suitable
for a specific type of simulation. ZHOU et al. [38] modeled a current-controlled
MMC and analyzed how the PLL and the short-circuit ratio of the power grid
affect the performance of a voltage-source-converter-based HVDC (VSC-HVDC).
MEHRASA et al. [39] considered different VSC-HVDC, in this case with current-
controlled MMCs on both sides. The steady-state analytic model was incorporated
in a novel current controller and the dynamic model was used for stability analysis.
In common to all these papers is the fact that the MMC was always considered
under output current control.

Still considering time-domain dynamic models, some researchers focused their
work on developing reduced-order models which could curb the computation bur-
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den of representing the MMC in large system simulations. Some examples include
the papers of LEON and AMODEO [40], HAO et al. [41], ZHU et al. [42]. Last, yet
not least, papers such as those from WANG et al. [43], XIAO et al. [44], TRINH
et al. [45], aim at representing the dynamics of the MMC in time-domain Electro-
mechanical Transient analysis.

As for frequency-domain models, some examples include the references [46–51].
YANG et al. [46], for instance, presented an SRF average model of the MMC from
which it was possible to obtain both the equivalent ac- and dc-side impedances of
the converter. SUN and LIU [47], on the other hand, proposed a linear model for the
MMC based on positive- and negative-sequence impedances for a series of different
harmonic components. In the first step, the authors derived the average value model
of the converter considering the circulating currents but disregarding the dynamics
of the dc voltages. It is important to comment that, although the dynamics of the
capacitors were ignored, their oscillating voltage components were not. In a second
step, the authors decomposed the model obtained into components related to diffe-
rent frequencies using the complex notation of the Fourier series. KHAZAEI et al.
[48] also worked on determining the equivalent impedances of the MMC. Nonethe-
less, their primary aim was to verify the interaction of the converter with a weak
power grid. LIU et al. [49], presented a frequency-domain model (in addition to
a time-domain model, to be more precise) considering asymmetric arm parameters
and used it to design a controller that tackles the influence of asymmetry on the
performance of the converter. WANG et al. [50] also considered a current-controlled,
grid-connected MMC, but instead of basing their work in the typical average mode-
ling approach onto which the set of submodules of an arm is represented as a single
equivalent source, they represented the dynamics of each of the dc capacitors in the
model. MA et al. [51], on the other hand, proposed an equivalent model in which
the ac-side of the MMC is modeled as a two-level voltage source converter, whereas
the dc-side dynamics is mimicked by an equivalent dc/dc converter. This appro-
ach allowed their model to verify the influence of the dc-side voltage oscillations in
both the dc- and ac-side of the MMC. Once more, all the papers mentioned in this
paragraph considered the MMC strictly under current control.

As far as it was possible to verify, only the references [52–55] deal with the mo-
deling of an MMC under voltage control. BESSEGATO et al. [52] provided models
for the voltage- and current-controlled MMC, though, the voltage control was imple-
mented in an open-loop approach. Their objective was to analyze the ac equivalent
admittance of the MMC for different control modes and different implementations,
i.e., Natural Reference Frame (NRF) or Synchronous Reference Frame (SRF). Fin-
ding the AC-side admittance of the MMC was also the work addressed by BEZA
et al. [54], considering both the MMC under current and open-loop voltage control.
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LYU et al. [53], on the other hand, focused they work into analyzing the stability of
the interaction between the grid-forming MMC of a VSC-HVDC and the wind farm.
For this matter, they presented the Thévenin-equivalent model of the MMC control-
led in the natural reference frame with proportional-resonant controllers. Among
the papers addressing the MMC under voltage control, [55] is the only one that
consider a double loop, i.e., an outer voltage-control loop in cascade with an inner
current-control loop. Although their primary focus was not to provide an analyti-
cal model, they derived a frequency-domain model relating the ac and dc powers
and the energy stored internally. Their frequency-domain model, nonetheless, is not
suitable for analyzing the relationship between ac voltages and currents.

1.2 Alignment of the thesis with the current state-

of-art research

Given the contextualization in the previous section, this work aims at contributing
with the development of analytical models for the MMC controlled in both Natural
and Synchronous Reference Frame (NRF and SRF), as the two control/modeling ap-
proaches are equally common in the literature. In other words, this thesis provides a
set of frequency-domain linearized models for representing the MMC in electromag-
netic transient analyses, especially when the MMC is controlled as a grid-forming
converter with a double control loop. The author did not find this kind of model
in the literature. Primarily, the models are focused on representing the MMC for
high-voltage, high-power applications, such as VSC-HVDC and FACTS, where the
number of submodules is high enough that the effects of switching frequency (e.g.
harmonics) are negligible. As for the operation mode, three different cases encom-
passing both current and voltage control were considered throughout this work. In
the first mode, which is presented in Figure 1.1a, the MMC is under current control
either driving a load or connected to the power grid. Notice that ec is the MMC
output ac-side voltage, ic is the output current, and i∗c is its reference. Besides that,
Zg, Zf , and Zo are, respectively, the grid-equivalent, MMC grid-coupling, and load
impedances, and Gi is the current controller. Although the proposed models are
suitable for both situations, the results presented were obtained for the MMC as
a grid-tied converter. In the control modes highlighted in Figures 1.1b and 1.1c,
the MMC acts as a grid-forming converter [56] which, in turn, is a typical configu-
ration used in VSC-HVDC linking offshore wind power plants to the onshore grid
[57–61]. In these cases, vo and v∗o are the ac bus voltage and its reference signal, and
Gv the voltage controller. The control mode in Figure 1.1b may be referred to as
single-loop voltage control as it presents only the voltage control loop. The control
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Figure 1.1: Generic control strategies for voltage source converters

mode in Figure 1.1c, on the other hand, is referred to as double-loop voltage control,
once the system presents an inner current loop in addition to the voltage loop. In
both cases, a capacitor bank is included as part of the scenario, provided that some
MMC-based grid-forming inverters presented in the literature follow this structure.
Nevertheless, the models obtained in this work can be easily reduced for the cases
where no capacitor bank is used by making Cf = 0.

Among the outcomes of this thesis, the Thévenin-equivalent model for the
double-loop NRF voltage-controlled MMC in Section 4.1 constitutes a contribu-
tion to the body of knowledge. In a nutshell, it goes along the lines of the rese-
arches in LYU et al. [53] and [54], nonetheless, it was considered here the MMC
under double-loop current/voltage control. In this regard, the results of Sections
4.1.3, 4.1.5 and 5.1.1 compiled together with some contents of Chapter 5 (Sec-
tion 5.3) into the paper A linearized small-signal Thévenin-equivalent model of a
voltage-controlled modular multilevel converter [62], written within the context of
this doctoral research, which was published by Electric Power Systems Research in
early 2020. Also, it was not found in literature papers providing models for the
double-loop voltage-controlled MMC in SRF. To be fair, reference [55] follows these
lines, yet, as previously explained, their frequency-domain model is not suitable for
analyzing the relationship between ac voltages and currents. To fill this gap, the
thesis also provides a Thévenin-equivalent model for the MMC under double-loop
current/voltage control in SRF. Section 1.5 presents a list of contributions of this
Thesis.

One last point must be clarified before continuing the discussions on motivations
and contributions of the thesis. This thesis was focused on the models which repre-
sent the fastest dynamics of MMC-based power-electronics systems. That is, this
model cover phenomena in which time constants are in the order of milliseconds,
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such as it is discussed in [63]. Because of that, outer control loops like the ones used
for controlling dc-voltage and power, very common in HVDC and FACTS devices,
are not addressed in this thesis. These later control loops present slower dynamics
and do necessitate different modeling approaches considering different time scales.

1.3 Motivation

As previously explained, there is a growing number of power electronic-based sys-
tems, and the MMC plays an important role in this scenario. Take for instance the
case of HVDC links, where the MMC is becoming widely used in new projects [11].
Two-level converters were considered in this segment at its very beginning, with the
example of the ±80kV , 3× 65MVA DIRECTLINK project [64], and later on, three-
level Neutral-Point Clamped (NPC) converters, which is the case of the 138kV ,
150MW Eagle Pass link [65]. However, to operate at high-voltage levels, these to-
pologies rely on IGBT stacks [66], which require more complex driving systems [67]
and present higher switching losses than MMC [68]. Besides that, MMC presents
easier voltage scalability and lower total harmonic distortion (THD)[69]. Concerning
MMC-based projects, we have the examples of the 1GW ±320kV HVDC between
France and Spain [70], the 1.4GW, ±525kV link between Germany and Norway, and
several cases of interconnection between offshore wind power plants and the conti-
nent grid [71]. This last example is understood as one of the most promising fields in
a short-term point of view, once wind power plants are popping out everywhere. Just
to have a glimpse of the scenario, consider the case of the Brazil where wind genera-
tion skyrocketed in the last decade, reaching the level of almost 15GW of installed
capacity, nearly 10% of the total capacity of the Brazilian power system [72, 73].
Also, despite the fact there is no offshore wind power plant in Brazil yet, three pro-
jects are undergoing environmental-licensing procedures [74] and it is estimated a
potential of 700GW for offshore wind generation in Brazil [75]. Of course, it is not
possible to predict how many MMC-HVDC are going to be commissioned in this sce-
nario, but stands to reason that they should be considered or all the potential would
not be unlocked2. Static synchronous compensator (STATCOM) [76–79] is another
application in which MMC is making its way through, especially with companies
such as ABB, GE, and Siemens employing this technology in their newer products,
say it, SVC LIGHT [80, 81], GE’s STATCOM [82, 83] and SVC PLUS [84, 85].

Considering the scenario described in the previous paragraph and all the biblio-
graphy review presented at the beginning of the chapter, it is possible to point out
that grid-forming MMC-based converters may play an important role in the inte-

2HVDC becomes more economically suitable than HVAC for offshore energy transmission for
distances over 50km off the coast [11].
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gration of wind power plants to the power system. Thus, the necessity of developing
mathematical, especially analytical, models for representing the MMC increases as
well, given the novelty of these new systems in comparison to other high-power high-
voltage power-electronic solutions, e.g. line-commuted converter (LCC) HVDC.
Among the objectives of these models, providing faster time-domain simulations
and using for stability analysis stood out.

Still in this subject, it is important to reassure that it lacks in the literature the
addressing of analytical models considering the grid-forming MMC under double-
loop current/voltage control. This control approach, presented in [55] and [62], is
very useful because it allows limiting the current in case an ac fault occurs in the
system. It is also not found in literature analysis showing how the control settings
interfere with the frequency-domain behaviour of the MMC when controlled as a
grid-forming converter with double control loop. Notice that, this kind of study
is important because it could highlight important aspects to be considered when
planing the use of MMC in different scenarios.

1.4 Objectives

The main objective of thesis is to develop analytical models for representing the grid-
forming (voltage controlled) MMC in different referential frames when it is under
double-loop voltage control, i.e, its control system comprises an outer voltage control
loop and an inner current control loop. Along with the development of these models,
it is also at the aim of the thesis to derive the equivalent models for the MMC under
current control and single-loop voltage control. Last, yet not least, it was also an
objective of the thesis to present techniques such as the of multiple-resonant loops
and virtual elements to shaping the equivalent impedance of the MMC and provide
it with immunity to distorted currents.

1.5 Contributions of the thesis

The major contributions of the thesis were the development of analytical models
for the MMC under double-loop current/voltage control either in NRF [62] or SRF.
Following it is presented a list with other contributions of the thesis:

• Deriving and use of an analytical steady-state model to evaluate the influence
of active and reactive power into the harmonic components of the dc voltages
and the circulating currents;

• Analysis of the influence of the control settings in the equivalent impedances
and admittances of the converter;
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• Analysis of the effect of multiple resonant control loops in the characteristic
of the equivalent admittance and impedance when the MMC is controlled in
NRF;

• Analysis of the effect of proportional-integral-resonant controllers in the cha-
racteristic of the equivalent admittance and impedance when the MMC is
controlled in SRF;

• Development of feed-forward control loops to provide the MMC with immunity
to distorted voltages, when it is in grid-connected mode, or distorted currents,
when it is acting as a grid-forming converter;

• Derivation of the models for the virtual elements (admittance and impedance)
created by the feed-forward control loops;

• Stability analysis of a power-electronic-based system comprised of two MMCs,
one as a grid-forming converter and other as a current-controlled converter.

1.6 Publication

FREITAS, C. M., WATANABE, E. H., MONTEIRO, L. F. C. "A li-
nearized small-signal Thévenin-equivalent model of a voltage-controlled
modular multilevel converter", Electric Power Systems Research, v. 182,
pp. 106231, 2020. ISSN: 0378-7796. doi:10.106/j.epsr.2020.106231.

1.7 Some preliminary definitions

Before starting the thesis, it is necessary to define some expressions that are massi-
vely used throughout the manuscript:

• Switching-level model: This is the full simulation model of the MMC. In
this case, each one of the half-bridge submodules (SM) is implemented in
the simulation and the circuit also includes a PWM-based modulator and
control algorithms for balancing the dc voltages of each SM (and, of course,
all the other control loops). This model was implemented in PSCAD due to its
capability of simulating large systems in a feasible time. Chapter 2 presents
the details of this model.

• Averaged model: In this model, the set of SMs of the MMC are substitu-
ted by equivalent sources that represent the low-frequency behavior of them.
Notice that in this context, low-frequency means all the spectrum bellow the
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switching frequency. In other words, this model encompasses the fundamental
and harmonic components, yet not the switching effects of the circuit. It is
important to have in mind that non-linear effects inherent to the MMC are
still present in this model and because of that, interchangeably, this model is
called "non-linear model" or "non-linear, time-domain model" in several parts
of the text. This model was implemented in PSIM due to its simplicity when
dealing with small systems. Chapter 3 presents an in-deep analysis of this
model.

• Non-linear model: Also called "Non-linear, time-domain model", is the
Averaged model described in the previous bullet.

1.8 Summary of the thesis

The thesis is organized into six chapters, including the introduction. Chapter 2 pre-
sents a brief discussion on the modular multilevel converter regarding its structure,
operating principles, modulation, and inherent characteristics. It is also presented
in this chapter some preliminary simulation results using a detailed PSCAD mo-
del for the MMC considered throughout this work. Chapter 3, on the other hand,
showcases the standard average model for the MMC and the analytical steady-state
solution for the MMC. Still in the chapter, some simulation results are presented
for comparing the averaged (also named the non-linear model in this thesis) with
the detailed PSCAD models. The steady-state solution, on the other hand, is used
to analyze the influence of active and reactive powers into the harmonic compo-
nents of the dc voltages and the circulating currents of the MMC. In Chapter 4 are
presented the linearized frequency-domain models for the different control modes of
the MMC. The first part of the chapter is focused on natural reference frame mo-
dels, where the control loops comprise resonant controllers, and the second part is
focused on synchronous reference frame models, where the control loops present PI
controllers in dq frame. In the sequence, Chapter 5 is focused on showing how the
control settings affect the performance of the MMC when it comes to the presence
of harmonic content in the power system and on presenting strategies for providing
the MMC with immunity to the harmonic content of the system. The major point
of this chapter was to propose feed-forward actions to cope with the issues caused
by the harmonic components and to derive the analytical models to represent these
actions. Finally, the conclusions are drawn in Chapter 6.
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Chapter 2

Modular Multilevel Converter

This chapter presents a brief summary on the modular multilevel converter (MMC),
considering its general topology and working principle. It is included in this sum-
mary a brief discussion on modulation techniques and explanations on the main
issues of this topology, i.e. dc-voltage balancing and circulating currents, and the
way it is possible to cope with them. It is also in the scope of this chapter to in-
troduce the concepts of insertion indices, which are used in the following chapters
as the modulation signals of the converter. Finally, some preliminary simulation
results considering a 20-submodules-per-arm three-phase MMC are presented.

2.1 Topology of the MMC

Figure 2.1a presents the basic topology of the MMC in which each of the submodules
(SM) is formed by an IGBT half-bridge and an electrolytic capacitor, as shown in
Figure 2.1b1. Each leg of the converter has 2N submodules, where N is the number
of submodules per arm. For reference purposes, each of the submodules was named
SMk

ij, where i indicates whether the modules belong to an upper arm, p, or lower n;
j is the position of the module within the arm and k the phase in which the module
belongs. Still in the figure, C is the electrolytic capacitor of each SM, L indicates
the coupling reactors used in each arm of a leg. These reactors are used for the
purpose of limiting current surges, short circuit current and high frequency current
components in the converter [34], [86]. The resistance R represents the equivalent
resistance of each of the converter arms and Lf and Rf are the external inductance
and resistance of the converter used, depending on the application, for coupling with
the grid or the load.

Still in Figure 2.1a, the voltages eac , ebc and ecc are the produced ac voltages by
the MMC, whereas vao , vbo and vco are the main-bus voltages. The same way, the ac

1it is also possible to have other configurations of SM based on full bridges. More information
on this matter can be find in [87].
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Figure 2.1: Modular Multilevel Converter

currents iac , ibc and icc are the MMC output currents. The subscript p in icp and n

in icn indicates that these are currents flowing through the upper and lower arms of
a certain phase of the MMC. In all these cases, the superscript indicates the phase
which each one of the variables belongs. Finally, vdc is the dc-bus voltage of the
MMC. It is important to notice that the ac voltages are measured considering the
main ground bus as reference. In ideal condition, where the dc voltages and ac
currents of the SM are balanced, there is no potential difference between the main
bus ground and the middle point of the dc bus, labeled as 0 in Figure 2.1a.

The operation of the converter is simple, each of the SM has two possible states,
ON and OFF. Depending on the signal level that each SM receives for the Q+ and
Q− transistors, high or low, the dc voltage of that SM is or is not inserted in the
ac-side circuit. Thus, the ac side of a certain SM, vijkac 2, can assume either vijkdc or 0

depending on the firing signals. Consequently, the voltage produced on the AC side
of the MMC depends on how many SM of each phase are inserted.

2Throughout this chapter, the superscript ijk indicates that the variable corresponds to the
arm i (it can be either p for the upper or n for the lower arm of a certain phase), SM number j
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The current flowing in each phase can be divided into two components as follows:

ikc (t) = ikcp(t)− ikcn(t), (2.1)

where ikcp(t) e ikcn(t) are, respectively, the currents flowing through upper and lower
arms of the phase k (k = a, b, c) of the MMC.

In addition, it is possible to write the following net-equation following the loop
through the upper arm to the middle point, 0, of the dc bus3:

ekc (t) =
vdc
2
−

N∑
j=1

vpjkac (t)− L
dikcp(t)

dt
−Rikcp(t). (2.2)

Similarly, considering the net-equation through the lower arm, we can write:

ekc (t) = −vdc
2

+
N∑
j=1

vnjkac (t) + L
dikcn(t)

dt
+Rikcn(t). (2.3)

Combining (2.2) and (2.3), it is possible to obtain the equation which describes
the produced voltages ekc (t) which are independent of dc-link voltage:

ekc (t) =
1

2

N∑
j=1

vnjkac (t)− 1

2

N∑
j=1

vpjkac (t)− R

2
ikc (t)−

L

2

dikc (t)

dt
(2.4)

The charts in Figure 2.2 illustrate the effect of the number of SMs per arm
on the produced voltage eac(t). They were obtained from (2.5) considering both
N + 1 and 2N + 1 Nearest Level Control (NLC) [88] modulation approach. It is
possible to observe that the increase in the number of submodules provides an
output voltage with lower harmonic distortion, intuitively reducing the amplitude
of the switching-frequency harmonic components. This feature, especially when the
number of SM exceeds 20, exempts MMC from the use of high-frequency filters.
This feature also allows the SMs to be switched with frequencies considerable lower
than the frequency which a similar two-level converter would be driven, reducing
the switching losses without increasing the total harmonic distortion (THD) of the
produced voltages and currents.

and phase k (k = a, b, c).
3As previously explained, it was considered the voltage between the ground of the ac main bus

and the middle point of the dc bus is null.
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THD = 14.6%

(a) N = 5 & (N + 1)

THD = 7.7%

(b) N = 10 & (N + 1)

THD = 4.1%

(c) N = 20 & (N + 1)

THD = 7.7%

(d) N = 5 & (2N + 1)

THD = 4.1%

(e) N = 10 & (2N + 1)

THD = 2.4%

(f) N = 20 & (2N + 1)

Figure 2.2: Voltage produced by the MMC considering N + 1 and 2N + 1 NLC
modulation approaches. In this case is only presented the voltage at phase a.

2.2 Modulation Techniques

In this section a few MMC modulation techniques are presented in order to inform
the reader how this PSCAD/EMTDC simulations used in the work were implemen-
ted. It was not taken into consideration how the modulation signals are obtained
because it will be focused in Section 2.54.

In general, the modulation techniques for the MMC can be sorted in two main
groups: carrier disposition and phase-shifted carrier. More details on these and
other modulation approaches can be found in [89]. From hereafter, this section is
focused in the carrier disposition approach once the modulation scheme used in the
PSCAD/EMTDC belongs to this group.

The graphs in Figure 2.2, for example, were draw considering NLC modulation
which is closer to the carrier disposition techniques. To better understand this
technique which is the basis for other more advanced, we can refer to Figure 2.3.
It is possible see a reference sinusoidal signal and a set of dashed horizontal lines
indicated by Levels 1-4 in the upper part of the figure. In this case, the sinusoid is
the modulating signal, while the dashed lines play the role of the modulation carriers
of each one of the SMs (it is considered N = 4 for this example). The firing pulses
of a given SM, shown at the bottom of the figure, are high when the reference signal
is greater than its respective carrier and vice versa. It is important to notice that in

4To be in accordance of the literature, the modulation signals of the MMC is going to be called
insertion indices in this work.
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Figure 2.3: Firing signals of the MMC considering the NLC modulation technique.
In this case, it was considered a four-SM-per-arm MMC. The upper chart shows the
modulation signal and the levels. The lower chart shows the the firing pulses and
the equivalent fundamental component of their sum.

this modulation approach each SM and consequently each IGBT is only switched on
and off one time during the fundamental cycle of the output voltage. This feature
is highlighted in the firing pulse of the level-4 SM in Figure 2.3. Another interesting
feature to notice is that by adding the pulses of the SMs it is possible to obtain a
signal with a shape similar to the equivalent voltage produced in the arm. Thus,
the dashed sinusoidal signal in the lower portion of the figure is equivalent to a
fundamental component produced in the analyzed arm.

A variation of the NLC approach is called Phase Disposition pulse width mo-
dulation (PD-PWM) and it belongs to the group of carrier disposition techniques.
The difference between these techniques is that PD-PWM uses triangular carriers
instead of level signals, as shown in the diagrams in Figure 2.4. As with NLC
modulation, PD-PWM modulation can produce either N + 1 or 2N + 1 levels, de-
pending on the driving scheme used. For instance, to produce N + 1 levels it is
used N triangular carriers arranged as in Figure 2.4a. In this case, the results of
the comparison between the modulating signal with the carriers are used to drive
the upper-arm SMs, whereas the lower-arm SMs are driven by the complementary
signals. PD-PWM modulation with 2N + 1 levels is performed according to the di-
agram in Figure 2.4b. In this case, two modulation signals and N carriers are used
to generate 2N firing signals. The firing pulses generated by one modulation signal
are directed to the upper arm SMs and the others to the lower SMs. It is important
to mention that in both cases the pulses produced by the modulator are intended to
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drive the upper transistors, Q+, from each of the modules5. Because it is a voltage
source converter, the lower switches of the SMs are driven by complementary firing
signals so as to prevent a short circuit in the dc voltage.
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Figure 2.4: Examples of N + 1 and 2N + 1 PD-PWM schemes. In this case it was
considered a four-SM-per-arm MMC to simplify the diagrams.

It is important to mention that the produced voltage is not affected by the order
in which the firing pulses are linked to the SMs. In other words, the MMC produces
the same voltage independently of which SM in a arm a certain firing signal drives.
This fact is used to provide the balancing of the dc voltages of the SMs.

2.3 Balancing of the dc voltages of the SMs

As the MMC is driven, the capacitor voltages of the SMs start to change. Depending
on the operating condition, certain modules may be driven by high pulses longer
than others and this generates unbalance between the dc voltages of the modules.

5It is also possible to implement the 2N + 1 PD-PWM considering a single modulation signals
and 2N triangular carriers.
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This condition is better illustrated by Figure 2.5, which corresponds to a generic five-
SM-per-arm MMC driven to deliver 60Hz voltage to a resistive load. In this case, the
converter does not have a SM dc-voltage balancing system and therefore its voltages
are not kept with the same average value. In fact, it is easily observed that the
dc voltages of some SMs increase uncontrollably, while in others SMs the opposite
process occurs. This unbalance between the dc voltages affects the quality of the
voltages produced on the ac side and may cause harmonic distortion or imbalance
or even undesired dc components in the ac side. Besides that, in the worst scenario,
the IGBTs of the SMs with the highest voltages would be submitted to prohibitive
voltages, canceling the ability of the MMC of handling high voltages. For this
reason the MMC driver must comprise dc-voltage balancing system along with the
modulator.
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Figure 2.5: Typical dc voltage imbalance observed when the MMC does not have a
voltage balancing system.

To understand the dc voltage balancing technique it is firstly necessary to un-
derstand the states each SM undergoes during the operation. Basically, the SM have
four possible states as illustrated in Figure 2.6. In the first state, Figure 2.6a, the
current i in the arm in which the SM is located flows upwards and Q+ is ON. In
this case, it is possible to observe that the current flows through the SM capacitor
discharging it. In the second state, Figure 2.6a, the arm current is in the same
direction, however Q+ is OFF. According to the figure, the current flows through
the Q− diode, not interfering with the state of charge of the capacitor. In the other
two conditions, Figures 2.6c and 2.6d, the current flows in the opposite direction,
i.e. in the downward direction of the arm. Therefore, when Q− is OFF the current
flows through Q+ diode into the capacitor, charging it, otherwise, the current flows
through Q−, thus bypassing the capacitor. Table 2.1 summarizes the explanation of
this paragraph.

In views of the conditions explained in the previous paragraph, the voltage balan-
cing module must simply direct the PWM pulses to the SMs so that the less charged
capacitors are subjected to the recharge condition for a longer period of time, while
those with the highest voltages are subjected to longer discharge conditions [69, 90].
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Figure 2.6: Possible states of a SM during the operation.

This directioning is performed separately for each of the six arms of the converter
so as to keep all the dc voltages balanced. Considering Q+ enabled, according to
Table 2.1, there will be capacitor recharge when iij > 0 and discharge when iij < 0,
where iij is the current flowing through a given arm of the MMC. It is important to
notice that the Q+ switches are directly triggered by the PWM pulses and these tend
to have a longer duty cycle when generated by comparing the reference signal with
lower-level carriers, as seen in Figure 2.3. Consequently, the greater the PWM duty
cycle is, the longer a given SM will be subject to the Q+ enabled condition. It is also
known that the produced ac voltage depends only on how many SM are inserted at
a given time, yet not depending on which SM is inserted. Thus, as highlighted in
the end of the previous section, it is possible to direct the PWM pulses as desired
and the dc-voltage balancing system can be implemented as shown in Figure 2.7.
Notice that, once the dc voltages are measured, the sorting algorithm provides a list
(sorted voltages) indicating the capacitor in a crescent order of voltage. This result
is used to determine at each balancing period which capacitor must preferentially
be under recharge or discharge condition. Summarizing, the PWM signal which
provide longer recharging states are directed to the SMs in which the capacitors
have lowest voltages and the opposite with the PWM signal which provide longer
discharge periods.

Table 2.1: States in which the SM capacitor undergoes during operation.

State of Q+ State of Q− Upward Current Downward Current
ON OFF Capacitor Discharging Capacitor Recharging

OFF ON Capacitor Bypassed Capacitor Bypassed

It is important to mention that the presented voltage balancing strategy is res-
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Figure 2.7: SM dc voltage balancing scheme used in this work.

ponsible to keep the average values of the dc voltages of each SM approximately
at the same level. In fact, neglecting the resistive losses in the arms, the average
values of the dc voltages under the balance approach may converge to Vdc/N . No-
netheless, their instantaneous values might not be equal due to inherent oscillating
components. The effect of these components is better explained in the next section.
To evaluate the effectiveness of the balancing strategy, the algorithm was used to
balance the voltages of a 150kV -dc voltage with 20 SM per arm, and the dc voltages
of some of the SMs of the MMC are shown in Figure 2.8. It was chosen not to show

(a) Dc voltages

(b) Zoomed dc voltages

Figure 2.8: Time simulation showing how balanced are the SM dc voltages.
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all the voltages in favor of a better distinction between the signal in the graph, but
all the voltages presented a similar pattern. At t = 0.5 the MMC starts to be driven
and differently from the case presented in Figure 2.5, the voltages are kept balanced
around the average point. Notice in the zoomed graph in Figure 2.8b that balancing
strategy makes each SM alternates between the bypassed condition, where the SM
dc voltage remains constant, and the condition when the capacitor as either charged
or discharged.

2.4 Circulating currents

To help understand the mechanism behind circulating currents, the phase a of the
MMC is zoomed in Figure 2.9. In this case, just for the sake of the didactic, it is
considered a time instant in which the second SM of the upper arm is in capacitor
discharge condition. This was randomly chosen, and the explanation which is about
to be developed is valid for any condition of the MMC.

Differently from a two-level converter, the legs of the MMC are not connected
through a single dc bus. In fact, each of the phases of the MMC has two dc buses
which are not coupled with the other phases. These buses, indeed, are formed by
the electrolytic capacitors of the upper- and -lower arm SMs and play an important
role in the inherent characteristic of the MMC. This decoupling between the buses
makes the MMC behaves as three independent single-phase converters rather than a
three-phase converter. In a single-phase converter [91], the instantaneous real power
presents an oscillation component at the frequency of the second harmonic and so
does the voltages of the dc buses. It is important to mention here that, because of
the insertion of SM capacitors on the ac side of the MMC (this process is better
explained in Section 2.5), these dc buses also comprise a fundamental-frequency
oscillating component with amplitude greater than the second-order harmonic, as
will be noticed in the simulation results later on. Once this fundamental-order
component does not contribute to the circulating current, it is not considered in the
analysis presented in this section. Thus, in steady-state condition of the dc voltages
of the SMs can be represented by:

vijkdc (t) =
Vdc
N

+ ṽijkdc (t) (2.5)

where ṽijkdc is the oscillating component present in the dc voltages and Vdc is the
average dc voltage.

Having concluded that the SM dc voltages comprise both dc and oscillating
components, it is possible to explain its implications. As seen in Figure 2.9, the dc
capacitors are inserted in the ac side of the converter so as to produce the desired
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ac voltage. Thus, it is possible to write the following net-equation:

Vdc −
∑

inserted

vpjadc (t)− 2vRL(t)−
∑

inserted

vnjadc (t) = 0, (2.6)

where vRL is the voltage drop across the two arms RL circuits and
∑

inserted

counts

only the dc voltages inserted in a certain time instant.
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Figure 2.9: Circulating current: phase a of the MMC in a certain time instant. This
figure is presented only to support the explanation of the circulating current.

Considering first that Vdc is constant, it is possible to realize that the oscillation
components vpjadc and vpjadc are inserted in the ac side of the converter. Consequently,
(2.6) indicates that vRL comprises harmonic components corresponding to ṽijkdc , such
as the second harmonic component. The only way vRL could present a harmonic
component in the frequency of the oscillating component of ṽijkdc is having a current
with this component flowing through the leg of the converter. This current is called
circulating current and it is represented by ikcir in Figure 2.9 and throughout this
work. This current circulates between the three legs and does not appear in the ac
or dc sides of the MMC.

It is important to notice that the displacements of the oscillating components of
the instantaneous real power of different phases are different, and so are the oscilla-
ting components of the dc voltages of the SM of different phases. As a consequence,
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even if vdc were constant the circulating current probably would exist because the
equivalent dc voltages of different phases are instantaneously different [90] among
them. The previous paragraphs lead to the conclusion that the magnitude of the
circulating current depends firstly on the power produced by the converter and se-
condly on the passive components, R, L and C, to be more specific. Indeed, the
greater the produced power, the greater the oscillating component of the instanta-
neous power which is the primary cause of the circulating current. Also, the greater
the SM capacitance C, the smaller the oscillating components of the dc voltages
and, consequently, the smaller the circulating current. The same is valid for the
coupling reactor L and the equivalent arm resistance R.

The presented discussion points out that ikcir presents mainly a second-harmonic
component. To be more precise, it comprises a dc and other harmonic components
as well. It is easy to notice, following the same approach of this discussion, that if
the dc voltages contain other oscillating components, so do the circulating currents.
Apart from that, ikcir also presents a dc component which is responsible for the energy
balance of the converter so that:

1

2π

∫ 2π

0

iacirvdc dωt+
1

2π

∫ 2π

0

ibcirvdc dωt+
1

2π

∫ 2π

0

iccirvdc dωt = P, (2.7)

where P is the active power produced by the MMC.
Here it is important to understand that, differently of the dc component, the

second-harmonic component of ikcir is an undesired component. It, in a first analy-
sis, causes losses and because of that it is common to apply specific techniques to
mitigate it. Passive and active strategies are used in this regard [92–94], yet they
are not analyzed in this chapter. Later on this work, the active strategies considered
to mitigate the second harmonic are better explained.

Finally, it is possible to correlate this circulating current with ikcp, ikcn and ikc as
follows [47, 53]:

ikcp(t) = ikcir(t) + 1
2
ikc (t)

ikcn(t) = ikcir(t)− 1
2
ikc (t)

(2.8)

2.5 Insertion Indices

Before presenting the definition of the insertion indices it is necessary to better
explain the insertion principle itself. As mentioned in the last section, depending
on the firing pulses some SMs can have their dc capacitors inserted in the ac side
of the converter or bypassed. Figure 2.10 presents a diagram with three SMs which
exemplifies this idea. In this diagram, the current is flowing from the right to the left
and the capacitors of the first and the third SMs are being inserted in the ac side.
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Notice that in this time instant the total ac voltage is vp3adc + vp1adc and, assuming
that the voltage balancing system is working, this values is equal to 2Vdc/3. Of
course this condition changes over time so that the produced ac voltages assume a
sinusoidal shape.

Q+ Q− Q+ Q−

vp1aacvp2aacvp3aac

vp3adc vp2adc vp1adc

i

ON OFFONOFF

ii

Q+ Q−

ON OFF

i

Inserted Capacitors in a Given Time Instant

vp3adc + vp1adc

In this Time Instant:

Figure 2.10: Diagram exemplifying the capacitor insertion.

The idea presented in the last paragraph can be extended to a generic MMC
with N SMs per arm. In this case, the produced voltage in phase k by the set of
SMs is given by:

N∑
j=1

vijkac (t) =
∑

inserted

vijkdc (t) ≈Mk
i (t)

Vdc
N
, (2.9)

whereMk
i is an integer number within the interval [1, N ] representing the number of

inserted submodules in the arm j of the phase k in a given time instant. The plot of
this integer variable, that is going to be called the discrete insertion index, assumes
a shape similar to the voltage waveform observed in Figure 2.2 when considering a
time window sprawling a fundamental-frequency cycle, yet assuming only positive
integer values.

Still using Figure 2.6 for means of comparison of Mk
i , it is possible to state

that for MMCs with N ≥ 20 the difference between a discrete signal as Mk
i to a

continuous one, over a fundamental cycle, is barely noticeably6. Thus, it is possible
to substitute this integer variable,Mk

i , by its continuous-time, percent-based version:

mk
i (t) =

1

N
Mk

i (t). (2.10)

6It is analyzed in [95, Chapter 4] that with twenty levels, the produced voltage of the MMC
stays under a 5% THD threshold, which is a level of distortion barely distinguished visually. With
N = 20, it is possible to produce either 21 or 41 levels, depending on the modulation technique
used.
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These last variables, mk
p and mk

n, are called the insertion indices of the upper
and lower arms of the phase k of the MMC.

As defined in [36] and [96], the insertion indices are computed so as to allow
controlling the produced ac voltage, ekc , as well as mitigating undesired components
of the circulating current. Note that, based on Figure 2.1b, the following net-
equations can be written:

vdc
2
−mk

p

N∑
j=1

vpkdc (t)− vkpRL = ekc , (2.11)

− vdc
2

+mk
n

N∑
j=1

vnkdc (t) + vknRL = ekc . (2.12)

It is important to notice in (2.11) and (2.12) that:

mk
p

N∑
j=1

vpjkdc (t) ≈
∑

inserted

vpjkdc (t), (2.13)

mk
n

N∑
j=1

vnjkdc (t) ≈
∑

inserted

vnjkdc (t), (2.14)

and that this result is valid when the dc voltages of the SMs are properly balanced.
One more approximation, explained in [36], can be embraced so that the deter-

mining of mk
p and mk

n could be simplified:

N∑
j=1

vpjkdc (t) =
N∑
j=1

vnjkdc (t) = Vdc. (2.15)

Here it is important to mention that, although the second-harmonic component
is excluded from the dc voltages the voltage drop vkRL will be kept so as to allow
including a second-harmonic mitigation signal later on. Continuing, it is possible to
obtain the following results from (2.13) and (2.14):

mk
p(t) =

Vdc − 2ekc (t)− 2vpkRL(t)

2Vdc
, (2.16)

mk
n(t) =

Vdc + 2ekc (t)− 2vnkRL(t)

2Vdc
. (2.17)

Making ek∗c = 2ekc/vdc and ek∗cir = 2ekcir/vdc it is possible to reach the final version
of the insertion indices:

mk
p(t) =

1− ek∗c (t)− ek∗cir(t)
2

, (2.18)
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mk
n(t) =

1 + ek∗c (t)− ek∗cir(t)
2

, (2.19)

where ek∗c is a normalized signal which is responsible for controlling the produced
voltage of the MMC and ek∗cir is also a normalized signal, yet with the objective of
mitigating the second-harmonic component of the circulating current. Details on
how these signals are computed are better explained in Sections 4.1 and 4.2.

It is worthwhile noticing that these indices are for the MMC what the modulation
signals are for a regular two-level converter and, in fact, they represent how many
SM are due to be inserted or bypassed during a specific time instant.

2.6 Preliminary simulations of the MMC

This sections aims at presenting some time-domain simulation results of the MMC
considered throughout this work. In this case, it is considered a switching-level
model, i.e., a model encompassing PWM-driven half-bridge SMs and the modulating
and voltage balancing systems explained in Sections 2.2 and 2.3. This model was
implemented in PSCAD/EMTDC considering the parameters presented in Table 2.2.
Despite the fact that MMCs with the rated power and number of levels of this
work are generally driven by under-1kHz PWM signals, it was chosen the switching
frequency of 4.8kHz so as to reduce the harmonic components of the circulating
current and allow a better visualization of the major components.

Table 2.2: Parameters considered throughout this work.

Symbol Parameter Value Symbol Parameter Value
Vo0 Rated line voltage 69kV S0 Rated power 100MVA
Vdc0 Rated dc voltage 150kV 7 Idc0 Rated dc Current 666A
f1 Rated frequency 60Hz ω1 Rated Angular Frequency 120πrad/s
Ic0 Rated ac current 838A R Arm resistance 1Ω
Rf Coupling resistance 1Ω L Arm inductance 19mH
Lf Coupling inductance 20mH N Number of sub-modules per arm 20
Cf Capacitor bank 20µF C Capacitance per sub-module 9000µF

As for the controlling system, it was decided to present here only open-loop
results where the MMC is fed by a rated dc voltage source Vdc and supply ac voltage
for a resistive load as in Figure 2.11. The amplitude of ekc was set to 0.75 and it
was also decided not to include any circulating current mitigation approach so as
to allow the visualization of the basic MMC characteristic. Last, but not least, all
the results are presented in p.u., considering the rated values presented in Table 2.2,
in order to facilitate the understanding of them. In this regard, it is important to
mention that the rated dc current was used as basis for the circulating currents once
they also present dc components.

7The dc voltage was chosen so that it overpass with a certain margin the minimum voltage
(twice the peak of the single-phase ac voltage) for the converter to be fully controllable.
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ek∗c = 0.75sin(ωt+ φk)ek∗cir = 0

Figure 2.11: Schematic of the system used in the open-loop simulation.

The signals ek∗c were kept null until 0.1s in order to let the SM capacitors be
pre-charged by the dc source. The main results are presented in Figure 2.12.

As mentioned, produced voltages ekc and output currents ikc converge to near
their rated values in about a fundamental cycle, as it is visualized in Figures 2.12a
and 2.12b. The circulating current, on the other hand, undergoes a severe transient
condition before reaching its steady-state condition. It is also possible to notice in
Figure 2.12c the dc level predicted in Section 2.4. In Figures 2.12d and 2.12e it
is possible to observe the dynamics of the SM capacitors dc voltages. Each one of
the graphs presents the dc voltages of all forty SMs of the phase a. Notice that,
differently from the results in Figure 2.5, the average values of all SM capacitor dc
voltages converge to approximately the same value, 0.05p.u.. This achievement is
obtained by the voltage balancing system presented in Section 2.3.

The graphs in Figures 2.13, 2.14 and 2.15 zoom in some steady-state details
overshadowed in Figure 2.12. For instance, the voltage levels of ekc are highlighted
in Figures 2.13. As highlighted in Table 2.3 these voltages presented THD of 2.63%

and their fundamental component present value of 0.97p.u. It was also noticed a
small dc component in these voltages, 0.0001p.u. to be more precise, that is caused
by a small difference in the balancing of upper and lower SM voltages. It was not
presented any zoomed graph of ikc because it does not present any relevant point to
be highlighted other than the ones visualized in 2.12b. Due to the reactors present in
the circuit, these currents presented in steady state a THD of 0.23%, also presented
in the Table 2.3.

A zoom in the steady-state condition of the circulating current is presented
in Figure 2.14. Is is observed that neglecting the 0.3066p.u. dc component, the
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(a) Produced voltage ekc

(b) Output current ikc

(c) Circulating current ikcir

(d) Upper-arm SM capacitor dc voltages vpjadc , for j = 1, 2, · · · , N

(e) Lower-arm SM capacitor dc voltages vnjadc , for j = 1, 2, · · · , N

Figure 2.12: Simulation results of an open loop MMC obtained from a switch-level
model in PSCAD/EMTDC.
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Figure 2.13: Simulation results of an open loop MMC obtained from a switch-level
model in PSCAD/EMTDC: Zoom in ekc

Figure 2.14: Simulation results of an open loop MMC obtained from a switch-level
model in PSCAD/EMTDC: Zoom in ikcir

major component is the second harmonic, in this case with 0.0449p.u.. It is also
present in these currents a fundamental-frequency component of 0.0032p.u. caused
by imbalance mentioned in the last paragraph. It was not noted in the presented
case any other significant harmonic component in these currents. In fact, to be more
precise, these signals present other even-order harmonic components, yet they did
not reach to four-digit precision adopted for the results in Table 2.3.

Figure 2.15 presents a zoom in all the dc voltages of the phase a of the MMC.
It is possible to observe with more details their oscillating components and the
effect of the voltage balancing system. To keep up with the four-digit approach,
Table 2.3 presents the main components of the equivalent dc voltages, i.e., the
sum of the upper and the sum of lower dc voltages. Then, it is noted that these
equivalent voltages present dc, fundamental and second-harmonic components. The
fundamental components of the upper and lower arms are complementary, which
means that their sum ideally would be zero. In this case, a small difference of about

Table 2.3: Harmonic components of the variables obtained from a switch-level model
in PSCAD/EMTDC.

Variable Symbol dc 1st 2nd 3rd 4th THD
Produced Voltage ekc 0.0001 0.9729 0.0000 0.0012 0.0004 2.63%
Output Current ikc 0.0001 0.9418 0.0000 0.0011 0.0001 0.23%
Circulating Current ikcir 0.3066 0.0032 0.0449 0.0000 0.0000 −
Sum of upper-arm SM voltage

∑
vpjkdc 0.9959 0.0083 0.0023 0.0000 0.0000 −

Sum of lower-arm SM voltage
∑
vnjkdc 0.9957 0.0082 0.0023 0.0000 0.0000 −
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0.0001p.u. is notices and this difference caused the fundamental component in the
circulating current.

(a) Upper-arm SM capacitor dc voltages vpjadc , for j = 1, 2, · · · , N

(b) Lower-arm SM capacitor dc voltages vnjadc , for j = 1, 2, · · · , N

Figure 2.15: Simulation results of an open loop MMC obtained from a switch-level
model in PSCAD/EMTDC: Zoom in vijkdc

2.7 Partial conclusions

This chapter presented an overview of the MMC with focus on its working prin-
ciple, the modulating and voltage balancing techniques used in the switching-level
simulations presented in this work. It was shown that the dc voltage is not uni-
formly divided among the dc-side capacitors unless a voltage-balancing algorithm
is combined with the modulation scheme. This algorithm is based on the inherent
redundancy of the MMC, which makes it possible to produce a certain ac voltage
by different combinations of inserted SMs. This algorithm chooses the combination
which best fits on the purpose of keeping the dc voltages balanced, i.e., the combina-
tion that submits, whenever possible, the lowest-voltage capacitors to a rechanging
condition and the opposite for the ones with highest voltages. It was also shown
that the MMC presents an inherent undesired component circulating through the
arms without contributing to the output current of the converter. These compo-
nents are majored in the second-harmonic component, although it is also possible
to find other even-order harmonic components. The PSCAD/EMTDC simulation
results showed that the harmonic distortions of the voltage and current produced
are as small as 2.6% and 0.2%, respectively, although some differences between the
dc voltages could cause small dc components in these variables.
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Chapter 3

State-space average and steady-state
models of the MMC

The objective of this chapter is to present a time-domain analytical model for the
MMC considering the dynamics of the circulating currents and the equivalent dc
voltages, yet letting apart the control loops. The quintessence of the model presented
in this section is the average modeling technique, in which the dynamics of switching-
frequency components are neglected in face of the main components of the variables
of the converter. Despite the fact the averaging approach clear out the switching-
frequency components, the model developed remains non-linear due to the inherent
characteristics of the MMC, hence, the definition non-linear, time-domain model
might be used throughout this work to refer to this model. Still in this chapter, some
simulations were carried out, and their results compared to the results obtained
with the switching-level model, to show that the non-linear, time-domain model
accurately describes the behavior of the MMC. After that, the non-linear state-
space model was used to derive an analytical steady-state solution for the variables
of the MMC. This result allowed analyzing the influence of active and reactive power
in the harmonic components of the variables of the MMC. Towards the end of the
chapter, the state-space model is presented and then linearized, and this new version
becomes the starting point for the development of the models in Sections 4.1 and 4.2.

3.1 Average-value modeling of the MMC

Before presenting how the average-value modeling approach is applied to the MMC,
it is quite important show its working principle. For this matter, Figure 3.1 was
prepared showing an simple one-SM-per-arm MMC and its time-domain variables,
current and voltage. Notice that, the choice of this configuration rather than the 20-
SM-per-arm used in the work intends only to simplify and generalize the explanation.
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The average-value modeling approach consists on considering only the average values
of the variables over a switching period. This is represented in the graph at the left
side of the figure. It is possible to observe that the ac variables assume a staircase-
like pattern with a clear dominant sinusoidal component. The number of steps in
these variables depends on the ratio between the frequencies of the analyzed signals
and the frequency of the modulation carrier. This ratio was made small (10 times)
in the figure so as to improve the visualization, yet in real converters it can reach
values as huge as hundreds or thousands. Thus, the staircase-like signals can be
approximated to continuous signals such as presented in the rightest part of the
graphs in the figure. In general, the continuous approximation is used to represent
the average behavior of power electronic converters. It is important to mention that
the average-value modeling can be applied to ac and dc variables alike[97–100].

io

vo

Switched

Averaged

Switched Averaged

Averaged

Approximation

Averaged

Approximation

io
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Figure 3.1: Average modeling principle. One SM per arm is used to facilitate the
explanation.

Some of the results presented in Section 2.5 are quite useful for this chapter
and they might be reproduced here. Firstly, the diagram of the Figure 2.10 was
adapted and presented in the Figure 3.2 so as to help understanding the average-
value modeling of the MMC. Notice in the figure that at given time instant a certain
amount of capacitors are inserted in the ac side of the arm. The equivalent voltage
produced by the set of SMs of a certain arm, vikac, then, can be described by:

vpkac (t) = mk
p(t)

N∑
j=1

vpjkdc (t) ≈
∑

inserted

vpjkdc (t), (3.1)

vnkac (t) = mk
n(t)

N∑
j=1

vnjkdc (t) ≈
∑

inserted

vnjkdc (t), (3.2)

as previously presented in (2.13) and (2.14).
The state-space modeling is only presented in the next section, but right here it is
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Figure 3.2: Diagram exemplifying the capacitor insertion in the average-value mode-
ling context. It was considered the upper arm of phase a of a generic N -SM-per-arm
MMC.

possible to conclude that the greater the number of capacitors the large the number
of state equations to represent the MMC. For this reason, instead of considering all
the dc voltages of an arm, they might be combined into one equivalent dc voltage.
Thus, from this point on, the sums

∑
vpjkdc and

∑
vnjkdc are defined as state variables

of the MMC and represented by vpkdc and vpndc as follows:

vpkdc (t) =
N∑
j=1

vpjkdc (t), (3.3)

vnkdc (t) =
N∑
j=1

vnjkdc (t). (3.4)

Combining the results presented in (3.3) and (3.4) with the results in (3.1) and
(3.2) it is possible to find the following relationship between the equivalent dc and
ac voltages of the SMs of an arm:

vpkac (t) = mk
p(t)v

pk
dc (t), (3.5)

vnkac (t) = mk
n(t)vnkdc (t). (3.6)

Notice that, as the time-continuous variables mk
p(t) and mk

n(t) are used instead
of the staircase-like Mk

p and Mk
n , these equations represent the average-value repre-

sentation of the set of SMs of the arms of the MMC.
Other aspect that must be highlighted is that once vpkdc and v

pn
dc are state variables,

they have to represent the voltage across an energy-storage element, in this case,
an equivalent capacitor Ceq. To determine this equivalent capacitor and how it
interacts with the circuit it is necessary to analyze Figure 3.2 once more. Observe
that in a given time instant a certain number of capacitors C are connected in
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series1. In fact, this number is equal to Mk
i , where the index i can assume either p

or n depending on the arm this insertion index control. A possible approach here
would be replacing the SMs of the arms by capacitance-variable capacitors, i.e.,
making Ceq = C/Mk

i ≈ C/(Nmk
i ). This approach would require some adaptations

in the capacitor voltage-current relationship and because of that it is not being
used. Instead, the common approach used to solve this problem is using voltage
and current sources to represent the set of SMs of arm [47, 101], as is presented
in Figure 3.3. In this diagram the ac side of a group of SMs is represented by a
controlled voltage source which implements either (3.5) or (3.6) depending if the
SMs are located in the upper o lower arm of the phase k. Notice that, when it
comes to the voltage produced in the ac side, this approach leads to the same result
of using capacitance-variable capacitors. It is also important to notice that, were
the capacitance-variable-capacitor approach used, the current flowing through this
capacitor would be either ikcp or ikcn. Then:

dvikdc
dt

(t) =
1

Ceq
ikci(t) =

Nmk
i (t)

C
ikci(t) =

1

C/N
mk
i (t)i

k
ci(t). (3.7)

From (3.7) it is possible to conclude that the effect of the capacitance-variable
capacitor can be mimicked by a constant-capacitance capacitor so that:

Ceq =
C

N
. (3.8)

The current which flow through this capacitor, now, depends on the arm current
and the insertion index associated to that arm. For this reason, the capacitor in

1In the time instant in which Figure 3.2 was captured, the capacitors of the SMp1 and SMpN

are connected in series. The capacitor of SMp2, though, is bypassed.

ikci
C

C

C

SM

SM

SM

vikac

viNk
dc

vi2kdc

vi1kdc

ikci

vikac

ac Side dc Side

iikdc

Ceq
vikdc

Equivalent

Figure 3.3: Average-value equivalent model of a group of SM in an arm of the MMC.
The superscript i can either be p or n depending whether the SM are located in the
upper or lower arm. The superscript k indicates the phase (a, b or c).
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Figure 3.3 is connected to a current source which precisely produces this dc current
as follows:

ipkdc(t) = mk
p(t)i

k
cp(t), (3.9)

inkdc (t) = mk
n(t)ikcn(t). (3.10)
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Figure 3.4: Circuit representation of the average-value model of the MMC.

Replacing all the SMs of each arm by the equivalent representation shown in Fi-
gure 3.3 it is finally possible to reach average-value model of the MMC presented
in Figure 3.4. Throughout this text, this model may either be called average-value
model or non-linear, time-domain model.

3.2 Comparison between the analytical non-linear

model and the PSCAD model

In order to validate the non-linear, time-domain model presented in the last sec-
tion, some simulations were carried out and the results compared with the results
obtained with the switching-level model of the Chapter 2. Some points must be
explained beforehand. First of all, in the switching-level model the SM capacitors
are initially charged even before the MMC is enabled because of the diodes of the
switches. As this effect is not encompassed by the average-value model, it was de-
cided setting initial dc voltages in the capacitors corresponding to this pre-charge.
As already mentioned in Chapter 2, the switching-level model was simulated in PS-
CAD/EMTDC and due to numeric convergence aspects the resistance of the switches
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ek∗c = 0.75sin(ωt+ φk)ek∗cir = 0

Figure 3.5: Schematic of the system used in the open-loop simulation.

could not be made null. In the PSCAD/EMTDC model, the total resistance of the
SMs of an arm is 0.2Ω and to match the effects, the resistance R was changed from
1Ω to 1.2Ω in the averaged model. Finally, the averaged model was simulated in
PSIM for any other reason than the simplicity in implementation in this software.
In summary, the MMC was driven in open loop, as shown in Figure 3.5 presents the
system considered. In this case, the reference signals ek∗c were set with 0.75-peak
60Hz sinusoidal signals, so that the produced voltages ekc reached the rated value
given in Table 2.2. As for ek∗cir, they were kept null to allow verifying whether the
non-linear model matches the detailed PSCAD model when it comes to the circu-
lating current ikcir. Last, yet not least, the dc voltage vdc was set to its rated value
150kV and the load was considered to be purely resistive, also assuming its rated
values of 47.6Ω.

Figures 3.6 and 3.7 present the results corresponding to the phase a for the
produced voltage eac , output current iac , circulating current iacir and the equivalent dc
voltages vpadc and v

na
dc for the transient and steady-state condition. In all cases, it was

used solid blue lines for the results of the switching-level PSCAD/EMTDC model
and dash-dotted red lines for the results of the proposed average-value PSIM model.
It is possible to observe that the model presented in the last section accurately
predicts the behavior of the MMC both in steady-state and transient regime. The
small differences between the results for iacir in Figure 3.6c, though, are caused by
some switching effects that are not included in the average-value model.
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(a) Produced voltage eac

(b) Output current iac

(c) Circulating current iacir

(d) Upper-arm equivalent dc voltage vpadc

(e) Lower-arm equivalent dc voltage vnadc

Figure 3.6: Comparison between the results obtained with the switching-level
model and the averaged model. The switching model was implemented in PS-
CAD/EMTDC, whereas the averaged model (non-linear, time-domain model) was
implemented in PSIM. Only the results for the phase a are presented for the sake
of space.
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(a) Produced voltage eac

(b) Output current iac

(c) Circulating current iacir

(d) Upper-arm equivalent dc voltage vpadc

(e) Lower-arm equivalent dc voltage vnadc

Figure 3.7: Comparison between the results obtained with the switching-level mo-
del and the averaged model: Steady-state results. The switching model was imple-
mented in PSCAD/EMTDC, whereas the averaged model (non-linear, time-domain
model) was implemented in PSIM. Only the results for the phase a are presented
for the sake of space.
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3.3 Natural-reference frame state equations of the

MMC

Before starting developing the state equations of the MMC, it is useful to explain
which variables are chosen to be state variables of the model and which are the
as inputs and disturbances of the system. In this point, it is already known that
the equivalents dc voltages are state variables, but is necessary to obtain one extra
variable for each energy-storage element in the circuit. Looking back to Figure 3.4,
the three inductors per phase indicate the necessity of three state variables, ikc ,
ikcp and ikcn. However, it is commonly found in the literature [36, 37, 54, 102] the
replacement of ikcp and ikcn by the circulating current ikcir. In this case, the use of one
state variable to represent the dynamic of two energy-storage elements is possible
due to the fact that this inductors both interfere directly in the dynamics of ikcir and
that the upper and lower arms operate symmetrically. As for the input variables,
logically, the insertion indices mk

p and mk
n are assigned. Here it is important to

include two disturbance variables that are present in the Figure 3.4, the main-bus
ac voltage vko and the dc-bus voltage vdc. Thus, four state equation per phase are
needed to represent the MMC.

Since the group of SMs of an arm is replaced, considering the dc side, by a
current source feeding an equivalent capacitor Ceq, it is possible to write the following
equations:

Ceq
dvpkdc
dt

(t) = mk
p(t)i

k
cp(t), (3.11)

Ceq
dvnkdc
dt

(t) = mk
n(t)ikcn(t). (3.12)

By substituting the results presented in (2.8) in (3.11) and (3.12) it is finally
possible to reach the state equations which represent the dynamics of the equivalent
dc voltages vpkdc and vnkdc :

Ceq
dvpkdc
dt

(t) = mk
p(t)

[
ikcir(t) +

1

2
ikc (t)

]
, (3.13)

Ceq
dvnkdc
dt

(t) = mk
n(t)

[
ikcir(t)−

1

2
ikc (t)

]
. (3.14)

Before continuing, it is necessary to emphasize that the voltage between the dc-
bus middle point 0 and the ac-side ground is considered null in this work. Because
of this, it is possible to write the following net equations:

ekc (t) +Rikcp(t) + L
dikcp
dt

(t) + vpkac (t)−
1

2
vdc(t) = 0, (3.15)
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ekc (t)−Rikcn(t)− L
dikcp
dt

(t)− vnkac (t) +
1

2
vdc(t) = 0. (3.16)

Here the voltage vdc is presented as a time variable instead of a constant to
follow the definitions in the first paragraph of this section. In fact, depending on
the application, this might be either a constant or a variable. Once more using the
results presented in (2.8), the last equations can be rewritten as follows:

ekc (t) +R

[
ikcir(t) +

1

2
ikc (t)

]
+ L

[
dikcir
dt

(t) +
1

2

dikc
dt

(t)

]
+ vpkac (t)−

1

2
vdc(t) = 0, (3.17)

ekc (t)−R
[
ikcir(t)−

1

2
ikc (t)

]
− L

[
dikcir
dt

(t)− 1

2

dikc
dt

(t)

]
− vnkac (t) +

1

2
vdc(t) = 0. (3.18)

At this point, to obtain the state equation associated to ikcir it is simply necessary
to subtract (3.17) from (3.18) and substitute vpkac and vnkac by the results presented
in (3.5) and (3.6), respectively. Thus:

2L
dikcir
dt

(t) = −2Rikcir(t)−mk
p(t)v

pk
dc (t)−mk

n(t)vnkdc (t) + vdc(t). (3.19)

The state equations associated to ikc is obtained in three steps. Firstly, (3.17)
and (3.18) are added together and vpkac and vnkac , once more, substituted by (3.5) and
(3.6), leading to the following result:

2ekc (t) +Rikc (t) + L
dikc
dt

(t) +mk
p(t)v

pk
dc (t)−mk

n(t)vnkdc (t) = 0. (3.20)

Secondly, the output net equation is obtained as follows:

ekc (t)−Rf i
k
c (t)− Lf

dikc
dt

(t) = vko (t). (3.21)

Finally, substituting (3.21) in (3.20) it is possible to reach the last state equation
of the system:

(L+ 2Lf )
dikc
dt

(t) = mk
n(t)vnkdc (t)−mk

p(t)v
pk
dc (t)− 2vko (t)− (R + 2Rf ) i

k
c (t). (3.22)

It is important to notice that in all four state equations,(3.13), (3.14), (3.19),
(3.22), there are input variables, mk

p and mk
n, multiplying state variables, ikc , ikcir, v

pk
dc

and vnkdc . Consequently, this set of equations forms a non-linear state-space model,
which can be rewritten in matrix form as follows:
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d
dt



ikcir

ikc

vpkdc

vnkdc


=



−R
L

0 −mk
p

2L
−mk

n

2L

0 −R+2Rf

L+2Lf
− mk

p

L+2Lf

mk
n

L+2Lf

mk
p

Ceq

mk
p

2Ceq
0 0

mk
n

Ceq
− mk

n

2Ceq
0 0





ikcir

ikc

vpkdc

vnkdc


+



0 1
2L

− 2
L+2Lf

0

0 0

0 0


 vko

vdc

.

(3.23)

3.4 Changes of variables in the model

As mentioned in Chapter 2, the insertion indices are composed of two normalized
signals, e∗c and e∗cir, which intend to control the produced ac voltage and mitigate the
second-harmonic component of ikcir, respectively. As these signals are to be produced
by the control system, it is useful to present the state-space model of the MMC as
function of them instead of the insertion indices. Stating that, the substitution of
(2.18) and (2.19) in (3.13), (3.14), (3.19) and (3.22) leads to the following set of
state equations:

2Ceq
dvpkdc
dt

(t) =

[
1− ek∗c (t)− ek∗cir(t)

][
ikcir(t) +

1

2
ikc (t)

]
(3.24)

2Ceq
dvnkdc
dt

(t) =

[
1 + ek∗c (t)− ek∗cir(t)

][
ikcir(t)−

1

2
ikc (t)

]
(3.25)

4L
dikcir
dt

(t) = −4Rikcir(t)−
[
1− ek∗cir(t)

][
vkpdc (t) + vkndc (t)

]
+ ek∗c (t)

[
vpkdc (t)− vnkdc (t)

]
+ 2vdc(t) (3.26)

2 (L+ 2Lf )
dikc
dt

(t) = −
[
1− ek∗cir(t)

][
vkpdc (t)− vkndc (t)

]
+ ek∗c

[
vkpdc (t) + vkndc (t)

]
− 4vko (t)− 2 (R + 2Rf ) i

k
c (t) (3.27)

In addition to the previous change, in order to simplify forthcoming mathematical
processing, two new state variables, v∆k

dc and vΣk
dc , are introduced:

v∆k
dc (t) = vpkdc (t)− vnkdc (t), (3.28)
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vΣk
dc (t) = vpkdc (t) + vnkdc (t). (3.29)

It is important to mention that such variable change is commonly employed for
obtaining analytical models for the MMC and can be found in [36, 53, 54, 103].
Considering the state equations related to the currents, the variable change is per-
formed by simply substitution of (3.28) and (3.29) in (3.32) and (3.27). However, an
extra step is necessary when it comes to the state equations related to the voltages.
Thus, before the substitution it is necessary to compute the results for the addition
and subtraction of (3.24) and (3.25). The final results are given by:

2Ceq
dvΣk

dc

dt
(t) = 2

[
1− ek∗cir(t)

]
ikcir(t)− ek∗c (t)ikc (t), (3.30)

2Ceq
dv∆k

dc

dt
(t) = −2ek∗c (t)ikcir(t) +

[
1− ek∗cir(t)

]
ikc (t), (3.31)

4L
dikcir
dt

(t) = −4Rikcir(t)−
[
1− ek∗cir(t)

]
vΣk
dc (t) + ek∗c (t)v∆k

dc (t) + 2vdc(t), (3.32)

2 (L+ 2Lf )
dikc
dt

(t) = ek∗c (t)vΣk
dc (t)−

[
1− ek∗cir(t)

]
v∆k
dc (t)− 4vko (t)− 2 (R + 2Rf ) i

k
c (t).

(3.33)
These equations can be organized in a matrix form as follows:

d
dt



ikcir

ikc

vkΣ
dc

vk∆
dc


=



−R
L

0 −
(

1−ek∗cir
4L

)
ek∗c
4L

0 −
(
R+2Rf

L+2Lf

)
ek∗c

L+2Lf
−
(

1−ek∗cir
L+2Lf

)
1−ek∗cir
Ceq

− ek∗c
2Ceq

0 0

− ek∗c
Ceq

1−ek∗cir
2Ceq

0 0





ikcir

ikc

vkΣ
dc

vk∆
dc


+



0 1
2L

− 2
L+2Lf

0

0 0

0 0


 vko

vdc

.

(3.34)

3.5 Analytical model for the MMC in steady-state

condition

This section aims at presenting a steady-state analytical solution for the MMC and
comparing the influence of parameters such as ac and dc voltages, active and reactive
power on state variables as circulating currents and the equivalent dc voltages of
the arms of the MMC. Figure 3.8 represents the system considered in this section.
Notice that, the results to be presented are independently from the control mode
adopted, i.e., they are suitable to describe the MMC either as an open-loop voltage
controlled converter, or as a current controlled grid-connected converter, or as a
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voltage controlled grid-forming converter. The only control-loop neglected is the
one responsible by the mitigation of the second-harmonic component of ikcir.

MMCvdc
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Modulation
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ikc

SM SM

SM

SM

SMSM

iko

Load

iko
Power Grid

Zg

S s
s
=
P s

s
+
jQ

ss

Controller

Figure 3.8: Considered circuit for the steady-state analysis.

3.5.1 Steady-state values of ikc and vko

Independently of the way the converter is controlled, the steady-state value of the
main-bus voltage, vko,ss, can be described by:

vko,ss(t) =
√

2Vss sin(ωt+ φk), (3.35)

where Vss is the RMS value of the voltage and φk = 0, −2π/3, 2π/3 rad is the phase
displacement between the phases of the system.

Analogously, the steady-state current, ikc,ss, produced by the MMC can be written
as follows:

ikc,ss(t) =
√

2Iss sin(ωt+ φi + φk), (3.36)

where Iss is the RMS value of the current and φi is the displacement angle between
the voltage vko,ss and the current ikc,ss.

If the complex power produced by the MMC is given by Sss = Pss + jQss, where
Pss and Qss are the active and reactive powers, it is possible to write the following
results:

φi = − tan−1

(
Qss

Pss

)
, (3.37)

Iss =

√
P 2
ss +Q2

ss

3Vss
. (3.38)

The substitution of (3.37) and (3.38) in (3.36) leads to:

ikc,ss(t) =

√
2

3

√
P 2
ss +Q2

ss

Vss
sin

[
ωt+ φk − tan−1

(
Qss

Pss

)]
. (3.39)
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3.5.2 Steady-state values of mk
p and mk

n

The first step to obtain mk
p and mk

n is determining ekc,ss. Thus, according to Fi-
gure 3.8, the net-equation which links the internal voltage ekc,ss to the output voltage
vko,ss is given by:

ekc,ss(t) = vko,ss(t) + Lf
dikc,ss
dt

(t) +Rf i
k
c,ss(t), (3.40)

which, indeed, is an adaptation of (3.21).
Still from chapter 3, (3.20) can be adapted and combined with (3.40) to form

the following result:

mk
n,ss(t) v

kn
dc −m

k
p,ss(t) v

kp
dc = 2vko,ss(t)+(2Lf + L)

dikc,ss
dt

(t)+(2Rf +R) ikc,ss(t), (3.41)

where the bars over vkndc and vkpdc represent average values over a fundamental-
frequency spam. Consequently, it is possible to state that vkpSMcc

= vknSMcc
≈ Vdc,ss.

Continuing, the substitution of the insertion indices defined in (2.18) and (2.19),
neglecting the signal used in the mitigation of the second-harmonic component of
ikcir, leads to:

ek∗c,ss =
2

Vdc,ss
vko,ss +

1

Vdc,ss
(2Lf + L)

dikc,ss
dt

+
1

Vdc,ss
(2Rf +R) ikc,ss. (3.42)

The results presented in (3.35) and (3.36) can be substituted in (3.42) to form,
after some arrangements, the steady-state analytical model for the control signal ekc :

ek∗c,ss = E∗
ss sin (ωt+ γe + φk) , (3.43)

where:

Es∗
ss =

√
2

Vcc
[2Vss − Issω (2Lf + L) sin(φi) + Iss (2Rf +R) cos(φi)] , (3.44)

Ec∗
ss =

√
2

Vcc
[Issω (2Lf + L) cos(φi) + Iss (2Rf +R) sin(φi)] . (3.45)

E∗
ss =

√
(Es∗

ss )
2 + (Ec∗

ss)
2, (3.46)

γe = tan−1

(
Ec∗
ss

Es∗
ss

)
, (3.47)

Finally, the steady-state conditions of the insertion indices, neglecting the com-
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ponent due to the mitigation of the circulating currents, are given by:

mk
p,ss =

1

2
− 1

2
E∗
ss sin (ωt+ γe + φk) , (3.48)

mk
n,ss =

1

2
+

1

2
E∗
ss sin (ωt+ γe + φk) . (3.49)

3.5.3 Steady-state value of the dc components of ikcir, v
kp
dc and

vkndc

As already mentioned in previous chapter, the circulating current is composed by
both dc, ikcir, and ac, ĩkcir, components, such as follows:

ikcir,ss(t) = i
k

cirss + ĩkcir,ss(t). (3.50)

The dc portion of ikcir,ss is related to the distribution of energy from the DC bus
to the SMs of each phase. To maintain the energy balance the converter output
power must be equal to the dc bus power. This is equivalent to write:

3Vdc,ss i
k

cir,ss − 3R
(
i
k

cir,ss

)2

,
1

2π

∫ 2π

0

3 ekc,ss i
k
c,ss dωt = Pss + 3RfI

2
ss. (3.51)

The solution of (3.51) is:

i
k

cir,ss =
3Vdc,ss −

√
9V 2

dc,ss − 12R (Pss + 3RfI2
ss)

6R
. (3.52)

As for the equivalent dc voltages, their dc components can be approximately
represented by:

vpkdc = vnkdc ≈ Vdc,ss. (3.53)

3.5.4 Steady-state value of the harmonic components of ikcir,

vkpdc and vkndc

This section presents the steady-state value of three state variables altogether be-
cause they besides depending from the previous results, they also interfere in each
other. Here, the approach followed was to compute the forced solution for the dif-
ferential equations expressed in (3.13), (3.14), (3.19).

After analyzing some simulation results and consulted some references [104, 105],
it was concluded that the equivalent voltages vpkdc and vnkdc comprise five major com-
ponents, the dc, the fundamental, the second-, third-, and fourth-harmonic compo-
nents. Because of that, it was adopted a forced solution for the phase a of the MMC
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as given by:

vnadc,ss(t) = Vdc,ss +
∑

i=1,2,3,4

V na
dcic

cos (iωt) +
∑

i=1,2,3,4

V na
dcis

sin (iωt), (3.54)

vpadcss(t) = Vdcss +
∑

i=1,2,3,4

V pa
dcic

cos (iωt) +
∑

i=1,2,3,4

V pa
dcis

sin (iωt), (3.55)

where i represents a harmonic component order (i = 1, 2, 3, 4) and V na
dcic

, V na
dcis

,
V pa
dcic

, V pa
dcis

are the amplitudes of the harmonic components.
Using the same approach, the simulation results indicated that the circulating

current ikcir always present three major components, the dc, the second-harmonic
and the fourth-harmonic components. Consequently, it was decided to consider the
following forced solution:

iacirss(t) = Icirss +
∑
i=1,2,4

Iciric cos (iωt) +
∑
i=1,2,4

Iciris sin (iωt) (3.56)

where Iciric and Iciris are the amplitude of the harmonic components of the circulating
current.

Substituting (3.48), (3.49), (3.54), (3.55) and (3.56) into the differential equations
given by (3.13), (3.14), (3.19) it is possible to obtain a linear system with 22 variables
and 22 equations. Notice that, each one of these variables is in fact one of the
amplitudes of the harmonic components presented in this section. Because of its
size, it is presented here only a generic matrix representation of this system:

AssXss = Bss, (3.57)

where Ass is a 22 × 22 matrix; Xss is the column vector with the variables of the
system, the amplitude of the harmonic components of the circulating current and
of the equivalent dc voltages, presented in (3.58)-(3.61); Bss is a constant column
vector. The values of Bss and Ass are presented, respectively, in (B.5) and (B.9) on
the Appendix B.

Xss =
[
Xicir Xvdcp Xvdcn

]T
, (3.58)

Xicir =
[
Icir1s Icir1c Icir2s Icir2c Icir4s Icir4c

]
, (3.59)

Xvdcn =
[
V n
dc1s

V n
dc1c

V n
dc2s

V n
dc2c

V n
dc3s

V n
dc3c

V n
dc4s

V n
dc4c

]
, (3.60)

Xvdcp =
[
V p
dc1s

V p
dc1c

V p
dc2s

V p
dc2c

V p
dc3s

V p
dc3c

V p
dc4s

V p
dc4c

]
. (3.61)

Thus, the solution containing the analytical expressions for each of the harmonic
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components in steady-state is obtained by making:

Xss = A−1
ss Bss. (3.62)

Once more, due to the size of the equations, it was decided to present them on
the Appendix B.

3.5.5 Validation of the steady-sate model

The approach used to validate the obtained results was to compare them with the
results obtained from the switching-level simulation of the Chapter 2. Some ad-
justments were necessary to be made to match the two results. Firstly, as in the
simulations of the Chapter 2 the zero-displacement signal was ea∗c , the steady-state
model was modified to contain a displacement δ in vao as in:

vao(t) =
√

2Vss sin (ωt− δ) . (3.63)

As consequence, all the other components of the steady-state model present this
displacement. Secondly, the active power was set to 0.89p.u. which was the value
found in the simulations of the switching-level model of the Chapter 2.

With these considerations, the results obtained by the analytical steady-state
model are presented in Figure 3.9. It is observed in Figure 3.9a that the analytical
solution was able to track the average-value characteristic of the circulating current.

(a) Circulating current.

(b) Lower-arm equivalent dc voltage.

Figure 3.9: Comparison between the results obtained from the analytical steady-
state model and the switching level model.
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When it comes to the equivalent dc voltage depicted in Figure 3.9b, however, there
is a small offset of 0.0042p.u. between the results. This offset is due to the fact
that the dc component of the voltage was considered equal to Vss when, in fact,
it is not (the small dc voltage drops that were not considered are the responsible
for this difference). Analyzing the ac component of the voltage, it is possible to
notice that the analytical model matches accurately the behavior presented by the
switching-level model.

It is important to reassure that, despite the fact that the steady-state was va-
lidated considering an open-loop voltage controlled MMC, it is able to accurately
represent the MMC under either closed-loop voltage and current control as well. It
was decided not to present results for these other control modes to cut off some
repetitiveness.

3.5.6 Influence of the active and reactive powers on the MMC

in steady-state condition

Using the analytical results obtained in this section it was analyzed the influence of
the active and reactive power in the components of the circulating current and in
the components of the lower-arm equivalent dc voltage of the phase a of the MMC2.
For this matter, P and Q were varied from 0 to 1p.u. and the equivalent components
of iacir and vnadc were computed for these values. It is important to notice that, as
each harmonic component has two parts, one aligned to the sine and another to the
cosine, the equivalent of each harmonic component is computed by a vector sum of
its parts. The results are presented in contour maps in Figures 3.10 and 3.11.

The results for the circulating current are presented in Figure 3.10. Analyzing
firstly the chart in Figure 3.10a, it is possible to notice that reactive power has
no significant effect in the dc component of the circulating current. As this chart
represents one of the phases of the converter, the maximum value for this component
is 0.33p.u. when the active power reaches 1p.u. The second-harmonic component
presented in the Figure 3.10b, differently, suffers influence from both active and
reactive power, with a leading advance for this last. As observed in the figure, the
maximum value this component presents is about 0.08p.u. and because of that it
is generally mitigated through control action. The fourth-harmonic component, on
the other hand, has an insignificant amplitude. According to the Figure 3.10c, its
maximum value is around 0.0003p.u. and because of that it is generally not made
any effort to mitigate it.

The components of the equivalent dc voltages are presented in Figure 3.11. It
2As the upper and lower equivalent dc voltages are equal in amplitude when the dc voltages are

balanced, differing only in displacement, it was decided to present only the lower-arm dc voltages.
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Figure 3.10: Influence of active and reactive power in the components of ikcir0; the
contour lines indicated the p.u. value of the components of the circulating current.

can be observed that the fundamental component is the greatest among the ac com-
ponents reaching up to 0.015p.u. depending on the produced power by the MMC. It
is also observed that both active and reactive power influence equally the amplitude
of the components.
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3.6 Small-signal model of the MMC

The models developed so far present non-linear features that make them not suitable
for most of the classical control-theory analysis, despite the fact they represent the
MMC more accurately. In views of that, the model in Section 3.4 needs to be
linearized, and this new version might serve as starting point for the models will
be developed in the Sections 4.1 and 4.2. This linearized model is generally called
small-signal model.

The linearization process consists of expanding the non-linear target function
into a Taylor series and, thereafter, cutting off the non-linear terms of the result.
To better understand the process, consider a generic system of n state variables, m
input variables, and p disturbances, such as:

ẋ1 = f1(x1, . . . , xn, u1, . . . , um, q1, . . . , qp)
...

ẋn = fn(x1, . . . , xn, u1, . . . , um, q1, . . . , qp)

, (3.64)

where f1, f2, ..., fn are non-linear functions of the system; x1, x2, ..., xn are the state
variables; u1, u2, ..., um are the input variables; q1, q2, ..., qp are the disturbances.

The small-signal model can be obtained by making:


˙̃x1

...

˙̃xn

 =


∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...
∂fn
∂x1

. . . ∂fn
∂xn



x̃1

...

x̃n

+


∂f1
∂u1

. . . ∂f1
∂um

...
. . .

...
∂fn
∂u1

. . . ∂fn
∂um



ũ1

...

ũm

+


∂f1
∂q1

. . . ∂f1
∂qp

...
. . .

...
∂fn
∂q1

. . . ∂fn
∂qp



q̃1

...

q̃p

 (3.65)

where the tilde over the letters, as in x̃n, ũm and q̃p, indicate small-signal variables
(small variation of the corresponding variable around the equilibrium point) and
the subscript 0, as in xn0, um0 and qp0, indicate these are the equilibrium point
around which the linearization has been performed. Their relationships are presen-
ted in (3.66). Besides that, the differential terms correspond to the linear part of
the Taylor series of the system. This model is valid in the range where even for a
small-signal deviation it still matches the non-linear model. This valid range should
be confirmed by simulation and comparison of the two models.
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x̃n = x− xn0

ũm = u− um0

q̃n = q − qp0
. (3.66)

Differently from the non-linear model in (3.64), the small-signal model in (3.65)
allows the separation between the dynamic, input, and disturbance matrices and
the system can always be described as:

˙̃X(t) = AX̃(t) + BŨ(t) + EQ̃(t), (3.67)

being A, B and E the dynamic, input and disturbance matrices and X̃, Ũ and Q̃

the vectors with the state, input and disturbance small-signal variables.
Applying this methodology for (3.30)-(3.33) leads to the following results:

2Ceq
dṽΣk

dc

dt
(t) = 2

(
1− ek∗cir0

)
ĩkcir(t)− 2ikcir0ẽ

k∗
cir(t)− ek∗c0 ĩkc (t)− ikc0ẽk∗c (t), (3.68)

2Ceq
dṽ∆k

dc

dt
(t) = −2ek∗c0 ĩ

k
cir(t)− 2ikcir0ẽ

k∗
c (t) +

(
1− ek∗cir0

)
ĩkc (t)− ikc0ẽk∗cir(t), (3.69)

4L
d̃ikcir
dt

(t) = −4Rĩkcir(t)−
(
1− ek∗cir0

)
ṽΣk
dc (t)+

vΣk
dc0ẽ

k∗
cir(t) + ek∗c0 ṽ

∆k
dc (t) + v∆k

dc0ẽ
k∗
c (t) + 2ṽdc(t), (3.70)

2 (L+ 2Lf )
d̃ikc
dt

(t) = ek∗c0 ṽ
Σk
dc + vΣk

dc0ẽ
k∗
c (t)−

(
1− ek∗cir0

)
ṽ∆k
dc (t)+

v∆k
dc0ẽ

k∗
cir(t)− 4ṽko (t)− 2 (R + 2Rf ) ĩ

k
c (t). (3.71)

It is possible to show that, in the equilibrium point, the average value of the
equivalent dc voltages approaches to Vdc0 (average dc voltage), while their oscil-
lating components are negligible in comparison to these average values, provided
that the circuit components were designed for this situation. As a result, it comes
without great consequence that v∆k

dc0 ≈ 0 and vΣk
dc0 ≈ 2Vdc0. Likewise the DC voltages,

the circulating current comprises both dc and ac components. Nonetheless, in the
equilibrium point, the major ac component (second harmonic) is already minimized
provided a specific controller was properly designed, and, for this reason, the dc
component overshadows the other components. Thus, ikcir0 can be assigned to its
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average value S0/(3Vdc0). When it comes to the signals without dc component - ikc ,
ek∗c and ek∗cir - the decision on how to choose their equilibrium values is undoubtedly
more complicated. If their real equilibrium values, which, in fact, are sinusoidal, are
chosen, the model will end up being non-linear. In this case, other techniques, such
as harmonic linearizarion [47, 106, 107], are needed to be employed. In this work,
nonetheless, it was decided to keep the plain approach of considering ikc0, ek∗c0 and
ek∗cir0 equal to zero. As the model intends to represent the MMC in frequency do-
main for small-signal analysis, this approach will bring no great issues. With these
considerations, (3.68) - (3.71) can be rewritten as follows:

2Ceq
dṽΣk

dc

dt
(t) = 2̃ikcir(t)−

2S0

3Vdc0
ẽk∗cir(t), (3.72)

2Ceq
dṽ∆k

dc

dt
(t) = − 2S0

3Vdc0
ẽk∗c (t) + ĩkc (t), (3.73)

4L
d̃ikcir
dt

(t) = −4Rĩkcir(t)− ṽΣk
dc (t) + 2Vdc0ẽ

k∗
cir(t) + 2ṽdc(t), (3.74)

2 (L+ 2Lf )
d̃ikc
dt

(t) = +2Vdc0ẽ
k∗
c (t)− ṽ∆k

dc (t)− 4ṽko (t)− 2 (R + 2Rf ) ĩ
k
c (t). (3.75)

Finally, considering the pattern presented in (3.67), the linearized state equations
can be rewritten as follows:

d

dt


ĩkcir

ĩkc

ṽΣk
dc

ṽ∆k
dc

 =


− 1
L

0 − 1
4L

0

0 −R+2Rf

L+2Lf
0 −1

2
1

L+2Lf

1
Ceq

0 0 0

0 1
2Ceq

0 0




ĩkcir

ĩkc

ṽΣk
dc

ṽ∆k
dc

+


0 Vdc0

2L

Vdc0
L+2Lf

0

0 − S0

3Vdc0

1
Ceq

− S0

3Vdc0

1
Ceq

0


 ẽk∗c

ẽk∗cir

+


0 1

2L

− 2
L+2Lf

0

0 0

0 0


 ṽko

ṽdc

 (3.76)

3.7 Partial conclusions

This chapter started showing that the inherent characteristics of the MMC can
be mimicked by an average-value model in which the group of SMs of an arm is
substituted by a pair of controlled sources (a voltage source in the ac side and a
current source in the dc side) and an equivalent capacitor Ceq. As explained in the
chapter, this pair of sources has the objective of representing the effect of capacitor
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insertion in the ac side without the need of using capacitance-variable elements.
The simulation results obtained with this model matched the results pointed out
by the switching-level model of the previous chapter, validating the average-value
modeling approach. Amongst the variables, the circulating current presented some
noticeable, though, negligible, differences when comparing both models. Indeed,
these differences are caused by non-linear effects introduced by the switching of the
SMs. With the average-value model at hand, the non-linear state-space model of
the MMC was derived. In this regard, it was considered four state variables, the
circulating and output currents to represent the dynamic imposed by the inductors
of the circuit, and the equivalent dc voltages to represent the dynamic imposed by
the equivalent capacitors. Some changes of variable were performed and, then, this
model was finally linearized. This linearized version presented in (3.72) - (3.75) are
to be used in the models developed in the Sections 4.1 and 4.2. It was also derived in
the chapter a steady-state solution for the differential equations of the MMC. This
results showed the influence of the active and reactive powers on the components
of circulating current and equivalent dc voltage. As already expected, the reactive
power has insignificant influence in the dc component of ikcir. For all the harmonic
components of ikcir and vnkdc , however, active and reactive power play mostly equal
role. Still in this analysis, it was shown that the difference between the second- and
fourth-order harmonic components of the circulating current is roughly in the order
of 250 times, which justify the inclusion of a mitigation loop for the second, but not
for the fourth harmonic component.
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Chapter 4

Linearized Closed-loop models for
the MMC

This chapter is divided into two parts, the first one dealing with the NRF-controlled
MMC and the second with the SRF-controlled, each of them focused on deriving
frequency-domain models for the MMC in different control modes. For the NRF-
controlled MMC, the linear time-domain model presented in Chapter 3 is transfor-
med into Laplace domain and combined with the control loops so as to form the
closed-loop equivalent models of the MMC. Initially, it is presented the conversion
of the MMC model into the Laplace domain and the closed-loop equivalent model
for the mitigation loop of the second-harmonic component of the circulating current.
After that, it is presented the ac-side equivalent MMC models for three different con-
trol approaches, current control, single-loop voltage control, and double-loop voltage
control. In the first case, the MMC is considered either a grid-tied or off-grid conver-
ter, whereas in the other two approaches it plays the role of a grid-forming converter.
The resonant controllers were used in all the control loops in order to guarantee null
steady-state error [108] of the controlled variables. It is important to mention that
the major contributions in this segment of the chapter were published in [62]. As
for the SRF-controlled MMC, the linearized equations presented in Chapter 3 are
converted into SRF and then into the Laplace domain. Afterward, the model for
representing the mitigation loop of the circulating current is derived, followed by the
model for the MMC under current control and under single- and double-loop vol-
tage control. The models were validated through simulations using the non-linear,
time-domain model (average-value model) of the Chapter 3.
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4.1 MMC controlled in Natural Reference Frame

This section presents the models for representing the MMC in NRF. It is impor-
tant to notice that, not only the models are derived in NRF, but also the control
loops. Differently from SRF control systems, where the ac signals are turned into
dc quantities, the proportional-integral controllers do not present a good perfor-
mance in face of sinusoidal signals as in the NRF systems. Because of that, it was
used proportional-resonant controllers which guarantee zero steady-state error [109].
The following subsection presents the Laplace-domain representation of the MMC,
wheres the subsequent sections are focused on deriving the models for the different
control modes analyzed.

4.1.1 Laplace-domain representation of the MMC

The linearized model of the MMC, considering the simplification discussed in the
Chapter 3, is given by (3.72)-(3.75). These equations represent the MMC in time
domain and can be transformed into Laplace domain as follows:

2sCeqṼ
kΣ
dc (s) = 2Ĩkcir(s)−

2S0

3Vdc0
Ẽk∗
cir(s), (4.1)

2sCeqṽ
k∆
dc (s) = − 2S0

3Vdc0
Ẽk∗
c (s) + Ĩkc (s), (4.2)

4ZĨkcir(s) = −Ṽ kΣ
dc (s) + 2Vdc0Ẽ

k∗
cir(s) + 2Ṽdc(s), (4.3)

2 (Z + 2Zf ) Ĩ
k
c (s) = 2Vdc0Ẽ

k∗
c (s)− Ṽ k∆

dc (s)− 4Ṽ k
o (s). (4.4)

Notice that the capital letters stand for the Laplace-domain equivalent of each
time-domain variable and that Z = sL+R and Zf = sLf+Rf were used for aesthetic
reasons. Figure 4.1 present the block diagrams which represent these equations.

4.1.2 Circulating current control loop

As previously mentioned, the second-order harmonic component of the circulating
current is generally mitigated through a control action. Basically, some controller is
used to compute the signal ek∗cir which blocks the generation of this component. When
the controller is implemented in natural reference frame, this approach combines a
resonant controller with a feedback loop which can be described by the following
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Ṽ Σk
dc

Ẽk∗
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3Vdc0
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Ĩkcir

(a) Ṽ Σk
dc (s), Eq. (4.1)

1
s

1
2Ceq

Ẽk∗
c

2S0

3Vdc0

Ṽ k∆
dc
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(b) Ṽ k∆
dc (s), Eq. (4.2)

1
s

1
4L

Ĩkcir

4R

Ṽ Σk
dc

Ẽk∗
cir

2Vdc0

2
Ṽdc
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s

1
Leq

Ĩkc
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Ṽ ∆k
dc

Ẽk∗
c

2Vdc0
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Ṽ k
o

(d) Ĩkc (s), Eq. (4.4)

Figure 4.1: Block diagrams of the linearized model of the MMC.

control law:
Ẽk∗
cir(s) = Ccir(s)Ĩ

k
cir(s), (4.5)

Ccir(s) = − kcirr s

s2 + 4ω2
0

, (4.6)

where Ccir(s) is the controller responsible for keeping the arms free from the second
order harmonic component. In this case, kcirr is the resonant gain, whereas ω0 is the
fundamental angular frequency. The term (2ω0)2 = 4ω2

0 indicates that this controller
resonate at the frequency of the second-order harmonic component. Even though
this is a linear controller, the tilde notation, which indicates a small-signal variable,
is kept for aesthetic reasons. It is important to notice that the forthcoming sections
might present this control loop into their control diagrams, thus, for more insights
on how the mitigation loop is introduced into the MMC control system, please refer
to Figures 4.4, 4.7 and 4.10.

It is important to mention that, as the circulating current presents dc component
and its state equation, (4.3), contains Ṽdc, the model which represents the circulating
current, in fact, is the model for the dc side of the MMC. The first step to reach
this model is to combine (4.1) and (4.3), which leads to:

(4sCeqZ + 1) Ĩkcir(s) =

(
S0

3Vdc0
+ 2sCeqVdc0

)
Ẽk∗
cir(s) + 2sCeqṼdc(s). (4.7)

After that, substituting (4.5) in (4.7) and making some mathematical manipu-
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lations, it is possible to find:

Ĩkcir(s) = Ydc(s)Ṽdc(s), (4.8)

where:
Ydc(s) =

2sCeq

4sCeqZ + 1−
(

S0

3Vdc0
+ 2sCeqVdc0

)
Ccir(s)

. (4.9)

where Ydc is the equivalent admittance of the dc side of the MMC. It is important to
notice that this admittance is affected by the circulating-current controller Ccir(s)
and by the values of some passive elements. However, the currents and voltages of
the ac side take no part in this behavior. In fact, once this is a linearized model,
this result is held only for small variations of the variables around their operating
point. Equation (4.8) can be represented by the circuit in Figure 4.2.

Ṽdc(s)

Ĩkcir(s)

Ydc(s)

Figure 4.2: Equivalent circuit of the circulating current.

In order to validate the developed analytical model represented by (4.9), its fre-
quency response was compared with the frequency response obtained from the non-
linear, time-domain model presented in the Chapter 3. It is worthwhile mentioning
that this non-linear model was used, instead of the switching-level model, to reduce
the computational burden and speed up the process of validation. It is also impor-
tant to mention that this approach is widely used in the literature [47, 53, 54, 110]
and is to be used to validate all the transfer functions obtained in this work. For the
sake of practicability, the non-linear model was implemented in PSIM, and its fre-
quency response was obtained by applying a disturbance in the circuit and observing
its effect on the analyzed variable. In the case of the dc-side dynamic admittance, for
instance, a sinusoidal disturbance was applied on the dc voltage and the effect was
observed in the circulating current. For more information about how the frequency
response are extracted from the non-linear, time-domain, model, please refer to the
Appendix C. One last point before presenting the results, for this analysis and the
forthcoming, the control gain kcirr was set to 0.1A−1rad/s.

Figure 4.3 presents the bode diagram containing the frequency response for the
analytical model in a blue straight line (Obtained with the use of Matlab [111]),
and for the non-linear model in red circles. It is observed that both responses are
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120Hz

120Hz

Figure 4.3: Frequency Response of the dc-side admittance, Ydc: comparison between
the linearized model and the non-linear, time-domain model.

similar, although some small errors can be spotted, specially in the second harmonic
frequency. In fact, the resonant controller compels the dc admittance to present a
very small (tending to −∞dB) value at the frequency 2ω0, which corresponds to the
mitigation of the respective component of the circulating current. Nonetheless, some
factors such as the digital implementation of the resonant controller and the nume-
rical errors in the simulation influenced the results obtained from the non-linear,
time-domain model. As a matter of fact, the digital implementation of a resonant
controller presents some differences in relation to the continuous-time transfer func-
tion used in the linearized model. As for the numerical errors, they are directly
influenced by the integration time step used in the simulation. In this case, a trade
off between accuracy and computational burden is raised. These factors altogether
collaborated for the theoretical magnitude −180dB of the second-order harmonic
component, indicated by the proposed model, has not been achieved in the simula-
tion of the non-linear system.

4.1.3 Current controlled MMC

In this section the MMC is considered under current control such as represented in
Figure 4.4. The model to be presented can either represent the MMC as grid-tied or
as off-grid converter and because of that the figure presents both possibilities. The
PLL (phase-locked loop) presented in the figure, of course, is only necessary in the
grid-tied mode. As observed in the figure, the control law is given by:

Ẽk∗
c (s) = Ci(s)

[
Ĩk∗c (s)− Ĩkc (s)

]
, (4.10)
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Ci(s) = kip +
kirs

s2 + ω2
0

, (4.11)

where Ci(s) is the transfer function of the current control loop and kip and kir are, res-
pectively, its proportional and resonant gains. Observe that term ω2

0 indicates that
the resonant frequency of the controller corresponds to the fundamental component.
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icir Loop

Figure 4.4: Block diagram of the MMC under current control in natural reference
frame. It is also included the mitigation loop of the second-order harmonic compo-
nent of icir.

The first step to reach the model for the current controller MMC is to combine
(4.2) and (4.4). This procedure leads to the following result:

[4sCeq (Z + 2Zf ) + 1] Ĩkc (s) =

(
4sCeqVdc0 +

2S0

3Vdc0

)
Ẽk∗
c (s)− 8sCeqṼ

k
o (s). (4.12)

Substituting Ẽk∗
c (s) from (4.10) in (4.12) one can reach the following result:

Ĩkc (s) = Gcl
i (s)Ik∗c (s)− Yac(s)Ṽ k

o (s), (4.13)

where:

Gcl
i (s) =

(
4sCeqVdc0 + 2S0

3Vdc0

)
Ci(s)

4sCeq (Z + 2Zf ) +
(

4sCeqVdc0 + 2S0

3Vdc0

)
Ci(s) + 1

(4.14)

Yac(s) =
8sCeq

4sCeq (Z + 2Zf ) +
(

4sCeqVdc0 + 2S0

3Vdc0

)
Ci(s) + 1

(4.15)

It is important to notice that, the result presented in (4.13) is actually the
Norton-equivalent representation of the MMC under current control loop. In this
case, the equivalent circuit, depicted in Figure 4.5, have a current source Ccl

i (s)Ik∗c (s)

and an admittance Yac(s). It is possible to see that both elements are influenced by
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the current controller, yet the circulating current takes no part in ac-side behavior.
As the circulating current mitigation loops is present, it was decided also to present
it in Figure 4.5 , despite the fact it is not coupled to the ac side of the converter.

Ṽ k
o (s)Ṽdc(s)

Ĩkcir(s)

Ydc(s)

acdc

Yac(s)Gcl
i (s)Ĩ

k∗
c

Ĩkc (s)

Figure 4.5: Norton-equivalent circuit of the MMC under current control. As the
MMC always has a circulating current mitigation control, it was included in the
figure the circuit developed in Section 4.1.2.

For the validation, it was considered kip = 0.0001A−1 and kir = 0.01A−1rad/s

and repeated the procedure previously mentioned, and explained in Appendix C.
Figure 4.6 presents this comparison and from it one can notice that the results
match almost perfectly, except at the resonant frequency in magnitude chart of
the equivalent admittance (Figure 4.6a). The same reason presented in the last
section, i.e., errors introduced by the discretization of the resonant parcel and by
the simulation, can be credited as the source of this difference. It is important to
notice that Yac indicates how the bus voltage disturbs the current control and, as
far as it is possible to notice, this influence in the fundamental component tends
to zero or to a negligibly value. It is also spotted other small differences in the
phase chart of Yac in the frequency range that goes from 600Hz to 1kHz. As for the
closed-loop gain Gcl

i , it is not noticed any significant difference. Notice that at 60Hz

60Hz

(a) Norton admittance, Yac
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63.57Hz

(b) Norton gain, Gcl
i

Figure 4.6: Frequency Response of Yac and Gcl
i : comparison between the linearized

model and the non-linear, time-domain model

both results indicate 0dB, which means that the current source in the Figure 4.5
produces exactly the current indicated by Ik∗c .

4.1.4 Single-loop voltage controlled MMC

This section considers the MMC as a grid-forming converter supplying a generic
load represented by the current source iko in Figure 4.7. In this case, along with the
Rf − Lf circuit, the output net comprises a capacitor bank Cf . As for the control
system, the error between the reference signal vk∗o and the measured voltage in the
main-bus vko is amplified by a proportional resonant controller to produce ek∗c . Thus,
the control law can be represented by:

Ẽk∗
c (s) = Csl

v (s)
[
Ṽ k∗
o (s)− Ṽ k

o (s)
]
, (4.16)

Csl
v (s) = kv,slp +

kv,slr s

s2 + ω2
0

, (4.17)

where Csl
v (s) is the transfer function of the voltage controller, kv,slp and kv,slr are,

respectively, its proportional and resonant gains, and the superscript sl denotes
single-loop. Notice that, as already happened to the current-controlled MMC, the
circulating-current mitigation loop is also included in Figure 4.7 for the sake of
information, yet it does not affect the voltage control.

Considering the result presented in (4.12) and displayed here for practical pur-
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Figure 4.7: Block diagram of the MMC under single-loop voltage control in natural
reference frame. It is also included the mitigation loop of the second-order harmonic
component of icir.

poses,

[4sCeq (Z + 2Zf ) + 1] Ĩkc (s) =

(
4sCeqVdc0 +

2S0

3Vdc0

)
Ẽk∗
c (s)− 8sCeqṼ

k
o (s), (4.18)

it is possible to obtain the following result when substituting Ẽk∗
c (s) by its definition

in (4.16):
Ṽ k
o (s) = Gsl

v,cl(s)Ṽ
k∗
o (s)− Zsl

ac(s)Ĩ
k
c (s) (4.19)

where:

Gsl
v,cl(s) =

(
4sCeqVdc0 + 2S0

3Vdc0

)
Csl
v (s)

8sCeq +
(

4sCeqVdc0 + 2S0

3Vdc0

)
Csl
v (s)

(4.20)

Zsl
ac(s) =

4sCeq (Z + 2Zf ) + 1

8sCeq +
(

4sCeqVdc0 + 2S0

3Vdc0

)
Csl
v (s)

(4.21)

Notice that (4.19) represents a voltage net equation and because of that, it is
possible to draw the equivalent circuit depicted in Figure 4.8a. For the sake of
referencing, it was decided to call this circuit the inner equivalent circuit of the
MMC under voltage control. In this case, Zsl

ac is the inner equivalent impedance of
the MMC, whereas Gsl

v,cl is the closed-loop transfer function relating the measured
and reference voltages. As the MMC together with the capacitor bank plays the
role of a voltage source, the use of a Thévenin-equivalent circuit is more suitable for
analysis purposes. For this reason, the circuit in in Figure 4.8a was rearranged into
the circuit presented in Figure 4.8b, where Zsl

th is Thévenin impedance obtained by
combining Zsl

ac and the impedance of the capacitor bank, ZCf , and Gsl
thṼ

k∗
o is the
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(a) Inner equivalent circuit

Ṽ k
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Ĩkcir(s)

Ydc(s)
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Zsl
th(s)

Gsl
th(s)Ṽ

k∗
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(b) Thévenin-equivalent circuit

Figure 4.8: Equivalent circuits of the MMC under single-loop voltage control. As
the MMC always has a circulating current mitigation control, it was included in the
figure the circuit developed in Section 4.1.2.

open circuit voltage. In this case, it is possible to write:

Ṽ k
o (s) = Gsl

th(s)Ṽ
k∗

0 (s)− Zsl
th(s)Ĩ

k
o (s), (4.22)

where:

Gsl
th(s) =

Gsl
v,cl(s)

sCfZsl
ac(s) + 1

, (4.23)

Zsl
th(s) =

Zsl
ac(s)

sCfZsl
ac(s) + 1

. (4.24)

It is important to notice that with this approach, the equivalent circuit presents
fewer variables in comparison to the circuit in Figure 4.8a and assumes the form of
a standard voltage behind impedance model.

The validation process was carried out considering kv,slp = 0.0001V −1 and kv,slp =

0.001V −1rad/s, and the results are presented in Figure 4.9. It is possible to observe
that, once more, the responses predicted by the linearized model match the responses
of the non-linear system with few exceptions. To be more specific, the differences

60Hz 604.3Hz

(a) Thévenin impedance, Zsl
th
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604.3Hz

(b) Thévenin gain, Gsl
th

Figure 4.9: Frequency Response of Zsl
th and Gsl

th: comparison between the linearized
model and the non-linear, time-domain model

are observed on the magnitude and phase charts of Zsl
th at 60Hz and in the phase

chart of Gsl
th at 50 and 70Hz.

4.1.5 Doubly-loop Voltage controlled MMC

Still considering the MMC as a grid-forming converter, other control approach is to
include an inner current loop in addition to the outer voltage control, as depicted in
Figure 4.10. In this case, the output of the voltage controller computes the reference
signal ik∗c which is used by the current controller to compute the signal ek∗c . This
approach provides the MMC with the capacity of limiting the produced current in
case of ac faults in the system.

In this case, the reference current for the inner loop is computed as follows:

Ĩk∗c (s) = Cdl
v (s)

[
Ṽ k∗
o (s)− Ṽ k

o (s)
]
, (4.25)

Cdl
v (s) = kv,dlp +

kv,dlr s

s2 + ω2
0

, (4.26)

where Cdl
v is the voltage controller, and kv,dlp and kv,dlr are its proportional and re-

sonant gains, respectively. It goes without saying that the resonant part of the
controllers is tuned into the fundamental frequency.

For obtaining an analytical model for the double-loop-controlled grid-forming
MMC, it is possible to make use of the Norton-equivalent result presented in Sec-
tion 4.1.3 for representing the inner current loop. Thus, the outer voltage control
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Figure 4.10: Block diagram of the MMC under double-loop voltage control in natural
reference frame. With the mitigation loop of the second-order harmonic component
of icir. included

loop can be included in the model by substituting (4.25) in (4.13), which leads to:

Ṽ k
o (s) = Gdl

c,cl(s)Ṽ
k∗
o (s)− Zdl

ac(s)Ĩ
k
c (s), (4.27)

where:

Gdl
v,cl(s) =

Gcl
i (s)Cdl

v (s)

Yac(s) +Gcl
i (s)Cdl

v (s)
, (4.28)

Zdl
ac(s) =

1

Yac(s) +Gcl
i (s)Cdl

v (s)
. (4.29)

Once more, Gdl
v,cl and Zdl

ac are the closed-loop voltage gain and the inner equiva-
lent impedance of the system, respectively. As in the previous section, the model
described by (4.27) represents the characteristic of the MMC without considering
the capacitor bank in the main bus. In this case, the circuit realization of (4.27) is
equal to that presented in the previous sections, though it is once more presented
in Figure 4.11 for the sake of practicality. Following the same methodology used in
last section, it is possible to reach the Thévenin-equivalent analytical model given
by:

Ṽ k
o = Gdl

th(s)Ṽ
k∗
o (s)− Zdl

th(s)Ĩ
k
o (s), (4.30)

where:

Gdl
th(s) =

Gdl
v,dl(s)

sCfZdl
ac(s) + 1

, (4.31)

Zv
th =

Zdl
ac(s)

sCfZdl
ac(s) + 1

. (4.32)

Finally, the circuit realization of (4.30) is presented in Figure 4.11b.
The results used for validating the proposed model are presented in Figure 4.12.
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Figure 4.11: Equivalent circuits of the MMC under double-loop voltage control.

60Hz 273.6Hz

(a) Thévenin impedance, Zdl
th

60Hz 273.6Hz

60Hz

(b) Thévenin gain, Gdl
th

Figure 4.12: Frequency Response of Zdl
th and Gdl

th: comparison between the linearized
model and the non-linear, time-domain model

Considering the frequency response for Zdl
th, it is noticeable that the proposed model

results matches perfectly the results obtained by the non-linear time-domain model,
except for a small difference at 70Hz on the phase chart. A similar characteristic
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is observed for Gdl
th, yet, in this case, the major difference occurs in the magnitude

chart at 60Hz where the non-linear model indicates 0dB, whereas the proposed
model points to −3.5dB. To finish this section, it is important to highlight that
the Thévenin model presented in (4.30) is the major contribution of this thesis and
published in the reference [62].

4.2 MMC controlled in Synchronous Reference

Frame

This section presents the models for representing the MMC in SRF. It is important
to notice that, not only the models are derived in SRF, but also the control loops are
implemented in SRF. Because of that, it was used proportional-integral controllers
to guarantee zero steady-state error. The following subsection presents the Laplace-
domain representation of the MMC in SRF, wheres the subsequent sections are
focused on deriving the models for the different control modes analyzed.

4.2.1 Laplace-domain representation of the MMC in SRF

Before obtaining the MMC equations in SRF, it is necessary to introduce the ap-
proach followed in the forthcoming sections. As in the previous chapter, the MMC
is due to produce either current or voltage at the fundamental frequency. For this
reason, the Park transformation to be presented uses a reference synchronously alig-
ned with the fundamental component. However, the component of the circuiting
current to be mitigated corresponds to the second-order harmonic and because of
that it is necessary to use a referential synchronously aligned to this component in
this control loop. For this reason, the MMC state equations used in the voltage/-
current control loop are to be transformed into SRF, whereas the equations used in
the circulating current loop are to be transformed into doubly-SRF (D-SRF). More
details on the mathematical implications of the reference-frame transformation used
in this section are presented in Appendix A. To facilitate the understanding of this
section, the state equations in (3.72)-(3.75) are rewritten here:

2Ceq
dṽabcΣdc

dt
= 2̃iabccir −

2S0

3Vdc0
ẽabc∗cir , (4.33)

2Ceq
dṽabc∆dc

dt
= − 2S0

3Vdc0
ẽabc∗c + ĩabcc , (4.34)

4L
d̃iabccir
dt

= −4R̃iabccir − ṽabcΣdc + 2Vdc0ẽ
abc∗
cir + 2ṽabcdc , (4.35)
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2 (L+ 2Lf )
d̃iabcc
dt

= 2Vdc0ẽ
abc∗
c − ṽabc∆dc − 4ṽabco − 2 (R + 2Rf ) ĩabcc . (4.36)

Notice that it is introduced a new notation in (4.33)-(4.36). In this case, the bold
letters represent either vectors or matrices, and vector notations such as

xabc =
[
xa, xb, xc

]T
,

xdq0 =
[
xd, xq, x0

]T
,

(4.37)

respectively representing natural- and synchronous-reference frame quantities, shall
be used hereafter in order to reduce the size of equations and allow the use of matrix
algebra.

Through this chapter, the frame transformations are represented in the figu-
res by the blocks marked with Tdq0 and T−1

dq0, representing, respectively, the Park
transformation and its inverse. Thus:

Tdq0 =
2

3


cos (θ) cos

(
θ − 2π

3

)
cos
(
θ + 2π

3

)
sin (θ) sin

(
θ − 2π

3

)
sin
(
θ + 2π

3

)
1
2

1
2

1
2

 , (4.38)

T−1
dq0 =


cos (θ) sin (θ) 1

cos
(
θ − 2π

3

)
sin
(
θ − 2π

3

)
1

cos
(
θ + 2π

3

)
sin
(
θ + 2π

3

)
1

 , (4.39)

where θ is basically the angle related to the fundamental component of vao . In a
grid connected converter, this angle is obtained by the PLL. On the other hand,
when it comes to a grid-forming converter this angle can be computed as θ = ω0t.
Of course, in the case of D-SRF, θ = −2ω0t, so that the second-order harmonic
component in the current produced by the negative-sequence can be transformed
into dc quantities.

According to the premises established in the first paragraph, (4.34) and (4.36)
should be transformed in SRF, and (4.33) and (4.35) into D-SRF. The results,
already transformed into Laplace domain are presented here:

2Ceq (2Ω + sI) Ṽ2dq0Σ
dc = 2Ĩ2dq0

cir −
2S0

3Vdc0
Ẽ2dq0∗
cir , (4.40)

2Ceq (Ω + sI) Ṽdq0∆
dc = − 2S0

3Vdc0
Ẽdq0∗
c + Ĩdq0c , (4.41)

4L (2Ω + sI) Ĩ2dq0
cir = −4RĨ2dq0

cir − Ṽ2dq0Σ
dc + 2Vdc0Ẽ

2dq0∗
cir + 2Ṽ2dq0

dc , (4.42)
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2 (L+ 2Lf ) (Ω + sI) Ĩdq0c = 2Vdc0Ẽ
dq0∗
c − Ṽdq0∆

dc − 4Ṽdq0
o − 2 (R + 2Rf ) Ĩdq0c . (4.43)

In this case, I is a 3 × 3 identity matrix and Ω is the matrix that indicates the
coupling between the axes. It is given by:

Ω =

 0 −ω0 0

ω0 0 0

0 0 0

 . (4.44)

For the sake of simplifying equations, from this point on, the matrices Ω + sI and
2Ω+sI are to be dubbed SRF complex frequency sdq and D-SRF complex frequency
s2dq. Also, for aesthetic reasons the voltage of the dc-bus is represented using ma-

trix notation by Ṽ abc
dc =

[
Ṽdc, Ṽdc, Ṽdc

]T
in natural reference frame, which leads to

Ṽ dq0
dc = Ṽ 2dq0

dc =
[
0, 0, Ṽdc

]T
in SRF and D-SRF. Finally, Figure 4.13 presents the

block-diagram realization of SRF/D-SRF model of the MMC. The diagrams for the
zero-sequence component were omitted to save space, once they are equal to those
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Figure 4.13: Block diagrams in dq coordinates of the linearized model of the MMC
in SRF.
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presented in Figure 4.1.
Before continuing to the following sections, it is necessary do discuss some im-

portant points on the matrices that represent equivalent admittances, impedances
and closed-loop gains alike1. In general, they might present the following pattern:

M =

 Mdd Mdq 0

Mqd Mqq 0

0 0 M0

 , (4.45)

where M can be either one of the equivalent admittances/impedances/closed-loop
gains of the system. Besides that, the terms Mdd and Mqq are the d- and q-axis
self-related terms and Mdq and Mqd are the cross-coupling terms between the axes.
In addition, M0 is related to the zero sequence of the system.

As the symmetry2is held for this system, it is known that Mdd = Mqq and
Mdq = −Mqd [112]. Consequently, the terms self-related, cross-coupling and zero-
sequence might be used to refer toMdd andMqq,Mdq andMqd, andM0, respectively.

4.2.2 Circulating current control loop

As it was previously explained, the circulating-current control loop intends to sup-
press the second harmonic content of icir making use of PI controllers. In this case,
the circulating currents are firstly transformed into D-SRF so that the 2ω0 compo-
nents become dc quantities and then used to compute the control signals Ẽ2dq0∗

cir . It
is important to highlight that the angle θ of the transformation must be aligned
with the angle of the negative-sequence-generated second-order harmonic compo-
nent, i.e., θ = −2ω0, otherwise the 120Hz-component would not be transformed into
dc quantities. Consequently, the control law can be given by:

Ẽ2dq0∗
cir (s) = −C2dq0

cir (s)̃I2dq0
cir (s). (4.46)

where C2dq0
cir is the transfer matrix of the controller which is responsible by this

task. In order to compute the insertion indices used to modulate the MMC, the
vector Ẽ2dq0∗

cir might be transformed back into NRF. Although it is not presented
any diagram at this time, the diagrams of the forthcoming sections (Figures 4.16,
4.20 and 4.24) include the control loop given by (4.46).

1As in the Chapter 4.1, the equivalent admitances, impedances and closed-loop gains of the
MMC are to be presented. In this case, they correspond to the matrices Ydq0

ac , Gdq0
icl ,Gdq0

dl,th, Z
dq0
dl,th,

and Y2dq0
dc .

2In this case, symmetry means that for each complex pole in the system there is another
conjugated to it so that the transfer functions present no complex coefficients. This characteristic
also holds for the zeros of the transfer functions.
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When it comes to the transfer matrix C2dq0
cir , it is possible to represented it as

follows:

C2dq0
cir (s) =

 Ccir(s) 0 0

0 Ccir(s) 0

0 0 0

 , (4.47)

Ccir(s) = kicirp +
kiciri

s
, (4.48)

where Ccir represents the transfer function of the PI controller used in the loop, and
kicirp and kiciri its proportional and integral gains.

Combining the results presented in (4.40) and (4.42) and substituting thereafter
the control law in (4.46) it is possible to find the analytical model which represents
the circulating current dynamics in D-SRF:

Ĩ2dq0
cir (s) = Y2dq0

dc (s)Ṽ2dq0
dc (s). (4.49)

As previously mentioned, the circulating current is due to the oscillating com-
ponents in the dc voltages, i.e. Ṽ2dq0

dc . Consequently, Y2dq0
dc is the dc-side equivalent

admittance of the MMC. This result can be represented by the equivalent circuit in
Figure 4.14 and the admittance can be given by:

Y2dq0
dc (s) = 2CeqΓ

−1
cir(s)s2dq, (4.50)

where

Γcir(s) = I + 4LCeqs
2
2dq + 4RCeqs2dq +

(
S0

3Vdc0
I + 2Vdc0Ceqs2dq

)
C2dq0
cir (s), (4.51)

is a dimensionless factor, and
s2dq = 2Ω + sI (4.52)

is a matrix defined as the D-SRF complex frequency.

Ĩ2dq0cir

Y2dq0
dcṼ2dq0∗

dc

Figure 4.14: Equivalent circuit of the circulating current in D-SRF.

The dc-side admittance, as represented in (4.49), links the small-signal distur-
bances in the voltage of the dc bus to the circulating currents icir. It stood out

69



from this definition that the self-related and cross-axis terms of Y2dq0
dc are negligible

once the three legs of the converter are connected to the same dc bus. Because of
that, the model validation was carried out considering only the zero-sequence term
of Y2dq0

dc and the outcomes are presented in Figure 4.15. In this case, proportional
and integral gains, kicirp and kiciri , were set for 0.01A−1 and 0.1A−1, respectively. Ac-
cording to the results, the characteristic predicted by the proposed model matched
the characteristic obtained from the non-linear, time-domain model with a single
exception in 60Hz. In this case, the non-linearities of the MMC were responsible
for a difference of roughly 20dB in the magnitude chart.

Figure 4.15: Frequency Response of the dc-side admittance, Y2dq0
dc : comparison

between the linearized model and the non-linear, time-domain model.

It is important to understand that the zero-sequence term of Y2dq0
dc conveys the

relationship between the oscillating components of vdc and the zero-sequence compo-
nent of icir. In this regard, despite the fact the circulating current controller Gcir(s)

plays an important role in the dc-side admittance, the zero-sequence term of Y2dq0
dc

has nothing to do with the current which is mitigated employing the circulating-
current control loop. As a matter of fact, the second-harmonic components mitigated
by the circulating-current control loop have a negative sequence.

4.2.3 Current controlled MMC

Figure 4.16 presents the MMC under current control. In this case, the converter can
be either attached to the grid, in which case it would be necessary a PLL circuit, or
driving a generic load such as in a motor-drive application. The current control, as
already explained, is implemented in SRF and because of that it is noticed blocks
Tdq0 and T−1

dq0 in the figure. According to the figure, the error between output
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current, Ĩdq0c , and its reference, Ĩdq0∗c , is amplified by the controller Cdq0
i to produce

the reference vector Ẽdq0∗
c , i.e.:

Ẽdq0∗
c = Cdq0

i (s)
[̃
Idq0∗c (s)− Ĩdq0c (s)

]
+ Ddq

i Ĩdq0c (s). (4.53)
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Figure 4.16: Block diagram of the MMC under current control in SRF. It is also
included the mitigation loop of the second-order harmonic component of icir.

Two point must be minded regarding (4.53). Firstly, Ĩdq0c is a 3×3 transfer matrix
which components Gi(s) represent the transfer function of PI controllers used for
direct- and quadrature-axis control. Following the pattern used so far, kip and kii are
the proportional and integral gains of Gi(s). Secondly, the term Ddq

i corresponds
to the factor used to decouple the direct and quadrature axis. These points can be
mathematically expressed by:

Cdq0
i (s) =

 Ci(s) 0 0

0 Ci(s) 0

0 0 0

 , (4.54)

Ci(s) = kip +
kii
s
, (4.55)

Ddq
i =

L+ 2Lf
Vdc0

Ω. (4.56)

Combining (4.41) and (4.43), and then substituting (4.53) into the result, it is
possible to reach the model for the current loop of the MMC:

Ĩdq0c (s) = Gdq0
icl (s)̃Idq0∗c (s)−Ydq0

ac (s)Ṽdq0
o (s). (4.57)
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As the result presented in Chapter 4.1, (4.57) corresponds to the node equation
of the Norton-equivalent circuit drawn in Figure 4.17. As the MMC always has
a circulating current mitigation control, it was included in the figure the circuit
developed in Section 4.2.2. Regarding Gdq0

icl and Ydq0
ac , they are matrices representing

the closed-loop current gain and output admittance of the converter and are given
by:

Ydq0
ac (s) = 8CeqΓ

−1
i (s)sdq, (4.58)

Gdq0
icl (s) = Γ−1

i (s)

(
4CeqVdc0sdq +

2S0

3Vdc0
I

)
Cdq0
i (s), (4.59)

where Γi, expressed in (4.61), is a dimensionless term used to make the result more
readable, and sdq is a matrix defined as the SRF complex frequency and given by:

sdq = Ω + sI (4.60)

Γi(s) = I+

(
4CeqVdc0sdq +

2S0

3Vdc0
I

)
Cdq0
i (s)+4Ceq (Z + 2Zf ) sdq−

2S0

3Vdc0
Ddq
i . (4.61)

Ṽdq0
o

acdc

Ṽdq0
o

Ĩdq0c

Ydq0
acGdq0

icl Ĩ
dq0∗
cY2dq0

dcṼ2dq0
dc

Ĩ2dq0cir

Figure 4.17: Norton-equivalent circuit of the MMC under current control in SRF.

Figures 4.18 and 4.19 present the results obtained following the validation stra-
tegy already explained. It is worthwhile noticing that, once the decoupling loop is
employed, the cross-axis terms of Ydq0

ac and Gdq0
icl are overwhelmingly smaller than

their counterparts and because of that are not shown here. Moreover, the zero-
sequence term of Gdq0

icl is not shown either once the zero in the position (3,3) of
(4.54) makes it null. Still considering the zero-sequence terms, it was decided to
present the validation results for Ydq0

ac , yet it is necessary to bear in mind that this
term only exists if the middle point of the dc bus is in the same potential of the ac-
side ground. Finally, for the tests presented here, it was considered kip = 0.001A−1

and kii = 0.1A−1rad/s.
Concerning the ac admittance Ydq0

ac , both the self-related and zero-sequence
terms, presented in Figures 4.18a and 4.18b respectively, matched the correct beha-
vior pointed by the non-linear time-domain model of the system with a single small
exception at 60Hz. Bear in mind that in SRF, 60Hz corresponds to either dc or
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(a) Self-related term

(b) Zero-sequence term

Figure 4.18: Frequency Response of Ydq0
ac : comparison between the linearized model

and the non-linear, time-domain model.

120Hz in NRF, consequently, this difference might not raise concerns once there are
no typical components at this frequency on the ac main bus. Apart from that, it
is important to notice that as the frequency tends to zero, the magnitudes of the
admittances tend to −∞dB. This effect is created by the current controller which,
in turn, compels the converter to act as a current source at fundamental frequency3.
As for the self-related term of the closed-loop gain Gdq0

icl , the proposed model showed
high accuracy except at the frequencies of 60 and 120Hz. It is also worthwhile no-
ticing that the magnitude presents 0dB when the frequency tends to zero, which is
also under the natural characteristic of the current control: the current source of
the Figure 4.17 might produce exactly the current indicated by the reference.

3In SRF, the dc component corresponds to the positive-sequence component of the fundamental
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Figure 4.19: Frequency Response of the self-related term of Gdq0
icl : comparison

between the linearized model and the non-linear, time-domain model. The cross-axis
and zero-sequence term are negligible and because of that not presented.

4.2.4 Single-loop voltage controlled MMC

Figure 4.20 presents the schematic of the grid-forming MMC under single-loop vol-
tage control from which it is possible to write the following control law in SRF:

Ẽdq0∗
c (s) = Cdq0

v,sl(s)
[
Ṽdq0∗
o (s)− Ṽdq0

o (s)
]
. (4.62)

In this case, Cdq0
v,sl is the matrix containing the control transfer functions and Ṽdq0∗

o is
the reference vector for the produced voltage. As in the previous section, the voltage
control is based in PI controllers with proportional and integral gains represented
by kv,slp and kv,sli , respectively. Following this convention, it is possible to write:

Cdq0
v,sl(s) =

 Cv,sl(s) 0 0

0 Cv,sl(s) 0

0 0 0

 , (4.63)

Cv,sl(s) = kv,slp +
kv,sli

s
. (4.64)

To reduce the produced equations, a series of definitions are to be made in this
section. The first consists on defining the SFR impedances Zdq and Zfdq given by:

Zdq(s) = Lsdq +RI, (4.65)

Zfdq(s) = Lfsdq +RfI. (4.66)

frequency in NRF.
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Figure 4.20: Block diagram of the MMC under single-loop voltage control in SRF.
It is also included the mitigation loop of the second-order harmonic component of
icir.

Using the presented definition, it is possible to find the following result after
multiplying (4.43) by 2Ceqsdq:

4Ceqsdq (Zdq + 2Zfdq) Ĩdq0c = 4Vdc0CeqsdqẼ
dq0∗
c − 2CeqsdqṼ

dq0∆
dc − 8CeqsdqṼ

dq0
o , (4.67)

which is the base equation for the equivalent model developed in this section.
For the next step it is necessary to notice that the term 2CeqsdqṼ

dq0∆
dc in (4.67)

corresponds to the left side of (4.41). Consequently, combining these equations
produces:

Γsl
v,in(s)̃Idq0c (s) =

(
4Vdc0Ceqsdq +

2S0

3Vdc0

)
Ẽdq0∗
c (s)− 8CeqsdqṼ

dq0
o (s), (4.68)

Γsl
v,in(s) = [4Ceqsdq (Zdq + 2Zfdq) + I] , (4.69)

where Γsl
v,in is a dimensionless factor defined, once more, to reduce the size of the

equations.
In this point, substituting the control law given by (4.62) into (4.68) leads to

the equivalent model which does not take into account the capacitor bank Cf , i.e.,
the equation which relates the vectors Ṽdq0

o , Ṽdq0∗
o and Ĩdq0c . This result, after some

algebraic manipulations, is expressed as follows:

Ṽdq0
o (s) = Gdq0

v,sl,cl(s)Ṽ
dq0∗
o (s)− Zsl

in(s)Γsl
v,in(s)̃Idq0c (s), (4.70)

Zsl
in(s) =

[(
4Vdc0Ceqsdq +

2S0

3Vdc0

)
Cdq0
v,sl(s) + 8Ceqsdq

]−1

, (4.71)
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(b) Thévenin-equivalent circuit

Figure 4.21: Equivalent circuits of the MMC under single-loop voltage control in
SRF.

Gdq0
v,sl,cl(s) = Zsl

in(s)

(
4Vdc0Ceqsdq +

2S0

3Vdc0

)
Cdq0
v,sl(s), (4.72)

where Zsl
inΓ

sl
v,in represents the inner impedance of the system and Gdq0

v,sl,cl is the closed-
loop voltage gain as depicted in Figure 4.21a.

For obtaining the Thévenin-equivalent model depicted in Figure 4.21b, it is ne-
cessary to get rid of the produced current Ĩdq0c and manipulate the equation so as
the main-bus voltage is a function of the current Ĩdq0o drawn by the load. This can
be accomplished by substituting the following node equation into (4.70):

Ĩdq0c (s) = Ĩdq0o (s) + Ĩdq0cf (s) = Ĩdq0o (s) + CfsdqṼ
dq0
o (s). (4.73)

Finally, the Thévenin-equivalent model is given by:

Ṽdq0
o (s) = Gdq0

sl,th(s)Ṽ
dq0∗
o (s)− Zdq0

sl,th(s)̃I
dq0
o (s) (4.74)

Gdq0
sl,th(s) =

[
CfZ

sl
in(s)Γsl

v,in(s)sdq + I
]−1

Gdq0
v,sl,cl(s) (4.75)

Zdq0
sl,th(s) =

[
CfZ

sl
in(s)Γsl

v,in(s)sdq + I
]−1

Zsl
in(s)Γsl

v,in(s) (4.76)

where Gdq0
sl,th in the Thévenin-equivalent closed-loop matrix gain and Zdq0

sl,th is the
Thévenin-equivalent impedance matrix.

The results obtained from the validation process are presented in Figures 4.22
and 4.23. In this context, it was considered kv,slp = 0.000001V −1 and kv,sli =
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(a) Self-related term

(b) Cross-axis term

(c) Zero-sequence term

Figure 4.22: Frequency Response of Zdq0
sl,th: comparison between the linearized model

and the non-linear, time-domain model.

77



0.0001V −1rad/s. Differently from the previous section, it is presented the frequency
response for the self-related and cross-axis terms of both Zdq0

sl,th and Gdq0
sl,th. In this

case, it was not possible to neglect the cross-axis terms once the capacitor bank
Cf and the impedances Zdq and Zfdq couple the direct and quadrature axis of the
system. Besides that, it is also provided the results for the zero-sequence term of
Zdq0
sl,th. Bear in mind, though, that the presence of zero sequence components in the

system is conditioned to a connection between the middle point of the dc bus and
the ac-side ground.

(a) Self-related term

(b) Cross-axis term

Figure 4.23: Frequency Response of Gdq0
sl,th: comparison between the linearized model

and the non-linear, time-domain model. The zero-sequence term is negligible, then
it is not presented.

It stood out in Figures 4.22a, 4.22b, 4.23a and 4.23b a significant disparity
between the results in the frequency range that goes from 50 to 70Hz. The data
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obtained from the non-linear time-domain model, in this case, indicate smoother
responses than the responses obtained with the proposed analytical model. As far
as it is possible to understand this issue, it is possible to conclude it is due to appro-
ximations and numerical errors in the process of computing the matrices Zdq0

sl,th and
Gdq0
sl,th. Despite the fact the model presented in (4.74)-(4.76) is simple and compact,

the matrix inversions and multiplications presented in it lead to hundred-degree
polynomes. Of course, the inversion of such matrices presents some small numeri-
cal errors which in case of the presence of these huge polynomes affect severely the
characteristic described by the model. As this is recurrent issue on the forthcoming
models, it is deeply addressed in Section 4.2.6.

Aside from the previously mentioned discrepancies, it is also observed differences
between the model at 120Hz. In this case, though, it probably comes from non-
linear characteristics that are not covered by the analytical model.

4.2.5 Double-loop Voltage controlled MMC

The idea of double-loop voltage control presented here is similar as that presented
in Chapter 4.1, i.e, an outer voltage control loop computing the reference for an
inner current control loop, as depicted in Figure 4.24. Consequently, the approach
of using the current-controlled-MMC model as a starting point is also suitable here.
In this regard, the control law for the outer loop is given by:

Ĩdq0∗c (s) = Cdq0
v (s)

[
Ṽdq0∗
o (s)− Ṽdq0

o (s)
]
, (4.77)
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Figure 4.24: Block diagram of the MMC under double-loop voltage control in SRF.
It is also included the mitigation loop of the second-order harmonic component
of icir.
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Cdq0
v (s) =

 Cv(s) 0 0

0 Cv(s) 0

0 0 0

 , (4.78)

Cv,sl(s) = kv,dlp +
kv,dli

s
. (4.79)

Substituting (4.77) in (4.57) and making some arrangements it is possible to find
the following result:

Ṽdq0
o (s) = Zdl

in(s)Gdq0
icl (s)Cdq0

v (s)Ṽdq0∗
o (s)− Zdl

in(s)̃Idq0c (s),

where Ṽdq0
o is the inner impedance (without count the capacitor bank) and it is

given by:

Zdl
in(s) =

[
Gdq0
icl (s)Cdq0

v (s) + Ydq0
ac (s)

]−1

. (4.80)

In this point, it is possible to use the node equation described by (4.73) to find
the Thévenin-equivalent model as follows:

Ṽdq0
o = Gdq0

dl,thṼ
dq0∗
o − Zdq0

dl,thĨ
dq0
o (4.81)

where the Thévenin-equivalent closed-loop gain Gdq0
dl,th and the Thévenin-equivalent

impedance Zdq0
dl,th are given by:

Gdq0
dl,th(s) =

[
I + CfZ

dl
in(s)sdq

]−1
Zdl
in(s)Gdq0

icl (s)Cdq0
v (s), (4.82)

Zdq0
dl,th =

[
I + CfZ

dl
in(s)sdq

]−1
Zdl
in(s). (4.83)

Once more, the equivalent circuit is presented in Figure 4.25.
The validation process was carried out considering kip = 0.001A−1, kii = 0.1A−1,

kv,dlp = 0.01A−1, kv,dli = 1A−1 and the results are summarized in Figures 4.26 and
4.27. When it comes to the terms of the Thévevin impedance matrix Zdq0

dl,th, the
only significant difference between the responses for the proposed model and the

acdc

Zdl,th
dq0

Ṽdq0
o

Ĩdq0o

Gdq0
dl,thṼ

dq0∗
o

Ĩ2dq0cir

Y2dq0
dc

Ṽ2dq0∗
dc

Figure 4.25: Equivalent circuits of the MMC under double-loop voltage control in
SRF.
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(a) Self-related term

(b) Cross-axis term

(c) Zero-sequence term

Figure 4.26: Frequency Response of Zdq0
dl,th: comparison between the linearized model

and the non-linear, time-domain model.
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(a) Self-related term

(b) Cross-axis term

Figure 4.27: Frequency Response of Gdq0
dl,th: comparison between the linearized model

and the non-linear, time-domain model. The zero-sequence term is negligible, then
it is not presented.

non-linear time-domain is observed at the frequency of 120Hz, on the self-related
and cross-axis terms, and at 60Hz on the zero-sequence term. Once more, this
difference must be the effect of the linearization cutting off some non-linear cha-
racteristics of the system. As for the terms of Gdq0

dl,th, it is noticeable a significant
disparity at the frequency of 10Hz in the cross-axis term, besides the presence of
sharp patterns around the frequency of 60Hz not indicated by the results of the non-
linear time-domain model. These patterns were probably generated by the numeric
issues on inverting matrices with hundred-order polynomes, as previously reported
in Section 4.2.4.
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4.2.6 Issues sparkled by the use of matrix notation in the

SRF models

This Section shows a glimpse of the computational issues created by the matrix
approach used in the modeling of SRF-controlled MMCs. Besides that, it is also
intended here to present some strategies to allow the computation of the proposed
models with minimal or even zero computational errors. For this analysis, it is con-
sidered the s-domain control functions of Matlab, yet the idea can be extrapolated
to Octave [113] (and, with some adjustments, extrapolated to python [114]). The
codes analyzed in this section, together with the not so much organized codes used
in the rest of the thesis, can be found in the GitHub repository indicated in [115].

To start, consider the model for the current-controlled MMC rewritten here for
facilitating the reading:

Ydq0
ac (s) = 8CeqΓ

−1
i (s)sdq, (4.84)

Gdq0
icl (s) = Γ−1

i (s)

(
4CeqVdc0sdq +

2S0

3Vdc0
I

)
Cdq0
i (s), (4.85)

Γi(s) = I+

(
4CeqVdc0sdq +

2S0

3Vdc0
I

)
Cdq0
i (s)+4Ceq (Z + 2Zf ) sdq−

2S0

3Vdc0
Ddq
i . (4.86)

Considering the settings used throughout this chapter (including numeric values
of passive elements and control gains), the transfer matrix Γi can be written as:

Γi(s) =

 Γdd Γdq 0

Γqd Γqq 0

0 0 Γ0

 (4.87)

where,

Γdd(s) = Γqq(s) =
0.1062 s3 + 275.4 s2 + 28444.0 s+ 44444.0

1000s
, (4.88)

Γdq(s) = −Γqd(s) = −40.04 s2 + 1.038× 105 s+ 1.018× 107

1000s
, (4.89)

Γ0(s) =
1

1000

(
0.1062 s2 + 5.4 s+ 1000.0

)
. (4.90)

In this case, it is possible to state that the self-related terms of Γi have order
three, wheres the mutual and zero-sequence terms have order equal to two. It is
necessary to compute Γ−1

i , so as to determine the admittance and gain presented
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in (4.84) and (4.85). In this case, Γ−1
i also presents a matrix form as follows:

Γi
−1(s) =

 Γinv,dd Γinv,dq 0

Γinv,qd Γinv,qq 0

0 0 Γinv,0

 , (4.91)

where

Γinv,dd(s) = Γinv,qq(s) =

9416.0 s4 + 2.442× 107 s3 + 2.522× 109 s2

+ 3.941× 109 s− 0.6177

s6 + 5186.0 s5 + 7.403× 106 s4 + 2.127× 109 s3

+ 1.101× 1012 s2 + 1.875× 1014 s+ 9.186× 1015

, (4.92)

Γinv,dq(s) = −Γinv,qd(s) =

3.55× 106 s3 + 9.2× 109 s2

+ +9.025× 1011 s− 0.1199

s6 + 5186.0 s5 + 7.403× 106 s4 + 2.127× 109 s3

+ 1.101× 1012 s2 + 1.875× 1014 s+ 9.186× 1015

, (4.93)

Γinv,0(s) =
9416.0

s2 + 50.85s+ 9416.0
(4.94)

Notice that the operation of inversion by itself produced sixth-order polynomi-
als as transfer functions. As the matrix operations are computed, the order of the
polynomials grows up and the implementation does play an important hole in this
process. Just to have a glimpse into the subject, observe in the following code in
which the Norton-equivalent admittance was computed using two different approa-
ches:

1 % First approach

2 Y_norton = 8*Ceq.*inv(Gamma_i)*sdq;

3
4 % Second approach

5 Y_norton_2 = 8*Ceq.*(Gamma_i\sdq);

In this case, sdq corresponds to the transfer matrix sdq and Gamma_i to (4.86). Ob-
serve that in line 2, Gamma_i is inverted using the Matlab function inv, whereas in
line 5, the backslash is used. In general, inv(Gamma_i)*sdq = Gamma_i\sdq, yet the
second approach presents better numerical accuracy for solving linear systems [116].

84



The Norton-equivalent admittance is given by:

Ydq0
ac (s)(s) =

 Ydd Ydq 0

Yqd Yqq 0

0 0 Y0

 , (4.95)

Ydd(s) = Yqq(s) =
Ydd,num
Yden

, (4.96)

Yqd(s) = −Ydq(s) =
Yqd,num
Yden

, (4.97)

Using the first approach (line 2 of the piece of code presented), it is found poly-
nomials with orders up to twelfth, given by:

Ydd,num,1 = 33.9 s11 + 2.637× 105 s10 + 7.208× 108 s9

+ 8.074× 1011 s8 + 3.932× 1014 s7 + 2.315× 1017 s6

+ 6.774× 1019 s5 + 1.978× 1022 s4 + 3.82× 1024 s3

+ 3.445× 1026 s2 + 1.125× 1028 s− 1.495× 1015, (4.98)

Yqd,num,1 = −2.728× 10−11 s10 + 21044.0 s9

+ 2.829× 108 s8 + 1.063× 1012 s7 + 1.359× 1015 s6

+ 4.324× 1017 s5 + 2.066× 1020 s4 + 3.867× 1022 s3

+ 2.6× 1024 s2 + 4.913× 1025 s− 1.656× 1014, (4.99)

Yden,1 = s12 + 10388.0 s11 + 4.17× 107 s10 + 8.104× 1010 s9

+ 7.906× 1013 s8 + 4.328× 1016 s7 + 2.278× 1019 s6

+ 7.553× 1021 s5 + 2.145× 1024 s4 + 4.518× 1026 s3

+ 5.538× 1028 s2 + 3.445× 1030 s+ 8.439× 1031. (4.100)

On the other hand, considering the second approach (line 5 of the piece of code
presented), the results presented orders no greater than six, as follows:

Ydd,num,2 = 33.9s5 + 8.791× 104s4 + 1.39× 107s3

+ 1.25× 1010s2 + 1.225× 1012s+ 0.001193, (4.101)

Yqd,num,2 = 2.104 × 104s3 + 1.738 × 108s2 + 5.348 × 109s + 4.507, (4.102)
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Yden,2 = s6 + 5186s5 + 7.403× 106s4 + 2.127× 109s3

+ 1.101× 1012s2 + 1.875× 1014s+ 9.186× 1015 (4.103)

Despite the fact the results appear to be quite different, their frequency responses
present no difference whatsoever in the frequency range considered in this work
(from 1Hz to 1kHz), and even in broader frequency ranges. It was chosen not to
plot these results here to save space. Still in this Section, some comparisons between
frequency responses obtained from different code implementation are to be shown.
Tables 4.1 and 4.2 present, respectively, the poles of the admittance and the zeros
of its self-related term for each one of the code implementation approaches. Notice
that, the model computed with the first approach presents two pairs of poles in
the neighborhoods of −0.10238 ± j0.00099 k rad/s, while the other one presents a
single pair of poles. Besides that, the first-approach model presents a pair of zeros
exactly in this neighborhood, yet the other model does not. This pair of zeros must
have been crossed off with one of the mentioned pairs of poles, nonetheless, due to
numerical errors, this did not happen. To be more precise, the mentioned numerical
errors caused differences between these poles and zeros in the fifth/sixth decimal
digits (which corresponds to errors lower than ±0.01 rad/s), paving the way for
polynomials with order greater than the necessary to represent the system.

Table 4.1: Poles from the Norton-equivalent admittance with different code imple-
mentations

First Approach (k rad/s) Second Approach (k rad/s)

−2.485617549224798 + 0.000767191197238j −2.485617601764149 + 0.000582319303508j
−2.485617549224798− 0.000767191197238j −2.485617601764149− 0.000582319303508j
−2.485617654303014 + 0.000299347975960j −0.005220670583661 + 0.376577177024133j
−2.485617654303014− 0.000299347975960j −0.005220670583661− 0.376577177024133j
−0.005220667604554 + 0.376577186176171j −0.102382066635165 + 0.000996260709563j
−0.005220667604554− 0.376577186176171j −0.102382066635165− 0.000996260709563j
−0.005220673560191 + 0.376577167872322j -
−0.005220673560191− 0.376577167872322j -
−0.102382286917142 + 0.000996263460398j -
−0.102382286917142− 0.000996263460398j -
−0.102381846356404 + 0.000996258006741j -
−0.102381846356404− 0.000996258006741j -

The issue related to the process of matrix inversion is not the only challenge when
computing the models for the SRF-controlled MMC. Consider now the model for
the single-loop, voltage-controlled MMC, rewritten here with some extra indication
(some intermediary variables that are used in the code) to facilitate understanding
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the next piece of code:

Γsl
v,in(s) = [4Ceqsdq (Zdq + 2Zfdq) + I] , (4.104)

Zsl
in(s) =


Yin︷ ︸︸ ︷(

4Vdc0Ceqsdq +
2S0

3Vdc0

)
Cdq0
v,sl(s)︸ ︷︷ ︸

Γmid

+8Ceqsdq


−1

, (4.105)

Gdq0
v,sl,cl(s) = Zsl

in(s)

(
4Vdc0Ceqsdq +

2S0

3Vdc0

)
Cdq0
v,sl(s)︸ ︷︷ ︸

Γmid

, (4.106)

Gdq0
sl,th(s) =

CfZsl
in(s)Γsl

v,in(s)sdq + I︸ ︷︷ ︸
Γout


−1

Gdq0
v,sl,cl(s) (4.107)

Zdq0
sl,th(s) =

CfZsl
in(s)Γsl

v,in(s)sdq + I︸ ︷︷ ︸
Γout


−1

Zsl
in(s)Γsl

v,in(s) (4.108)

It follows the entire Matlab function coded to compute the parameters of the
single-loop, voltage-controlled MMC. The name of each variable in the algorithm
matches the symbols previously established in this thesis, consequently, they might
not be explained one by one here. The important points to notice are that the
function receives as input a structure with the MMC data and produces as output
another structure with all the computed matrix (in these cases, transfer matrices).
Besides that, to evaluate the impact of the coding implementation, some of the
matrices were computed several times following different approaches. For instance,

Table 4.2: Zeros from the self-related term of the Norton-equivalent admittance with
different code implementations

First Approach (k rad/s) Second Approach (k rad/s)

−2.485617574288163 + 0.000582319282110j −2.485617271621857 + 0.000000000000000j
−2.485617574288163− 0.000582319282110j −0.002604064103253 + 0.376776662588592j
−2.485617326573334 + 0.000000000000000j −0.002604064103253− 0.376776662588592j
−0.002604064103246 + 0.376776662588599j −0.102394939154689 + 0.000000000000000j
−0.002604064103246− 0.376776662588599j −0.000000000000000 + 0.000000000000000j
−0.005220670582379 + 0.376577177024240j -
−0.005220670582379− 0.376577177024240j -
−0.102394939154283 + 0.000000000000000j -
−0.102382066636976 + 0.000996260709208j -
−0.102382066636976− 0.000996260709208j -
+0.000000000000000 + 0.000000000000000j -
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in lines 33-35 of the following code, Γout was computed in three different ways. In
this case, the greater the index, the more accurate is the result, i.e., Gamma_out_3
has more accuracy than Gamma_out_2 and so on.

1 function Model = MODEL_SRF_VC_SL(MMC,Cv_sl)

2 % Model for the Single-loop, Voltage-Controlled MMC

3 % MMC -> Structure with the MMC’s parameters

4 % Cv_sl -> s-domain transfer function (voltage controller)

5
6 % Definitions

7 I = eye(3); % Identity matrix

8 s = tf(’s’); % Complex frequency

9 Ceq = MMC.C/MMC.N; % Equivalent capacitance

10
11 W = [0 -MMC.w0 0;MMC.w0 0 0;0 0 0]; % Coupling Matrix

12 sdq = W + s.*I; % Matrix frequency

13 Zdq = MMC.R*I + MMC.L*sdq; % Inner Impedance

14 Zfdq = MMC.Rf*I + MMC.Lf*sdq; % Outer Impedance

15
16 Cv_dq = [Cv_sl 0 0;0 Cv_sl 0;0 0 0];% Controller

17
18 % Some ajustments to fit in the screem

19 Vdc0 = MMC.Vdc0; % Rated dc voltage

20 SN = MMC.SN; % Rated dc power

21 Cf = MMC.Cf; % Capacitor banck

22
23 % Model:

24 % It is computed in different ways to show the numeric

25 % effects of different implementations

26 Gamma_in = 4*Ceq*sdq*(Zdq+2*Zfdq) + I;

27
28 Gamma_mid = (4*Vdc0*Ceq*sdq + I*2*SN/(3*Vdc0))*Cv_dq;

29
30 Y_in = Gamma_mid + 8*Ceq*sdq;

31 Z_in = inv(Y_in); % Equation (4.69) of the thesis

32
33 Gamma_out = Cf*Z_in*Gamma_in*sdq + I;

34 Gamma_out_2 = Cf*Z_in*(Gamma_in*sdq) + I;

35 Gamma_out_3 = Cf*(Y_in\(Gamma_in*sdq)) + I;

36
37 Gamma_out_inv = inv(Gamma_out);

38 Gamma_out_inv_2 = inv(Gamma_out_2);
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39
40 Z_th = Gamma_out_inv*Z_in*Gamma_in;

41 Z_th_2 = Gamma_out_inv_2*Z_in*Gamma_in;

42 Z_th_3 = Gamma_out_inv_2*(Z_in*Gamma_in);

43 Z_th_4 = Gamma_out_2\(Z_in*Gamma_in);

44 Z_th_5 = Gamma_out_3\(Y_in\Gamma_in);

45
46 G_th = Gamma_out_inv_2*(Z_in*Gamma_mid);

47 G_th_2 = Gamma_out_3\(Y_in\Gamma_mid);

48
49 % Output structure

50 Model = struct(’Gamma_in’,Gamma_in,...

51 ’Gamma_mid’,Gamma_mid,...

52 ’Y_in’,Y_in,...

53 ’Z_in’,Z_in,...

54 ’Gamma_out’,Gamma_out,...

55 ’Gamma_out_2’,Gamma_out_2,...

56 ’Gamma_out_3’,Gamma_out_3,...

57 ’Gamma_out_inv’,Gamma_out_inv,...

58 ’Gamma_out_inv_2’,Gamma_out_inv_2,...

59 ’Z_th’,Z_th,...

60 ’Z_th_2’,Z_th_2,...

61 ’Z_th_3’,Z_th_3,...

62 ’Z_th_4’,Z_th_4,...

63 ’Z_th_5’,Z_th_5,...

64 ’G_th’,G_th,...

65 ’G_th_2’,G_th_2);

66 end

Continuing on the segment between the lines 33 and 35, at first glance
Gamma_out_2 = Gamma_out, but that is not a precise assumption. The Parentheses,
which is the difference between the two lines, change the order of computation and
that affects the results. On line 33, first the matrices Z_in and Gamma_in are multi-
plied and then the result is multiplied by sdq. On line 34, on the other hand, first
the matrices Gamma_in and sdq are multiplied and then their result is multiplied by
Z_in. Analytically this makes no difference, but computationally it does. The order
of the polynomials in Z_in and Gamma_in are greater than the order in sdq, and com-
putational errors associated with polynomial multiplications grow with the order of
them. In this case, the computational error (εcp{•}) can be relatively estimated as
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either one of the possibilities4:

εcp{(ZinΓin) sdq} > εcp{ZinΓin} > εcp{Zin (Γinsdq)} > εcp{Γinsdq}, (4.109)

εcp{(ZinΓin) sdq} > εcp{Zin (Γinsdq)} > εcp{ZinΓin} > εcp{Γinsdq}. (4.110)

Analyzing the results, Gamma_out, Gamma_out_2 and Gamma_out_3 produced trans-
fer matrices with polynomials of order up to 18, 9, and 6, respectively. As with the
current-controlled admittance, the numerical errors prevented the pole-zero cancel-
lation in the approaches with lower accuracy5. For this result, it is also possible
to conclude that a simple change of multiplication order (the difference between
Gamma_out and Gamma_out_2) significantly increases the accuracy and prevent huge-
order polynomials when dealing with transfer matrices.

Going straight for the Thévenin impedance (lines 40 - 44 of the code), the diffe-
rent implementations also lead to different-order polynomials, say it, 160 for Z_th,
96 for Z_th_2, 56 for Z_th_3, 28 for Z_th_4 and Z_th_5. Figure 4.28a presents the fre-
quency response for each one of these implementations of the Thévenin impedance.
It is possible to notice that all the curves are coincident, except in the frequency
range in the red-shadowed region, due to the numeric errors already explained. To be
more precise, the error range of Z_th spams from 35 to 100Hz, yet the others are kept
within 45 to 80Hz. The zoomed frequency responses shown in Figure 4.28b allow
better visualization of the mentioned issue and, as far as it is possible to guarantee,
the response for Z_th_5 the most precise (because it was computed considering the
greatest possible number of numerical-error-preventing strategies, as can be seen in
the code)6. It suffices to say that, as the model is in SRF, the frequency range that
goes from 40-100Hz does not encompass any important harmonic component of the
power grid and for this reason does not raise any warning. It is important to mention
that these issues are also valid for the model of the doubly-loop, voltage-controlled
MMC.

4.2.7 Analyzing the non-linearities of the MMC

As mentioned in some parts of this Chapter, the developed models presented errors
in specific points of the frequency spectrum due to the inherent non-linearities of the
MMC. In this regard, it is presented here a more detailed analysis of one of the cases,

4The Matlab documentation [117] already suggests the use of parenthesis to force the multi-
plication of smaller matrices first, to reduce memory usage. Nonetheless, not much is explained
about computational errors.

5To save space, neither transfer functions nor the zeros and poles are shown here.
6The results presented in the previous sections are a little bit different in this region due to the

use of different combinations of computational implementations. Out there, the Matlab function
inv was more prevalent.
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Z_th

Z_th_2   .

Z_th_3
Z_th_4

Z_th_5

(a) Frequency response

Z_th

Z_th_2   .

Z_th_3
Z_th_4

Z_th_5

(b) Zoomed frequency response

Figure 4.28: Frequency Response of the self-related term of the Thévenin impedance
for different computational implementation

more specifically the discrepancy at 60Hz in the zero-sequence component of the dc
admittance Y2dq0

dc , so that this issue could be better understood. For this matter,
the frequency response of Figure 4.15 is represented one more time in Figure 4.29
to increase the readability of the text. Notice that not only the 60Hz frequency
was highlighted, but also the results for frequencies of 50Hz and 70Hz. These two
points, where the linearized model precisely predicted the behavior of the system
were chosen only to provide us with means of comparison.

The frequency response of the linearized model indicates that a 60Hz-disturbance
in the dc-bus voltage produces a 60Hz zero-sequence component in the circulating
current with amplitude close to the amplitudes of the components caused by the
50 and 70Hz disturbances. Nonetheless, this was not observed in the non-linear

91



60Hz

70Hz50Hz

Figure 4.29: Frequency Response of the dc-side admittance, Y2dq0
dc .

time-domain model, and a -45dB result was obtained when it should have retur-
ned some value around -20dB. In absolute numbers, this represents a difference of
over seventeen times between the results obtained from the linear and non-linear
models. To better understand this result, Figure 4.30 presents the dc-bus voltage

(a) 50Hz disturbance (b) Response for 50Hz disturbance

(c) 60Hz disturbance (d) Response for 60Hz disturbance

(e) 70Hz disturbance (f) Response for 70Hz disturbance

Figure 4.30: Time Response of the circulating current when different disturbances
occur in the dc-bus voltage.
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and circulating current for each one of the three cases analyzed (50, 60, and 70Hz
disturbances), considering that the disturbances started at t = 3s. The graphs for
the dc-bus voltages, Figures 4.30a, 4.30c and 4.30e, were horizontally cropped for
aesthetics reasons, say it, allow a good visualization of the results. Notice that dif-
ferent from the other two cases, the circulating current due to the 60Hz disturbance
dies out, as displayed in Figures 4.30d. It is possible to state that this is caused by
inherent nonlinearities of the system, which the proposed model does not account
for because of the linearization.

The disturbances in the dc-bus voltage also affect the equivalent dc voltages of
the SM, as can be seem in Figures 4.31 and 4.32. These figures represent the upper-
and lower-arm equivalent dc voltages of each phase of the MMC with a full transient
display on the left graphs and zoomed versions next to them showing the steady-
state conditions before and after the disturbance. For the 50 and 70Hz cases, these
voltages ended up presenting a 10Hz component, while for the 60Hz case there were
changes in the average values of the dc voltages. Notice in phase a, for instance, that
the upper-arm dc voltage decreased while in the lower increased, indicating that this
component inferred an energy exchange within the legs of the converter (the same
can be noticed with the other phases as well). In all the three cases, these effects are

a b c

(a) Response for 50Hz disturbance (b) Zoom for 50Hz

a b c

(c) Response for 60Hz disturbance (d) Zoom for 60Hz

a b c

(e) Response for 70Hz disturbance (f) Zoom for 70Hz

Figure 4.31: Time Response of the upper-arm equivalent dc voltages when different
disturbances occur in the dc-bus voltage.
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a b c

(a) Response for 50Hz disturbance (b) Zoom for 50Hz

a b c

(c) Response for 60Hz disturbance (d) Zoom for 60Hz

a b c

(e) Response for 70Hz disturbance (f) Zoom for 70Hz

Figure 4.32: Time Response of the lower-arm equivalent dc voltages when different
disturbances occur in the dc-bus voltage.

caused by the interaction between the current component due to the disturbance,
let it be called ikcir,0 for it has zero sequence, with the equivalent ac voltage of the
SMs. Figure 4.33 depicts the MMC during the period where the disturbance v(t)

is applied to the dc-bus voltage and, for what was defined in previous chapters, the

Vdc

LRL R

ikcir,T = ikcir + ikcir,0

vpkacvnkac

vnkdc

ikc

vpkdc
v(t)

Figure 4.33: Equivalent circuit of the MMC under dc-bus voltage disturbance.
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following relationships govern the MMC:

vpkac (t) = mk
p(t)v

pk
dc (t), (4.111)

vnkac (t) = mk
n(t)vnkdc (t). (4.112)

When ikcir,0 presents 50/70Hz components, its interaction with the fundamental com-
ponent of vpkac and vnkac produces the 10Hz oscillations mentioned. On the other hand,
when ikcir,0 presents 60Hz component, its interaction with vpkac and vnkac produces active
power, changing the average values of vpkdc (t) and vnkdc (t). In this case, the equivalent
dc voltages become unbalanced, as can be confirmed analyzing Figures 4.31 and
4.32. As the fundamental components of vpkac and vnkac depend on the average values
of vpkdc (t) and vnkdc (t), they become unbalanced as well. This imbalance between the
upper and lower equivalent ac voltages get rid of the zero-sequence current ikcir,0.
Here it is important to realize that, if the 60Hz-related ikcir,0 had not faded away,
the transference of energy between the upper- and lower-arm capacitors would have
continued until one of them reached the zero-voltage level and the other the level
of 2Vdc0. Bearing in mind that this mechanism presents a non-linear characteristic,
once it is due to the multiplication of two variables, and because of that can not
be predicted by the developed linear models. The same idea explained here can be
extrapolated for the other cases where occurred disparities between the proposed
models and the non-linear time-domain model.

4.3 Some comparisons between the MMC and two-

level inverters from a model point of view

This Section is focused on presenting a brief comparison between the MMC and a
regular two-level converter for a better understanding of its inherent characteristics.
It is important to mention that a similar analysis was conducted by BEERTEN
et al. [118], but with an eigenvalue-oriented approach. Here, on the other hand, the
focus is the differences in the analytic transfer functions of the converters, without
considering any specific test case. Not to be too long, it is considered only the
current- and single-loop voltage-controlled modes in NRF, yet the analysis can easily
be extended for SRF models. Besides that, the doubly-loop voltage control is not
present either, since the difference between the two converters is due to the inner
current loop, already analyzed in the current-controlled mode.

A two-level converter and its average-value model are displayed in Figure 4.34.
Similar notation is used here, thus, e∗c is the modulating signal and vdc is the dc
voltage feeding the inverter. Thus, considering the vdc = Vdc0 = const, it is possible
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to write the following average-valued voltage if the typical delay caused by the PWM
modulation is not considered:

ec(t) ≈
Vdc0

2
e∗c . (4.113)

The Laplace-domain net equation of the circuit is given by:

Vdc0
2
E∗
c (s)− (sL+R) Ic(s) = Vo(s), (4.114)

where sL + R is the output impedance that might be called Z from now on to
simplify the equations, and Ic(s) is the output current.

Average-Value Model
+

−

vdc
2

+

−

ic

vdc
2

L R

vo

ec

vgZg

Zo

Control

ic

L R

vo vgZg

Zo

Control

e∗c ec ≈ Vdc

2 e∗c

Figure 4.34: Two-level converter and its average-value model.

The following two control laws can be used, respectively, for controlling the
output current or the ac-bus voltage, also following the notation used in previous
sections:

E∗
c (s) = Ci(s) [I∗c (s)− Ic(s)] , (4.115)

E∗
c (s) = Cv(s) [V ∗

o (s)− Vo(s)] . (4.116)

Substituting (4.115) and (4.116) in (4.114), separately, and rearanging the ex-
pressions, it is possible to reach the Norton-equivalent model for the current-
controlled inverter and the inner Thévenin-equivalent (without considering the ca-
pacitor bank) model for the voltage-controlled one:

Ic(s) = Gcl
i (s)I∗c (s)− Yac(s)Vo(s) (4.117)

Vo(s) = Gv,cl(s)I
∗
c (s)− Zac(s)Vo(s) (4.118)

Gcl
i (s) =

Vdc0Ci(s)

Vdc0Ci(s) + 2Z
(4.119)

Yac(s) =
2

Vdc0Ci(s) + 2Z
(4.120)
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Table 4.3: Comparison between the models for MMC and two-level inverters

MMC Two-level

Current-Controlled Yac(s)
8sCeq

4sCeq(Z+2Zf)+
(

4sCeqVdc0+
2S0

3Vdc0

)
Ci(s)+1

2
Vdc0Ci(s)+2Z

Gcl
i (s)

(
4sCeqVdc0+

2S0
3Vdc0

)
Ci(s)

4sCeq(Z+2Zf)+
(

4sCeqVdc0+
2S0

3Vdc0

)
Ci(s)+1

Vdc0Ci(s)
Vdc0Ci(s)+2Z

Voltage-Controlled Zac(s)
4sCeq(Z+2Zf)+1

8sCeq+
(

4sCeqVdc0+
2S0

3Vdc0

)
Csl

v (s)

2Z
2+Vdc0Cv(s)

Gv,cl(s)

(
4sCeqVdc0+

2S0
3Vdc0

)
Csl

v (s)

8sCeq+
(

4sCeqVdc0+
2S0

3Vdc0

)
Csl

v (s)

Vdc0Cv(s)
2+Vdc0Cv(s)

Gv,cl(s) =
Vdc0Cv(s)

2 + Vdc0Cv(s)
(4.121)

Zac(s) =
2Z

2 + Vdc0Cv(s)
(4.122)

Table 4.3 presents the parameters of the equivalent models of the two-level con-
verter side-by-side with the results related to the MMC. The first difference to be
noticed is the effect of the equivalent dc capacitance Ceq in the ac-side of the MMC,
something that is not observed in the two-level converter. Thus, terms such as
4sCeq(Z + 2Zf ) and 4sCeqCi(s) provides the MMC with frequency-domain charac-
teristics that the other converter does not present. Of course, it is possible to state
that two-level converters need ac capacitors to filter out their switching-frequency
harmonic components, and that would make the frequency-domain behavior of both
converters equivalents. However, ac capacitors (used as filters in two-level inverters)
are considerably smaller than dc capacitors (used in the SMs of the MMC) in this
difference may make the MMC prone to low-frequency resonances, whereas the two-
level to high-frequency. Another notable difference presented in Table 4.3 is that
the produced power S0 influences the dynamics of the MMC, yet not the two-level
converter.

4.4 Partial Conclusions

This chapter presented frequency-domain model to represent the MMC under diffe-
rent control modes, implemented in natural and synchronous reference frame. Con-
sidering first the NRF models, it was shown that the circulating current dynamics
together with its mitigation loop can be represented by an admittance which is in-
fluenced by the values of passive elements and the values of control parameters. As
for the ac control loops, the chapter showed that under current control the MMC
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can be represented by a Norton-equivalent electric circuit, while under voltage con-
trol it is possible to reach a Thévenin-equivalent representation of the system. In
these cases, impedances and admittances are also influenced by passive elements
and control parameters. In all the cases, analytical gains, admittances and impe-
dances were validated comparing them to the results obtained from the non-linear
time-domain model. These comparisons showed that the proposed models matched
the reference model with few discrepancies. Some of these differences appeared at
the frequencies of resonance of the controllers, and it was concluded that numerical
errors and digital implementation of the non-linear model played an important role
on them.

For the SRF-controlled MMC, the model describing the effect of the dc-bus
voltage on icir was developed in D-SRF. Still in this regard, it was shown that
only a zero-sequence term is necessary to represent this part of the model once all
the phases of the MMC are connected to the same dc bus. It was also concluded
that this zero-sequence component has nothing to do with the component which
is mitigated by the control action. This is a component that can appear in case
the voltage of the dc bus presents oscillating components. As already explained in
the previous chapter, when the MMC is under current control its ac-side model can
be depicted as a Norton-equivalent circuit, whereas the Thévenin-equivalent is used
whenever the MMC is under voltage control. The validation results, presented in
the form of Bode diagrams, showed that the developed model matched accurately
the characteristic of the MMC with a few exceptions. Some of them, especially
the ones at the frequencies of 60 and 120Hz are due to the linearization which the
model underwent in Chapter 3. The disparities observed in the models considering
the MMC under voltage control, though, were triggered by numeric issues in the
realizations of the proposed model in Matlab. In this regard, it was discussed that
the matrices inversions in these models together with the matrices multiplications
spawned hundred-order polynomes which appear to be in the kernel of the problem.
Nevertheless, these disparities affected the model only in a narrow band between 50

and 70Hz (which corresponds −10 to 10Hz for positive sequence, and 110 to 130Hz

for negative sequence in natural reference frame) which are not key frequencies of
the system.
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Chapter 5

Further analysis of the developed
models

It is known that the characteristic of equivalent admittances/impedances presented
in Chapter 4 play an important role in the performance of the MMC. Indeed, de-
pending on these characteristics the MMC may or may not be affected by harmonic
components drawn by non-linear loads or present in the voltage patterns of a power
grid [119]. For instance, the presence of harmonic distortion in the main bus voltage
(background harmonics) may cause harmonic distortion in the produced current
of the current-controlled MMC depending on the shape and values of the equiva-
lent admittance. In the same direction, non-linear loads may distort the produced
voltage depending on the Thévenin impedance of the grid-forming MMC. In this
context, this chapter aims firstly to demonstrate how the control settings interfere
in the frequency response of the equivalent admittances/impedances of the MMC
and secondly to present/propose ways to shape the equivalent admittance/impe-
dance of the MMC in a way that it becomes immune to background harmonics and
similar issues. Towards the end of the chapter, some test cases are presented to
demonstrate how the developed models can be used to speed-up time-domain simu-
lations and into stability analysis of power-electronic-based systems. These last two
points are also included in the reference [62], which are results of this thesis. One
last point, in this chapter the frequency responses were obtained from the linearized
models, but the time-domain simulations were obtained either by the non-linear or
switching-level models.
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5.1 Control settings influence on the equivalent ad-

mittances/impedance of the MMC

This section analyzes the influence of control settings on the shape of equivalent
admittances/impedances of the MMC under different operational modes. To be
more specific, it is analyzed the dc-side equivalent admittance of the circulating-
current loop, the ac-side equivalent admittance of the current-controlled MMC and
the ac-side equivalent impedance of the voltage-controlled MMC. The analyses here
are conducted in the frequency domain considering the MMC both controlled in NRF
or SRF. It is important to have in mind that, so far, all the control settings used in
the analyzes were randomly chosen without considering constraints other than the
stability of the system. In this regard, it is always considered three different values
for each of the control gains.

5.1.1 NRF-controlled MMC

This section presents the analysis for the NRF-controlled MMC under its different
control modes. As previously mentioned, three different values are assigned to each
of the control gains, all of them presented in Table 5.1, to observe the role which
that parameter plays in the equivalent admittances/impedances. Considering the
Table 5.1, under the "base value"column are presented the control settings used
in the validation process presented in Chapter 4.1. The other two conditions were
chosen so as to provide the analysis with both greater and smaller values for the
gains. It is important to mention that in any case, the terms "min"and "max"in
the table indicate that these are the minimum/maximum possible values for the
gains, they are just generic values chosen (but all of them guarantee the stability of
the system). For analysis purposes, it was decided to vary only one gain at a time,
holding the other(s) constant during the process, otherwise, a huge number of cases
would be necessary to be presented. For instance, whenever the focus is to analyze
the influence of the proportional gain, the resonant gain is kept constant with the
base value assigned to it, and vice versa. The following topics present the analysis
for each of the control loops.

dc admittance

The results which show the influence of the resonant gain in the equivalent admit-
tance used to model the dynamics of the circulating-current loop are presented in
Figure 5.1. It can be observed that for each of the three cases, the magnitude in
the resonant frequency 2ω0 is relatively small, yet the response shows the existence
of other resonant peaks each side of 2ω0. It is concluded that the value assigned to
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Table 5.1: Considered values for the analysis of the control settings influence on the
equivalent admittance/impedance: NRF-controlled MMC.

Control Mode Parameter Symbol Max. Value Base Value Min. Value
Circulating Current Resonant Gain kcirr 1.00000 0.10000 0.01000

Proportional Gain kip 0.00100 0.00010 0.00001Current-Controlled Resonant Gain kir 0.10000 0.01000 0.00100

Proportional Gain kv,slp 0.00100 0.00010 0.00001Single-Loop
Voltage-Controlled Resonant Gain kv,slr 0.01000 0.00100 0.00010

Proportional Gain: Inner Loop ki,dlp 0.00100 0.00010 0.00001
Resonant Gain: Inner Loop ki,dlr 0.05000 0.01000 0.00100

Proportional Gain: Outer Loop kv,dlp 0.50000 0.10000 0.01000
Double-Loop

Voltage-Controlled
Resonant Gain: Outer Loop kv,dlr 9.00000 1.00000 0.09000

kcirr affects the frequency position of these extra resonant peaks. On the left side of
120Hz, for instance, these resonant peaks are located at 9.8, 20.5 and 26.8Hz, de-
pending on the value of kcirr , not implying any significant issue. On the right side of
120Hz, on the other hand, the resonant peaks located at 124.3, 157.1 and 339.1Hz,
for each value of kcirr , do raise some concerns in views that they neighbor frequencies
of typical oscillatory components of the dc voltage, e.g., 4ω0. In a nutshell, the reso-
nant gain must be chosen carefully so as not to amplify some oscillatory components
in the circulating current.

120Hz9.8Hz

26.8Hz

20.5Hz

339.1Hz339.1Hz157.1Hz

Figure 5.1: Influence of the control settings on the dc-side equivalent admittance in
the NRF-controlled MMC.

MMC under current control

The influence of the proportional and resonant gains on the equivalent ac-side ad-
mittance of the MMC under current control is presented in Figure 5.2. Notice that,
in general, the influence of the control settings here is less apparent than in the
case of the dc admittance. The major effect is caused by the proportional gain,
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i.e., the greater the gain, the lower the admittance. In the ideal condition, it is
desired the converter acting as a current source with equivalent admittance tending
to 0 (−∞dB). Thus, it stood out that higher values for the proportional gain are
better for the current loop, yet it is necessary to bear in mind that stability cons-
traints have to be satisfied. On the other hand, the decreasing of the proportional
gain may inflict a resonant peak at 14Hz, besides elevating the magnitude of the
equivalent admittance as a whole. The resonant gain, considering the range used in
the analysis, does not present any significant effect in the shape of the admittance.

(a) Influence of kip

(b) Influence of kir

Figure 5.2: Influence of the control settings on the Norton-equivalent admittance in
the NRF current-controlled MMC. Only one of the gains (proportional and resonant)
was varied at a time accordingly Table 5.1. In this case, the base value was assigned
to the other.
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MMC under single-loop voltage control

Figure 5.3 sheds light on the effects of the proportional and resonant gain on the
shape of the Thévenin-equivalent impedance of the MMC under single-loop voltage
control. Once more, the proportional gain influence on the impedance stood out.
Indeed, the assigned proportional gains played an important role in the average level
of the magnitude curve and the position of a resonant peak. Observe that higher
values of kv,slp reduce the average level of the impedance and, consequently, make the
converter to operate near the ideal condition (ideal voltage source). Nonetheless,
increasing the proportional gain shifts the resonant peak towards the right, moving
it from 274.4Hz to 604.3Hz, for instance. Notice that these frequencies are in

(a) Influence of kv,slp

(b) influence of kv,slr

Figure 5.3: Influence of the control settings on the Thévenin-equivalent impedance
in the single-loop NRF voltage-controlled MMC. Only one of the gains (proportional
and resonant) was varied at a time accordingly Table 5.1. In this case, the base value
was assigned to the other.
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the neighborhood of the fifth- and eleventh-order harmonic components, which in
a nutshell indicates that higher values of kv,slp are more suitable for six-pulse-based
non-linear loads, while small values are better for twelve-pulse-based loads1.

MMC under double-loop voltage control

The double loop approach implies that four parameters, rather than two, can be
tuned, i.e., the proportional and resonant gain of the current controller and those of
the voltage controller. For this reason, Figure 5.4 presents four diagrams, each one
focusing on the influence of one of the control gains. As with the previous control
modes, the resonant parts show a weak influence on the shape of the equivalent
impedance. Nonetheless, it stands out in Figure 5.4b that higher values of the
resonant gain of the current control loop may increase the amplitude of the resonant
peak located at 276.9Hz. Meanwhile, the proportional gains do exert great influence
on the shape of the equivalent impedance shifting the position of the resonant peaks,
as highlighted in Figures 5.4b and 5.4d. As these peaks cover the frequency range
of the main harmonic components in an ac system, the values for the proportional
gains might be carefully chosen. It is also noticed that, while kv,dlp only shifts the
resonant peak, ki,dlp tend also to damp it with its increasing.

1The fifth-order is the major harmonic component in six-pulse rectifies, while the eleventh-order
is the major harmonic component in twelve-pulse rectifies. Consequently, six-pulse rectifiers could
cause greater harmonic distortion in the voltage if the resonant peak of the Thévenin impedance
lies nears the fifth-order-harmonic frequency. The same is analogously true for the twelve-pulse
rectifier and its corresponding major-harmonic-component frequency.

(a) Influence of ki,dlp
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(b) Influence of ki,dlr

(c) Influence of kv,dlp

(d) Influence of kv,dlr

Figure 5.4: Influence of the control settings on the Thévenin-equivalent impedance in
the double-loop NRF voltage-controlled MMC. Only one of the gains (proportional
and resonant) was varied at a time accordingly Table 5.1. In this case, the base
value was assigned to the other.
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Table 5.2: Considered values for the analysis of the control settings influence on the
equivalent admittance/impedance: SRF-controlled MMC.

Control Mode Parameter Symbol Max. Value Base Value Min. Value
Proportional Gain kip 0.0050000 0.0010000 0.0001000Current-Controlled Integral Gain kii 1.0000000 0.1000000 0.0100000

Proportional Gain kv,slp 0.0000100 0.0000010 0.0000001Single-Loop
Voltage-Controlled Integral Gain kv,sli 0.0010000 0.0001000 0.0000100

Proportional Gain: Inner Loop ki,dlp 0.0100000 0.0010000 0.0001000

Integral Gain: Inner Loop ki,dli 1.0000000 0.1000000 0.0100000
Proportional Gain: Outer Loop kv,dlp 0.1000000 0.0100000 0.0010000

Double-Loop
Voltage-Controlled

Integral Gain: Outer Loop kv,dli 10.0000000 1.0000000 0.1000000

5.1.2 SRF-controlled MMC

As in the previous section, here it is presented the influence of the control settings on
the equivalent admittance/impedance of the SRF-controlled MMC under different
control modes. It is followed the same approach of considering three different values
for each gain and splitting the analysis in subsections focusing each control mode.
Table 5.2 presents the considered control settings and its "base value"column indi-
cated the condition utilized in Section 4.2 of the Chapter 4. One different aspect in
comparison to the previous section is that here the analysis of the dc-side equivalent
admittance was omitted. As explained in Section 4.2, the zero-sequence term of this
admittance was the only one considered for analysis and as this component is not
controlled by the circulating current loop, the control setting does not affect it.

Before proceeding with the analysis, it is necessary to bear in mind that in SRF
the fundamental components are placed in 0Hz (dc) and that other important har-
monic components are shifted as well. For instance, negative-sequence fifth-order
and positive-sequence seventh-order harmonic components are moved into 360Hz,
while negative-sequence eleventh-order and positive-sequence thirteenth-order com-
ponents are merged at 720Hz. As these are the major components found in the
power system, it is desired that equivalent admittances/impedances present as lower
value as possible in 0, 360 and 720Hz to provide the MMC with immunity to dis-
turbances.

MMC under current control

Figure 5.5 embodies the results for the influence of the proportional and integral
gains in the shape of the self-related term of the Norton-equivalent admittance
of the MMC. Considering first the effect produced by the proportional gain, it is
noticeable that the curves converge to the same trajectory both when the frequency
tends to zero and ∞. Nonetheless, the level of the magnitude curves swells with
the decrease of the gain in the frequency range that goes from 10 to 600Hz. As the
key frequency of 360Hz is within this interval, lower values of kip must be avoided
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or else the produced current would be affected in face of harmonic distortion in the
grid voltage. As for the integral gain, it seems that greater values shape the curve
so that the magnitude converges to −∞ faster when the frequency tends to zero.
However, the increase of the integral gain is responsible for a boost in the magnitude
in the region bounded by 200 and 600Hz (region where key harmonic components
are located).

(a) Influence of kip

(b) Influence of kii

Figure 5.5: Influence of the control settings on the self-related term of the Norton-
equivalent admittance in the SRF current-controlled MMC. Only one of the gains
(proportional and integral) was varied at a time accordingly Table 5.2. In this case,
the base value was assigned to the other.
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MMC under single-loop voltage control

Figure 5.6 presents the results for the MMC under SRF single-loop voltage control.
The influence of the proportional gain in similar for the self-related and cross-axis
terms as it can be seem in Figures 5.6a and 5.6c. In general, the resonant peaks
on the right side of 60Hz are shifted to higher frequencies with the increase of the
proportional gain. In the worst scenario, which correspond to the highest value of
kv,slp considered, one of the resonant peaks lay at 334.5Hz which is close to one of
the key frequencies mentioned in the beginning of this section. The entanglements
observed around 60Hz are due to the numerical issues discussed in Section 4.2. As
for the integral gain, the major issue related to it is a swelling on resonant peak at
275.3Hz caused by its increasing. Here it is important to notice that the amplitude
of this resonance is increased with the increase of the integral gain.

(a) Self-related term: influence of kv,slp

(b) Self-related term: influence of kv,sli
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(c) Cross-axis term: influence of kv,slp

(d) Cross-axis term: influence of kv,sli

Figure 5.6: Influence of the control settings on the Thévenin-equivalent impedance
in the SRF single-loop voltage-controlled MMC. Only one of the gains (proportional
and integral) was varied at a time accordingly Table 5.2. In this case, the base value
was assigned to the other.

MMC under double-loop voltage control

The analysis results considering the MMC under double-loop voltage control are
presented in Figure 5.7. It stood out in the charts the strong influence of the para-
meters of the outer voltage control loop into the shape of the Thévenin-equivalent
impedance, especially the proportional gain. As observed in the figures, the greater
this gain, the lower the level of the admittance, following the rule already observed
in the previous cases. As for the inner current loop, its major effects were caused by
the proportional gain in the frequency range of 10 - 300Hz. Notice that the smallest
proportional gain is responsible for a pair of resonant peaks at 201 and 260Hz, on
the self-related term of the impedance, and at 256Hz in the cross-axes term.
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(a) Self-related term: influence of ki,dlp

(b) Self-related term: influence of ki,dli

(c) Cross-axis term: influence of ki,dlp
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(d) Cross-axis term: influence of ki,dli

(e) Self-related term: influence of kv,dlp

(f) Self-related term: influence of kv,dli
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(g) Cross-axis term: influence of kv,dlp

(h) Cross-axis term: influence of kv,dli

Figure 5.7: Influence of the control settings on the Thévenin-equivalent impedance
in the SRF double-loop voltage-controlled MMC. Only one of the gains (proportional
and integral) was varied at a time accordingly Table 5.2. In this case, the base value
was assigned to the other.

5.2 Control actions for enhancing the performance

of the MMC

The present section sheds light on control approaches for shaping the ac-side ad-
mittances/impedances of the MMC in a way that it becomes immune to distorted-
currents loads and distorted voltages. Firstly it is presented techniques based on
multiple resonant loops applied to either NRF- or SRF-controlled MMC and then
the use of virtual elements (admittance or impedance). In this last case, it was
derived both the feed-forward action to produce the virtual element and the equiva-
lent virtual admittance/impedance produced. Here, it is important to explain that
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time-domain simulations were carried out considering the non-linear time-domain
model, presented in Chapter 3, to show the effectiveness of the proposed controls.
In this regard, the simulations included harmonic distortion in either the grid vol-
tages or in the load currents, starting at the time t = 1.5s, to visualize how the
MMC behaves under harmonic distortion conditions and how the presented control
approaches enhance its performance in these conditions.

5.2.1 Multi-resonant loops in the NRF-controlled MMC

The effect of the resonant loops used in Section 4.1 is to produce a notch in the
magnitude curve of the admittance/impedance at the frequency it is tuned. Con-
sequently, the admittance/impedance drops to an insignificantly small value at this
point, and the system becomes close to an ideal current/voltage source and, conse-
quently, immune to any ac-side disturbance related to this frequency. This approach
can be improved by using multiple resonant loops such as in Figure 5.8 [120, 121].
This figure presents generic signals F k, F k∗ and Uk∗ because it can be applied for
any of the control modes. That is, under current control, F k = Ikc and Uk∗ = Ek∗

c ,
and a similar logic can be extended for the other control modes. Notice that in
comparison to the controllers used back in Section 4.1, this generic controller Cc(s)
comprises resonant loops for fifth- and seventh-order harmonic components in addi-
tion to the fundamental component. Thus, the generic controller to be used in the
following subsections can be described by:

Cc(s) = kp +
kr1s

s2 + ω2
0

+
kr5s

s2 + (5ω0)2
+

kr7s

s2 + (7ω0)2
, (5.1)

where kp, kr1, kr5 and kr7 are the proportional and resonant gains of the controller.
Table 5.3 present the values used for the analyses in the forthcoming subsections.

s
s2+(5w0)2

s
s2+w2

0

s
s2+(7w0)2

kp

kr1

kr5

kr7

Ũk∗

F̃ k∗

F̃ k

Cc(s)

F̃ k = Ĩkc

F̃ k = Ṽ k
o

or
Ũk∗ = Ẽk∗

c

Ũk∗ = Ĩk∗c

or

Figure 5.8: Structure of a proportional resonant control system based in multi reso-
nant loops. The resonant loops, in this case, are tuned into the fundamental, fifth-
and seventh-order harmonic components frequencies.
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Table 5.3: Control settings used in the analysis of the influence of multiple resonant
loops on the equivalent admittance/impedance of the MMC: NRF-controlled MMC.

Control Mode Loop Proportional
gain

Fundamental
Resonant gain

Fifth-order
Resonant gain

Seventh-order
Resonant gain

Current-Controlled - 0.0001 0.0100 0.6000 2.0000

Single-Loop
Voltage-Controlled - 0.0001 0.0010 0.0100 0.0400

Double-Loop
Current-Voltage-Controlled

Inner current loop 0.0010 0.0100 0.0100 0.0030
Outter voltage loop 0.1000 1.0000 10.0000 15.0000

MMC under current control

Considering the parameters in Table 5.3, the Norton-equivalent admittance of the
current-controlled MMC is reshaped as depicted in Figure 5.9a. Differently from

(a)

(b)

(c)

(d)

Figure 5.9: Results showing the influence of multiple resonant loops: NRF current-
controlled MMC. (a) Frequency response; (b) Grid voltages; (c) Converter currents
with single resonant loop; (d) Converter currents with multiple resonant loop.
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the case with a single resonant loop, also shown in the figure for comparison purpo-
ses, the admittance presents two new notches at 300 and 420Hz. Considering the
performance of the MMC, the harmonic distortion at the grid voltages, shown in
Figure 5.9b, distorted the produced current when only the fundamental-frequency
resonant loop was used. On the other hand, as depicted in Figure 5.9d, the extra
resonant loops prevented this to happen.

MMC under single-loop voltage control

Figure 5.10 presents the analysis results for the single-loop voltage-controlled MMC.
As in the previous section, it is possible to notice additional notches in the magni-
tude curve of the Thévenin-equivalent impedance presented in Figure 5.10a. The

(a)

(b)

(c)

(d)

Figure 5.10: Results showing the influence of multi resonant loops: NRF single-
loop voltage-controlled MMC. (a) Frequency response; (b) Load currents; (c) Grid
voltages with single resonant loop; (d) Grid voltages with multi resonant loop.
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time-domain simulation shows that with single-resonant-loop approach, the output
voltages in Figure 5.10c become distorted once the load current, Figure 5.10b, does.
In the multiple-resonant-loop approach, on the other hand, this issue is not observed
as can be seen in voltage waveforms in Figure 5.10d.

MMC under double-loop voltage control

As previously highlighted in Table 5.3, the double-loop voltage control uses the
multiple-resonant-loop approach twice: in the inner current and the outer voltage
control loops. That being said, Figure 5.11 presents the results of the analysis. Once
more, the additional resonant loops created additional notches in the frequencies
they were tuned, which is shown in Figure 5.11a. The time-domain simulation

(a)

(b)

(c)

(d)

Figure 5.11: Results showing the influence of multi resonant loops: NRF double-
loop voltage-controlled MMC. (a) Frequency response; (b) Load currents; (c) Grid
voltages with single resonant loop; (d) Converter currents with multi resonant loop.
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results in Figures 5.11b - 5.11d proved the effectiveness of the control. Finishing off
this section, a summary of the results containing the THD of voltages and currents
in all conditions is presented Table 5.4. In this case, it was considered a 20kHz
bandwidth for computing the total harmonic distortion.

Table 5.4: Summary of the results for the analysis of the use of multiple resonant
loops in NRF-controlled MMC.

Control Mode THDv (%) THDi (%)
Single Resonant Multi Resonant Single Resonant Multi Resonant

Current-Controlled 7.1 7.1 5.3 1.1

Single-Loop
Voltage-Controlled 6.3 0.4 25.0 25.0

Double-Loop
Current-Voltage-Controlled 8.1 0.4 25.0 25.0

5.2.2 Combining resonant loops with PI controllers in the

SRF-controlled MMC

In Section 5.2.1 it was shown that using controllers with multiple resonant loops it
is possible to reshape either the equivalent ac-side admittance (MMC under current
control) or impedance (MMC under voltage control) so that it presents insignifi-
cant values at key frequencies, providing the grid-forming MMC with immunity to
distorted currents and the grid-connected with immunity to distortions in the bus

GPI(s)
F̃ d∗

s
s2+(6w0)2kr6

F̃ d

F̃ d,q = Ĩd,qc

F̃ d,q = Ṽ d,q
o

or

Ũd,q∗ = Ẽd,q∗
c

Ũd,q∗ = Ĩd,q∗c

or

GPI(s)
F̃ q∗

F̃ q
s

s2+(6w0)2kr6

Ũd∗

Ũq∗

Cc(s)

Cc(s)

Figure 5.12: Structure of a proportional integral resonant control system for SRF-
controlled converter. The resonant loop is tuned in 6ω0 which corresponds to the
frequency of both fifth- and seventh-order harmonic components in SRF.
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voltage. The same approach can be applied to the SRF-controlled MMC with a few
arrangements [122]. It is quite common that the major harmonic components are
the negative-sequence fifth-order and positive-sequence seventh-order. In SRF these
components are merged at 360Hz2. Consequently, using a resonant loop tuned in
6ω0 in parallel with the PI controller it is possible to enhance the performance of
the MMC in the mentioned situations3. This approach is generically depicted in
Figure 5.12, where F and U can be exchanged by different reference signals depen-
ding on the control mode. The analysis carried out considered the control setting
in Table 5.5 and are discussed in the following subsections.

Table 5.5: Control settings used in the analysis of the influence of PIR controllers
in the equivalent admittance/impedance of the MMC: SRF-controlled MMC.

Control Mode Loop Proportional
gain

Integral
gain

Resonant
gain

Current-Controlled - 0.0010 0.1000 0.5000

Single-Loop
Voltage-Controlled - 0.0002 0.0200 0.0100

Double-Loop
Voltage-Controlled

Inner current loop 0.0010 0.1000 2.0000
Outter voltage loop 0.0100 1.0000 15.0000

MMC under current control

The frequency response of the self-related term of the equivalent admittance of the
MMC under current control is presented in Figure 5.13a. It is possible to observe
that the resonant loop created a notch at the frequency of 360Hz, as predicted.
Following the procedure used in the previous section, a set of time-domain simulation
results are presented to show the effectiveness of the resonant loop into cleaning out
the harmonic distortion. Once more, the bus voltages were changed at t = 1.5s to
present harmonic distortion, as shown in Figure 5.13b. Notice in Figure 5.13c that
the voltage distortion distorts the produced currents when only the PI controller is
used. On the other hand, the PIR approach guarantee that the converter delivers
currents free of harmonic content, as observed in Figure 5.13d.

2In unbalanced conditions, it is possible that the system presents positive-sequence fifth-order
and negative-sequence seventh-order harmonic components. In SRF this components appear res-
pectively in 240Hz and 480Hz.

3The association of proportional integral controllers with resonant controller is called PIR con-
troller.
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(a)

(b)

(c)

(d)

Figure 5.13: Results showing the influence of PIR controller: SRF current-controlled
MMC. (a) Frequency response; (b) Grid voltages; (c) Converter currents with PI
controller; (d) Converter currents with PIR controller.

MMC under single-loop voltage control

The results comparing the PIR to the PI approaches for the single-loop voltage-
controlled MMC are presented in Figure 5.14. Before proceeding with the discussion
it is important to point out that the large-order transfer functions obtained required
some model reductions for computations reasons. These reductions were carried out
using the Octave/Matlab function minreal and caused some errors in the highlighted
regions of Figures 5.14a and 5.14b4.

Considering now the effect of the PIR controller, it is noticed both in the self-
4To reduce the order of the models, the minreal [123, 124] was used to cancel zero-pole pairs

within a certain tolerance. It was noticed that depending on the chosen tolerance the curves
assumed different shapes withing the highlighted region.
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(a)

(b)

(c)

(d)

(e)

Figure 5.14: Results showing the influence of PIR controller: SRF single-loop
voltage-controlled MMC. (a) Frequency response of the self-related term; (b) Fre-
quency response of the cross-axis term; (c) Load currents; (d) Output terminal
voltages with PI controller; (d) Output terminal voltages with PIR controller.
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related and cross-axis terms the distinguishable mark of the notch in 360Hz. The
time-domain results presented in Figures 5.14c - 5.14e confirm that the output vol-
tages are free from harmonic distortion when the PIR approach is used, even when
the converter supplies a non-linear load.

MMC under double-loop voltage control

The results showing the influence of the PIR approach for the double-loop voltage-
controlled MMC are presented in Figure 5.15. As in the previous cases, the PIR
solution created notches at the self-related and cross-axis terms of the equivalent
impedance as shown in Figures 5.15a and 5.15b. The time-domain performance
is also aligned to the results obtained for the other control modes. As shown in
Figure 5.15e, the voltage distortion caused by the non-linear currents rapidly dye out
due to the use of the PIR controller. To finish off the section, Table 5.6 provides the
THD values (computed with a 20kHz bandwidth) of voltages and currents analyzed
in the subsections.

Table 5.6: Summary of the results for the analysis of the use of resonant loops in
SRF-controlled MMC.

Control Mode THDv (%) THDi (%)
Without Resonant With Resonant Without Resonant With Resonant

Current-Controlled 7.1 7.1 3.4 0.5

Single-Loop
Voltage-Controlled 2.7 0.4 25.0 25.0

Double-Loop
Voltage-Controlled 16.2 0.5 25.0 25.0

5.2.3 Use of virtual elements for enhancing the performance:

NRF-controlled MMC

This section presents the virtual-elements (admittance and impedance) approach to
enhance the power quality obtained when the MMC is under NRF control. The
general idea is to include feed-forward control loops which undermine the effect
of harmonic components in the MMC. The following subsections present how these
feed-forward control loops relate to virtual admittances and impedances. The control
settings considered in this section are in accordance with the values used in the
Section 5.2.1 and presented in Table 5.3.

MMC under current control

To explain how the feed-forward control loop is applied to the current-controlled
MMC, the block diagram in Figure 4.1d is redrawn to encompass the control loops
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and presented in Figure 5.16. By this time it is already a common sense that
harmonic content in the bus voltage vo can distort the output current ic. For this
reason, it is desired to eliminate the effect of vo on the control system, which could
hypothetically be achieved by adding the signal V k

o,ap in the position highlighted in
Figure 5.16. Notice that, if V k

o,ap = 4V k
o , the influence of the grid voltage is cut off

from the control system. Nonetheless, the point in which V k
o,ap is inserted in the

diagram corresponds to the model of the MMC and there is no direct access to it.
In other words, the sum block in which V k

o,ap does not corresponds to an input of the
system. The only input of the MMC model (not considering the control loop) is the
signal E∗

c . Thus, the solution to this problem is inserting a feed-forward signal in
E∗
c that forces the converter to produce the effect of V k

o,ap. In this case, the control
law can be rewritten as follows:

Ẽk∗
c (s) = Ci(s)

[
Ĩk∗c (s)− Ĩkc (s)

]
+ Λabc

i Ṽ k
o (s), (5.2)

(a)

(b)

(c)
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(d)

(e)

Figure 5.15: Results showing the influence of PIR controller: SRF double-loop
voltage-controlled MMC. (a) Frequency response of the self-related term; (b) Fre-
quency response of the cross-axis term; (c) Load currents; (d) Output terminal
voltages with PI controller; (e) Output terminal voltages with PIR controller.
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Ẽk∗
c

2Vdc0
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Ṽ k
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Desired Effect

Figure 5.16: Block of the NRF current-controlled MMC with virtual admittance
loop. The “desired effect"highlighted in red is not included in the system. It is only
represented here for didactic purposes.

Λabc
i =

2

Vdc0
. (5.3)

Notice that, once the grid voltages are already measured for synchronization purpo-
ses, this approach does not require new variables to be measured. Besides that, it
is necessary to know the dc voltage Vdc0, which is precisely not an issue for most of
the applications. Following the same steps presented in Section 4.1.3, it is possible
to reach the equivalent model which now encompasses a virtual admittance Yvir in
addition to the Norton-equivalent admittance Yac previously determined:

Ĩkc (s) = Gcl
i (s)Ik∗c (s)− Yac(s)Ṽ k

o (s)− Yvir(s)Ṽ k
o (s), (5.4)

Yvir(s) = −G
cl
i (s)

Ci(s)
Λabc
i . (5.5)

These results can be traduced in the equivalent circuit in Figure 5.17. Notice that the
role of the virtual admittance is to counteract with the Norton-equivalent admittance
to reduce the magnitude of the equivalent admittance of the MMC, and this can be
observed in the graph of Figure 5.18a. Consequently, the influence of the harmonic
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Ṽ k
o (s)Yac(s)Gcl

i (s)Ĩ
k∗
c

Ĩkc (s)

Yvir(s)

Figure 5.17: Equivalent circuit of the NFR current-controlled with virtual admit-
tance.

content in the grid voltages on the output currents is weakened, as observed in the
time-domain graphs of Figure 5.18.

MMC under single-loop voltage control

When under voltage control, the block diagram of Figure 4.1d must be complemented
to include the capacitor bank Cf , resulting in the schematic in Figure 5.19. To make
the MMC immune to harmonic components, it is necessary to include a feed-forward
action in the control law as follows:

Ẽk∗
c (s) = Csl

v (s)
[
Ṽ k∗
o (s)− Ṽ k

o (s)
]

+ Λabc
v,sl(s)Ĩ

k
o (s). (5.6)

In this case, Λabc
v,sl should be chosen so as the feed-forward action produces the effect

of a current io,ap counteracting the load current io. It is important to notice that,
differently from the previous case, here it is necessary to measure new variables, the
load currents iko .

The value of Λabc
v,sl can be obtained by moving the signal iko,ap towards Ek∗

c in
the block diagram of Figure 5.19, yet it is not presented in this section. For more
information, a detailed step-by-step walk-through of this procedure is presented in
the Appendix D. The result is given by:

Λabc
v,sl(s) =

1

2Vdc0

[
(R + 2Rf ) + (L+ 2Lf )

ωcs

s+ ωc

]
. (5.7)

Observe that a low pass filter with cut-off frequency ωc is associated with the
derivative term (L + 2Lf )s to prevent prohibitive control-signal values when the
load undergoes fast changes. This filter can undermine the effectiveness of the feed-
forward action and, because of that, its cut-off frequency must be carefully chosen.
It is also worthwhile noticing that a good response of this feed-forward action relies
on the accuracy in which resistances and inductances of the MMC are known.

124



(a)

(b)

(c)

(d)

Figure 5.18: Results showing the influence of virtual admittance: NRF current-
controlled MMC. (a) Frequency response of the equivalent admittance with and
without the virtual term; (b) Grid voltages; (c) output currents without virtual
admittance, and (d) output currents with virtual admittance.

The novel equivalent model of the system can be achieved by following the same
steps presented in Section 4.1.4. In contrast to the model developed in Chapter 4.1,

1
s
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Ṽ ∆k
dc

Ẽk∗
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4
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v (s)
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Feed-Forward Action

Ĩko,ap
Desired Effect

1
s

1
Cf

Ĩko

Ṽ k
o

Figure 5.19: Block of the NRF single-loop voltage-controlled MMC with virtual
impedance loop. The "desired effect"highlighted in red is not included in the system.
It is only represented here for didactic purposes.
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now the MMC displays a virtual impedance Zsl
vir crafted by the feed-forward action,

as shown in Figure 5.20, and its analytical representation is given by:

Ṽ k
o (s) = Gsl

th(s)Ṽ
k∗

0 (s)− Zsl
th(s)Ĩ

k
o (s)− Zsl

vir(s)Ĩ
k
o (s), (5.8)

Zsl
vir(s) = −G

sl
th(s)

Csl
v (s)

Λabc
v,sl(s). (5.9)

Ṽ k
o (s)

Ĩko (s)

Zsl
th(s)

Gsl
th(s)Ṽ

k∗
o (s)

Zsl
vir(s)

Figure 5.20: Equivalent circuit of the NFR single-loop voltage-controlled MMC with
virtual admittance.

The frequency response of the equivalent impedance is illustrated in Figure 5.21
considering a case without virtual impedance and three cases with virtual impe-
dances implemented with different cut-off frequencies. In general, the effect of the
feed-forward was degraded by the low pass filter. The best result was achieved
with cut-off frequency at 1kHz, where the equivalent impedance was reduced from
18.5dB (0.18p.u.) to 12.8dB (0.09p.u.) at 300Hz. Nonetheless, it stands out that
the virtual impedance was not able to cope with the resonant peak at 604.3Hz. The
time-domain simulation in Figures 5.21b-5.21f shows a small difference in the THD
of the output voltages from 6.3% to 4.1% in the best scenario.

(a)
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(b)

(c)

(d)

(e)

(f)

Figure 5.21: Results showing the influence of virtual admittance: NRF single-loop
voltage-controlled MMC. (a) Frequency response of the equivalent impedance with
and without the virtual term; (b) Load currents; (c) output voltages without virtual
admittance, and output voltages with (d) 100Hz-bandwidth, (e) 500Hz-bandwidth
and (f) 1000Hz-bandwidth virtual impedance.

MMC under double-loop voltage control

The Figure 5.22 presents the block diagram of the MMC under double-loop current-
voltage control. As in the previous case, the highlighted “desired effect" in the
diagram blocks out the influence of the load currents in the produced voltage. With
this in mind, it is possible to rewrite the control law of the inner current loop as
follows:

Ẽk∗
c (s) = Ci(s)

[
Ĩk∗c (s)− Ĩkc (s)

]
+ Λabc

v,dl(s)Ĩ
k
o (s). (5.10)

The coefficient Λabc
v,dl in (5.10) can be obtained manipulating the block diagram

of the system and, once again, the step-by-step walk-through is presented in the
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Appendix D. The result is given by:

Λabc
v,dl(s) =

1

2Vdc0

[
(R + 2Rf ) + (L+ 2Lf )

ωcs

s+ ωc

]
+ Ci(s) ≈

1

2Vdc0

[
(R + 2Rf ) + (L+ 2Lf )

ωcs

s+ ωc

]
+ ki,dlp . (5.11)

Notice that instead of using the current controller with its two parcels, it was decided
to consider only the proportional part of it. The resonant part, though, was kept
out because it is a second-order integrator tuned at the frequency of fundamental
component, which means that it continuously amplifies the 60Hz signals the pass
through it, causing stability issues. This decision brings no harm to the effectiveness
of the feed-forward action once the values of the resonant part of Ci are overwhel-
mingly small in frequencies other than the fundamental. Besides that, and probably
more important, the difference between the proportional and resonant gains at key
frequencies is considerably huge (e.g. −60dB to −105dB for 300Hz).
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Figure 5.22: Block of the NRF double-loop voltage-controlled MMC with virtual
impedance loop. The "desired effect"highlighted in red is not included in the system.
It is only represented here for didactic purposes.

Following the procedure presented in Section 4.1.5 it is possible to find the fol-
lowing Thévenin-equivalent model for the MMC:

Ṽ k
o = Gdl

th(s)Ṽ
k∗
o (s)− Zdl

th(s)Ĩ
k
o (s)− Zdl

vir(s)Ĩ
k
o (s), (5.12)

Zdl
vir(s) = −Zdl

th(s)Λ
abc
v,dl(s)

Gcl
i (s)

Ci(s)
, (5.13)

where Λabc
v,dl in the virtual impedance produced by the feed-forward action.

Figure 5.23 presents the analysis results for the MMC under double-loop vol-
tage control with virtual admittance. In comparison to the previous section, it is
noticeably a significant difference among the magnitude curves with and without
virtual impedance as shown in Figure 5.23a. The best case was achieved with the
cut-off frequency of 1kHz, where the difference at 300Hz reached 22.5dB (0.28p.u.)
to 12.7dB (0.09p.u.). This result is confirmed by comparing the produced voltages
displayed in Figures 5.23c and 5.23f. Without the virtual impedance, the output
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.23: Results showing the influence of virtual admittance: NRF double-loop
voltage-controlled MMC. (a)Frequency response of the equivalent impedance with
and without the virtual term; (b) Load currents; (c) output voltage without virtual
admittance, and output voltage with (d) 100Hz-bandwidth, (e) 500Hz-bandwidth
and (f) 1000Hz-bandwidth virtual impedance.
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voltages presented a THD of 8.1%, whereas using the virtual impedance, this THD
marked 3.2% in the best case and 3.9% and 5.2% in the other two cases. A summary
present the THD (computed with a 20kHz bandwidth) of voltages and currents in
each subsection is presented in Table 5.7.

Table 5.7: Summary of the results for the analysis of the use of virtual elements
in NRF-controlled MMC. VirA stands for virtual admittance and VirI for virtual
impedance.

Control Mode - THDv (%) THDi (%)

Current-Controlled Without VirA 7.2 5.3
With VirA 7.2 0.9

Single-Loop
Voltage-Controlled

Without VirI 6.4 24.1
With VirI (fc = 100Hz) 6.4 24.9
With VirI (fc = 500Hz) 5.1 26.0
With VirI (fc = 1000Hz) 4.2 25.7

Double-Loop
Current-Voltage-Controlled

Without VirI 8.1 25.0
With VirI (fc = 100Hz) 5.2 25.0
With VirI (fc = 500Hz) 3.9 25.0
With VirI (fc = 1000Hz) 3.2 25.0

5.2.4 Use of virtual elements for enhancing the performance:

SRF-controlled MMC

As in the previous, this section presents control strategies for blocking out the effects
of the disturbances (either main-bus voltage or load current) in the performance of
the system. Nonetheless, this time the control systems are implemented in SRF
considering the modeling approach of Chapter 4.2. The following subsection deals
with each of the control modes already presented.

MMC under current control

The block diagram presented in Figure 5.24 represents the MMC under current
control with a feed-forward action to block out the influence of harmonic distortion
in the grid voltages on the output currents. As in the previous section, the “desired
effect" inputs in the diagram are only displayed to show what is the outcome of the
feed-forward action. The current-control law in (4.53) can be expanded as follows
to encompass this new parcel:

Ẽdq0∗
c = Cdq0

i (s)
[̃
Idq0∗c (s)− Ĩdq0c (s)

]
+ Ddq

i Ĩdq0c (s) + Λdqo
i (s)Ṽdq0

o (s), (5.14)
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Figure 5.24: Block diagram of the SRF-current-controlled MMC with anti-
disturbance feed-forward action. The blue loop comprehending Λdqo

i components
middle left part of the diagram is the feed-forward action. The red signals Ṽ d,q

o,ap

correspond to the effect caused by the feed-forward action.

Λdqo
i (s) =

2

Vdc0

 1 0 0

0 1 0

0 0 0

 .
Following the same steps presented in Section 4.2.3, it is possible to reach the

following analytical model of the MMC:

Ĩdq0c (s) = Gdq0
icl (s)̃Idq0∗c (s)−Ydq0

ac (s)Ṽdq0
o (s)−Yvir(s)Ṽ

dq0
o (s), (5.15)

Yvir(s) = −Γ−1
i (s)

[
4Vdc0Ceqsdq +

3S0

2Vdc0
I

]
Λdqo
i (s), (5.16)

where Yvir is the virtual matrix admittance produced by the feed-forward action.
This model can be represented by the equivalent circuit displayed in Figure 5.25.

Ṽdq0
o

Ṽdq0
o

Ĩdq0c

Ydq0
acGdq0

icl Ĩ
dq0∗
c Ydq0

vir

Figure 5.25: Equivalent circuit of the SFR current-controlled with virtual admit-
tance.
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The effectiveness of the feed-forward action is proved by the results presented in
Figure 5.26. For instance, Figure 5.26a shows that the virtual admittance significan-
tly pulled down the magnitude curve of the equivalent admittance. It can also be
observed in the time-domain results in which the current THD was improved from
3.5% to 0.5%.

(a)

(b)

(c)

(d)

Figure 5.26: Results showing the influence of virtual admittance: SRF current-
controlled MMC. (a) Frequency response of the self-related term; (b) Grid voltages;
MMC currents (d) without virtual admittance, and (e) with virtual admittance.

MMC under single-loop voltage control

Figure 5.27 presents the block diagram of the single-loop voltage-controlled MMC
with feed-forward action. As with the case of NRF-controlled MMC, here it neces-
sary to include new measurements in the control system, i.e., the load currents and
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change the control law to:

Ẽdq0∗
c = Cdq0

v,sl(s)
[
Ṽdq0∗
o (s)− Ṽdq0

o (s)
]

+ Λdqo
v,sl(s)̃I

dq0
o (s). (5.17)

The term Λdqo
v,sl(s) in (5.21) represents the transfer matrix of the feed-forward

action, which is obtained after systematic manipulation of the block diagram in
Figure 5.27. These details are better illustrated in the Figure D.4 of the Appendix D
and its result is given by:

Λdqo
v,sl(s) =

1

Vdc0

[
(R + 2Rf ) I + (L+ 2Lf )

(
sωc
s+ ωc

I + Ω

)]
. (5.18)

Once more, a low-pass filter with cut-off frequency ωc is used to prevent that either
suddenly changes in the load or measurement noises sparkle unstable behavior on
the system.
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Ṽ d∆
dc

1
(L+2Lf )s

ω(L+ 2Lf )

Ẽq∗
c Ẽq
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Ṽ d∗
o

Cv(s)
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Figure 5.27: Block diagram of the SRF single-loop voltage-controlled MMC with
anti-disturbance feed-forward action. The blue loop comprehending Λdqo

v,sl compo-
nents middle left part of the diagram is the feed-forward action. The red signals
Ĩd,qo,ap correspond to the effect caused by the feed-forward action.

Following the methodology described in Section 4.2.4, it is possible to reach the
analytical model for the MMC, this time accounting the virtual impedance Zsl,dqo

vir :

Ṽdq0
o (s) = Gdq0

sl,th(s)Ṽ
dq0∗
o (s)− Zdq0

sl,th(s)̃I
dq0
o (s)− Zsl,dqo

vir (s)̃Idq0o (s), (5.19)

Zsl,dqo
vir = −Γsl

v,out

−1
Zsl
in

(
4Vdc0Ceqsdq +

2S0

3Vdc0
I

)
Λdqo
v,sl(s). (5.20)

The model given in (5.19) can be traduced into the circuit in Figure 5.28.
As in any of the cases involving virtual elements, Zsl,dqo

vir , when associated with
the Gdq0

sl,th, reduces the magnitude of the equivalent impedance, as can be seen in
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Figure 5.28: Equivalent circuit of the SFR single-loop voltage-controlled MMC with
virtual impedance.

Figures 5.29a and 5.29b. It is also noticeable that the higher is the bandwidth
of the filter, the smaller in the magnitude of the equivalent impedance, yet the
resonant peaks around 850Hz are not affected by the feed-forward action. It is
important to mention that some numerical errors were observed in the frequency
range highlighted in red in Figures 5.29a and 5.29b, the same issues pointed out in
Section 5.2.2. As for the time-domain results, the produced voltages presented THD
of 11.5% without virtual impedance, case of the graph in Figure 5.29d, and 3.5% in
the best virtual-impedance scenario, Figure 5.29g.

(a)

(b)
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(c)

(d)

(e)

(f)

(g)

Figure 5.29: Results showing the influence of virtual admittance: SRF single-loop
voltage-controlled MMC. Frequency response of the (a) self-related and (b) cross-
axis terms; (c) Load currents; (d) produced voltage without virtual admittance,
and produced voltage with (e) 100Hz-bandwidth, (f) 500Hz-bandwidth and (g)
1000Hz-bandwidth virtual impedance.

MMC under double-loop voltage control

The approach to derive the feed-forward term for the double-loop voltage-controlled
MMC is along the lines of the strategy used for the other control modes. Thus, firstly
it is necessary do represent the block diagram of the closed-loop system, which is
done in Figure 5.30, then it is necessary to realize which additional term in the
control law is necessary to produce the desired effect of blocking out the influence
of the load current in the delivered voltage. In views of that, the inner-loop control
law and feed-forward transfer matrix can be written as follows:

Ẽdq0∗
c = Cdq0

i (s)
[̃
Idq0∗c (s)− Ĩdq0c (s)

]
+ Ddq

i Ĩdq0c (s) + Λdqo
v,dl(s)̃I

dq0
o (s), (5.21)
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Λdqo
v,dl =

1

Vdc0

[
ωcs

s+ ωc
(L+ 2Lf ) + (R + 2Rf )

]
I + Cdq0

i (s)−Ddq
i ≈

1

Vdc0

[
ωcs

s+ ωc
(L+ 2Lf ) + (R + 2Rf )

]
I + ki,dlp I−Ddq

i . (5.22)

Once more, the step-by-step path which lead to the result in (5.22) is presented in the
Appendix D. Notice that rather than using Cdq0

i , it was chosen to consider only its
proportional part. The integral term of the controller would produce an everlasting-
growing signal which could bring instability to the system, similarly to the case
reported in Section 5.2.3 for the resonant parcel. This approach raises no concerns
regarding the effectiveness of the feed-forward action because the proportional term
of the current controller exceeds the magnitude of integral at the key frequency of
360Hz by a margin of over twenty times.
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Ẽq
vir

Ẽd
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Figure 5.30: Block diagram of the SRF double-loop voltage-controlled MMC with
anti-disturbance feed-forward action. The blue loop comprehending Λdqo

v,dl compo-
nents middle left part of the diagram is the feed-forward action. The red signals
Ĩd,qo,ap correspond to the effect caused by the feed-forward action.

The same step-by-step used in Section 4.2.5 can be used to find the following
equivalent model:

Ṽdq0
o (s) = Gdq0

dl,th(s)Ṽ
dq0∗
o (s)− Zdq0

dl,th(s)̃I
dq0
o (s)− Zdl,dqo

vir (s)̃Idq0o (s), (5.23)

Zdl,dqo
vir (s) = Zdq0

dl,th(s)Γ
dl,dqo
vir (s), (5.24)

Γdl,dqo
vir (s) = −Γ−1

i (s)

[
4Vdc0Ceqsdq +

3S0

2Vdc0
I

]
Λdqo
v,dl(s), (5.25)

where Zdl,dqo
vir is the virtual impedance produced by the feed-forward action. Fi-

gure 5.31 presents the equivalent circuit based on (5.23).
The frequency responses of the equivalent impedance of the MMC with and

without feed-forward term are presented in Figures 5.32a and 5.32b. As with the
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Figure 5.31: Equivalent circuit of the SFR double-loop voltage-controlled MMC
with virtual impedance.

results of the other control modes, here the virtual impedance reduced the magni-
tude of the equivalent impedance of the MMC with better results when the cut-off
frequency is higher. It is also important to notice the highlighted region in Figu-
res 5.32a and 5.32b as they indicate the possible existence of numerical errors already
explained in other sections of this chapter. The time domain-results in Figures 5.32c-
5.32g show the effects of reducing the magnitude of the equivalent impedance, i.e.,
the harmonic distortion in the output voltages was reduced from 11.5% to 3.5% for
the case where the feed-forward action considered cut-off frequency of 1000Hz. To
finish off the section, Table 5.8 summarizes the results for the THD (computed with
a 20kHz bandwidth) of voltages and currents in each of the control modes.

(a)

(b)
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(c)

(d)
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Figure 5.32: Results showing the influence of virtual admittance: SRF double-loop
voltage-controlled MMC. Frequency response of the (a) self-related and (b) cross-
axis terms; (c) Load currents; (d) produced voltage without virtual admittance,
and produced voltage with (e) 100Hz-bandwidth, (f) 500Hz-bandwidth and (g)
1000Hz-bandwidth virtual impedance.

Table 5.8: Summary of the results for the analysis of the use of virtual elements
in SRF-controlled MMC. VirA stands for virtual admittance and VirI for virtual
impedance.

Control Mode - THDv (%) THDi (%)

Current-Controlled Without VirA 7.1 3.5
With VirA 7.1 0.5

Single-Loop
Voltage-Controlled

Without VirI 11.5 22.8
With VirI (fc = 100Hz) 7.4 22.8
With VirI (fc = 500Hz) 5.4 22.8
With VirI (fc = 1000Hz) 3.5 22.8

Double-Loop
Voltage-Controlled

Without VirI 11.5 22.8
With VirI (fc = 100Hz) 7.4 22.8
With VirI (fc = 500Hz) 5.4 22.8
With VirI (fc = 1000Hz) 3.5 22.8
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5.3 Applications of the developed models

This section has the objective of presenting some applications for the developed
models. In this regard, it was chosen as examples the use of the model for fast time-
domain simulations and stability analysis of power-electronic-based systems. In
both cases, the results are validating through simulations with the detailed PSCAD
model. It is important to mention that, it was considered on the NRF-controlled
MMC, yet the SRF model also could be used for the same objective. Besides that,
the control actions defined in Section 5.2 are not considered in this part of the thesis.

5.3.1 Step response of the MMC

For showing how the developed model can be used in time-domain simulations, the
MMC, initially in steady-state condition, was submitted to step changes. It was
considered here only the case were the MMC is under double-loop current/voltage
control a the step chages were firstly performed in the ac load current io and then
in the dc voltage vdc, yet not simultaneously. For obtaining the time-domain step
response of the system, is necessary to sum the steady-state value of the variables
with the time response indicated by the proposed model. Thus:

vko = vkoss + ṽko

ikcir = ikcirss + ĩkcir
(5.26)

where vkoss and ikcirss are, respectively, the steady-state values of the ac bus voltage
and the MMC circulating current before the perturbation of the system. In this
analysis, it was considered that the MMC supply an rated power with unitary-
power-factor load. Furthermore, ṽko and ĩkcir are the time-domain changes caused by
the perturbations in vdc and io and predicted by (4.30) and (4.8), respectively, in
frequency domain.

Figure 5.33 shows the results obtained for three different perturbations in iko .
Here, it was chosen to present only the results for the phase a to optimize the
space, but the other phases presented similar behavior. The mentioned perturba-
tions comprised three components, fundamental, fifth- and seventh-order harmonic
components, all of which with an amplitude of 0.17 p.u., starting at t = 3s. The
upper graph of each sub-figure shows how the output current is changed by the
considered perturbation. It is possible to notice that the proposed model (straight
line), in comparison to the PSCAD/EMTDC model (circle-filled dashed lines), was
able to accurately predict the voltage effects imposed by the perturbation in iko .

The same approach was used to analyze the effect of the perturbation in vdc:
it was considered three different cases covering the major components the dc vol-
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(a) 60Hz perturbation

(b) 300Hz perturbation

(c) 420Hz perturbation

Figure 5.33: Time response to a perturbation in the load current at t = 3s. The
upper charts represent the load current iao, whereas the lower ones display the vol-
tage vao .
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(a) DC perturbation

(b) 120Hz perturbation

(c) 240Hz perturbation

Figure 5.34: Time response to a perturbation in the DC-link voltage vdc. The upper
charts represent the DC voltage vdc, whereas the lower ones display the circulating
current iacir.
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tage can present. Thus, DC, second- and fourth-order harmonic components, with
0.066 p.u.-amplitude, were added to the dc voltage at t = 3s. As depicted in Fi-
gure 5.34, the change in the circulating current predicted by the proposed analytical
model followed the results indicated by the PSCAD/EMTDC simulation with some
small differences. These differences, mostly observed in the response for the DC
change in Figure 5.34a, concerning high-frequency effects due to the non-linearities
which are not included in the model.

5.3.2 Stability analysis of the MMC

Besides using the proposed model to speed up time-domain simulations encompas-
sing grid-forming MMC, it is also possible to use it in stability analysis in systems
where the MMC interacts with other converters. For this reason, it is presented
in this subsection an example where two MMC interact with each other as in Fi-

MMC

vdc1 Zf

vko1

Cf

ikc1

SM SM

SM

SM

SMSM

Control

MMC

vdc2Zf

ikc2

SMSM

SM

SM

SM SM

Control

Grid-Forming MMC Current-Controlled MMC
(a) System configuration

Zv
th1(s)

Ṽ k
th1 Ṽ k

o1(s) Ĩkno2

Ĩkc2(s)

Current-controlled MMCGrid-Forming MMC

Yac2(s)

(b) Equivalent circuit

Figure 5.35: Grid-forming MMC feeding a current-controlled MMC.
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gure 5.35a. The first as a grid-forming converter and the second as a current-
controlled converter. The grid-forming converter, for instance, plays the role of the
inverter station of an HVDC system whereas the current-controlled represent a re-
newable, non-dispatchable power plant. Thus, vdc1 and vdc2 are two independent
ideal sources, representing the DC links of each converter. The equivalent circuit
which represents this system is depicted in Figure 5.35. Here, the index 1 and 2 are
used to distinguish each one of the converters.

According to the impedance-based stability criterion [125], the loop function
L(s) = Zv

th1(s)Yca2(s) is equivalent to the open-loop transfer function which repre-
sents the interaction between the voltage- and current-source sides5of the system
and because of that, can be used to assess its stability. Considering firstly that the
control settings of both converters are in accordance with the values considered in

(a) Poles of the loop function (b) Nyquist diagram of the loop function

(c) Time response

Figure 5.36: Stability evaluation of a system composed by a grid-forming MMC
feeding a current-controlled MMC: stable condition.
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Chapter 4, whenever applicable, the loop function does not present any right half
plane (RHP) pole as shown in Figure 5.36a. Furthermore, the Nyquist curve pre-
sented in Figure 5.36b does not encircle the critical point (−1, 0), indicating that
the system is stable. This prediction is confirmed by the time-domain simulation
results presented in Figure 5.36c, as both the grid voltage vao2 and the load current
iac2 converge to their references.

It can be observed at the bottom graph of Figure 5.36c that the produced current
of the MMC2 (the current-controlled MMC) starts with a 180o lag to its reference.
This is caused by the inherent characteristic of current-controlled converters, and to
be better understood, considerer the circuits in Figure 5.37. This figure shows that
the output current ic2(t) is composed by two components, iy(t) and ii(t). The former
is the ac voltage response and flows though the equivalent admittance Yac2, as in
the circuit in the left of Figure 5.37. The other component, ii(t), is the response for
the reference current and can be called the desired current to be produced. Thus,
it is possible to write the following result:

Ĩkc2(s) = Gcl
i (s)Ik∗c2 (s)︸ ︷︷ ︸

Ĩki (s)

−Yac2(s)Ṽ k
o (s)︸ ︷︷ ︸

Ĩky (s)

. (5.27)

The response to the ac voltage, i.e. iy(t), must converge to zero due to the action
of the resonant controller. However, during a transient period, it presents a fading
60Hz component, which caused the 180◦-lag observed in the interval that goes from
0.5 to 0.6s in the bottom graph of Figure 5.36c. For better understanding this point,
it was obtained the time responses from the Laplace-domain models of Yac2(s) and
Gcl
i (s) for sinusoidal inputs as follows:

iay(t) = L−1
{
Yac2(s)V a

o (s)
}
, (5.28)

iai (t) = L−1
{
Gcl
i (s)Ia∗c2 (s)

}
, (5.29)

where L−1 is the inverse Laplace operator. In this case, V a
o (s) represents a 60Hz

rated-amplitude input voltage, and Ia∗c2 (s) a 60Hz rated-amplitude reference current.
Figure 5.38 presents the results for these testes. In both cases, Figures 5.38a and
5.38b, the upper and bottom graphs present, respectively, the input and response of
the circuit. As mentioned, during a transient period iay(t) is different of zero and its
peak even overpass 2p.u., as can be observed in Figure 5.38a. Here it is important
to notice that in the simulated system (which results are presented in Figure 5.36c),
this component is not as harmful because instead of step-like, the voltage in the

5The grid-forming MMC plays the role of the voltage source, whereas the current-controlled
does the current source.
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Figure 5.37: Interpretation of the grid for understanding the start up.

(a) Time response of Yac2(s) (iay(t))

(b) Time response of Gcl
i (s) (iai (t))

Figure 5.38: Time responses of Yac2(s) and Gcl
i (s) for rated-amplitude 60Hz inputs.

circuit grows gradually. Figure 5.38b, on the other hand, shows the response for the
reference current, and it stands out that it is smoother than the response for the
voltage.

Now it is necessary to investigate the physical meaning of this transient response
for the ac voltage. As previously mentioned, it enforces a 180◦-lagged current which,
in turn, indicates a transient inversion in the direction of the power flux in the
current-controlled MMC. The upper graph of Figure 5.39 highlights this lagging
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between the produced current and the voltage at the ac bus. As can be observed
in the bottom graph, the power inversion raises the equivalent dc voltages vpadc2 and
vnadc2 of the SMs of the current-controlled MMC.

Figure 5.39: Simulation results of the current-controlled MMC.

Just for the sake of comparison, if all the control settings are adjusted to a
tenth of their values, the loop function will present RHP poles as in Figure 5.40a.
According to the Nyquist stability criterion, the system remains stable if and only
if the Nyquist plot encircles the critical point in the counterclockwise direction as
many times as the number of RHP poles. This is not observed in Figure 5.40b,
indicating that the system is unstable. Once again, the prediction is confirmed
by the simulation results in Figure 5.40c. Table 5.9 presents the control settings
considered throughout this section.

Table 5.9: Control settings considered during the stability analysis.

MMC Proportional Gain Resonant Gain
Stable Unstable Stable Unstable

Grid-Forming
MMC

Voltage Loop 0.10000 0.01000 1.00000 0.10000

Current Loop 0.00010 0.00001 0.01000 0.00100

Current-Controlled
MMC Current Loop 0.00010 0.00001 0.01000 0.00100

5.4 Partial Conclusions

The first point addressed in this chapter was the effects of the control parameters
on the equivalent admittances and impedances of the MMC in different control
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(a) Poles of the loop function (b) Nyquist diagram of the loop function

(c) Time response

Figure 5.40: Stability evaluation of a system composed by a grid-forming MMC
feeding a current-controlled MMC: unstable condition.

modes. At first, it was considered the MMC controlled in NRF and one of the
major conclusions is that the proportional gain is considerably more significant than
the resonant when it comes to the shape of the admittances and impedances in the
frequency domain. In general, it was observed that the greater the proportional
gains, the better for the MMC because it reduces the level of the magnitude curves,
making the system stronger in face of harmonic disturbances. It was also noticed
that the proportional gains affect the position of resonant peaks when the MMC is
either single- or double-loop current/voltage control, yet the same is not observed
when the MMC is under current control. As for the SRF controlled modes, the
analyses returned similar results, i.e., proportional gains stand out as more related
to changes of the equivalent impedances/admittances in key frequencies. In most of
the cases, the integral only interfered in the magnitude of resonant peaks.
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Then, it was shown that the strategy of using multiple resonant loops in NRF
produced multiple notches at the frequencies of fifth- and seventh-order harmonic
components in the magnitude curve of the equivalent impedance/admittance of the
MMC. These notches guaranteed, for instance, that distorted voltages do not affect
the produced voltages of the current-controlled MMC. Analogously, they also con-
tributed to making the grid-forming MMC supply non-linear loads without having
its produced voltages distorted. In both cases, the simulation results showed that
the currents/voltages of MMC presented higher levels of THD when using a single
resonant loop. After that, it was analyzed the use of proportional-integral-resonant
controllers in SRF. The frequency-domain results indicated the presence of notches
in the magnitude curves of the equivalent impedance/admittance of the MMC, li-
kewise, the notches observed in the NRF-controlled MMC. In this case, the notch
appears at 360HZ, which corresponds to the frequency of the fifth- and seventh-
order harmonic components in SRF. The simulation results also indicated that the
additional resonant loop reduced the harmonic distortion of the produced voltages
and currents.

After that, it was derived in the chapter feed-forward control to produce virtual
elements (admittance or impedance) with the function of shaping the equivalent
impedance to reduce their magnitudes for key frequencies. The effectiveness of the
proposed controllers was also demonstrated both in the frequency response of the
system and through time-domain simulations. The results pointed out that the
low-pass filters used in the feed-forward actions of the voltage-controlled MMC play
an important role in the produced virtual impedance. In this context, the greater
the cut-off frequency, the better the immunity created by the virtual impedance to
harmonic content in the load currents.

It was also shown in this chapter two applications for the proposed models.
In the first application, the proposed model for the NRF-controlled double-loop
current/voltage-controlled MMC was used in a time-domain simulation. The results
pointed out that the proposed model was effective in predicting the dynamics of the
MMC. In the second application, the developed models were used to predict the
stability of a power-electronics-based system comprising a grid-forming MMC and
a current controlled MMC. It was presented two cases, one where the system was
stable and another in which the system was unstable. Using the proposed models
and the impedance-based stability criterion, it was possible to predict whether the
system was stable or unstable.
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Chapter 6

Conclusions

This thesis presented a group of linearized models for the MMC in different control
modes in Natural and Synchronous Reference Frames. First, the models for the
current-controlled, single-loop voltage controlled and double-loop current/voltage
controlled were derived, for both reference frames, then they were validated through
simulations using PSCAD and PSIM. It is important to mention that, along with the
models representing the output variables, it was also derived models for the dynamics
of the circulating currents of the MMC. In the sequence, some analyses were carried
out to show the influence of control gains in the frequency response of the equivalent
admittance and impedance of the MMC. It was also analyzed the effect of using
resonant controllers tuned in the frequencies of the major harmonic components
in the shape of the equivalent ac admittance/impedance of the MMC in Natural
Reference Frame (NRF) and Synchronous Reference Frames (SRF) and, afterward, it
was proposed a feed-forward control to provide the MMC with immunity to harmonic
content from the system. As a last point presented in the thesis, it was shown typical
applications for the developed model, i.e., time-domain simulations and stability
analysis of a power-electronic-based system.

It was possible to show that when the MMC is current controlled, it can be
represented in the Laplace domain by a current source associated with an admittance
(which corresponds to a Norton-equivalent model), both of which influenced by the
values of passive elements and control settings alike. For the grid-forming modes,
i.e., single-loop voltage controlled and double-loop current/voltage controlled MMC,
it was possible to represent the converter by a voltage source behind an equivalent
impedance (which corresponds to a Thévenin-equivalent model). As for the current-
controlled MMC, the voltage source and equivalent impedance are also dependent on
the values of passive elements and control settings. As for the circulation currents,
the derived models pointed out a direct relationship with the dc-link voltage. This
relationship, indeed, allowed representing the circulating current dynamics through
an equivalent admittance. Once more, it is important to mention that the major
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results for the doubly-loop voltage-controlled MMC were published in [62].
When the MMC is controlled in NRF, there is no coupling between the phases

and, consequently, it is possible to use one-dimensional admittances, impedances,
and sources to compose the system. When the MMC is controlled in SRF, on the
other hand, such approach is not feasible since the frame transformation creates
couplings between the direct and quadrature axes. Thus, the admittances, impe-
dances, and sources of the system might be represented by 3 × 3 matrices and the
variables by arrays containing the direct-axis, quadrature-axis, and zero-sequence
components.

The results obtained with the proposed models matched those predicted by the
non-linear model of the MMC with few small differences. For instance, some dif-
ferences were observed in the resonant frequencies of the models of the MMC con-
trolled in NRF. In this case, the digital implementation of these controllers in the
non-linear model is responsible for this disparity, but it was understood that this
raises no great concerns. Some small errors in the predictions of the SRF models
were also observed in specific points of the spectrum. In contrast to the differences
observed for the NRF models, these were caused by the numeric implementation
of the proposed models. The operations with 3 × 3 matrices led to hundred-order
transfer functions, requiring the use of some numeric simplifications, which, in turn,
reduced the precision of the model in some points of the spectrum. Once more, it
was understood that no great concern must be raised because these errors did not
appear in the key frequencies of the system.

It was also highlighted in the thesis that the control settings can modify the
resonant peaks present in the equivalent admittances and impedances of the MMC
either amplifying, damping or even changing the frequency in which they occur.
These results shed light on the importance of the careful adjusting of the control
settings, otherwise, the output ac currents and voltages could be severely distorted
by background harmonics and by the presence of the non-linear loads in the power
grid. Also in this context, the swelling of small oscillating components - components
other than the second-order harmonic, which is the only component damped through
control - in the circulating currents may or may not occur depending on the control
settings.

Still considering the relationship of the control settings with the power quality
issue, it was shown that the use of extra resonant loops tuned in the frequency of
the major harmonic components of the system contributed to the reduction of the
THD of the output currents and voltages. In the frequency domain, these resonant
loops produced notches at 300 and 420Hz for the control modes implemented in the
natural reference frame, and a notch at 360Hz for the control modes implemented
in the synchronous reference frame. In other words, the resonant loops reduced
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significantly the magnitude of the admittances and impedances at the frequencies
of the fifth- and seventh-order harmonic components.

The proposed feed-forward controllers were also able to reshape the equivalent
admittances and impedances of the MMC to provide it with immunity to harmonic
components of the grid. On one hand, this approach allowed a broader effect in the
frequency domain in comparison to the use of multiple resonant loops, on the other,
the reduction of the magnitudes of admittances and impedance at key frequencies
were smaller. As presented in the thesis, the feed-forward action creates a virtual
admittance in the system when the converter is under current control and a virtual
impedance when the MMC is under voltage control. To obtain proper transfer
functions for the virtual impedances, for instance, it was necessary the use of low-
pass filters which, in turn, undermined the performance of the feed-forward action.

The time-domain simulation using the proposed model for the NRF double-loop
current/voltage-controlled MMC showed accurate results when compared to more
detailed models. Given that, it is possible to conclude that the proposed models
for the different control modes can be employed in transient analysis of MMC-based
power grids. One upper point in this regard is the fact that the simulations involving
the proposed models are considerably faster than the simulations considering more
detailed models, which paves the way for the use in transient analyses of large and
complex power systems.

Another potential application of the proposed models is in frequency-domain
studies such as small-signal stability analyses of power-electronics-based power sys-
tems. The example presented in the last section of the last chapter, for instance,
accurately predicted the stability/instability of the chosen cases. In this case, the
scenario in which a grid-forming MMC supplies the voltages for a current-controlled
MMC is similar to the typically used configuration for the integration of offshore
wind power plants to the onshore power grid. The only difference here is that,
in real offshore power plants, the current-controlled MMC would be replaced by
current-controlled two-level converters associated with step-up transformers. The
use of the current-controlled MMC was for no other reason than avoiding inserting
other elements in this thesis.

Among the proposed models, those for the double-loop voltage-controlled MMC
stand out due to the novelty of this control approach in the context of high power
high voltage applications. As mentioned in the introduction, as far as the authors
could find, only one paper has considered modeling the MMC with this control
approach until 2019 [55], yet the focus of their research considered the power and
energy, instead of voltages and currents, as state variables. The approach followed
in this thesis [62] allows among other things applying power-electronics popular
techniques such as the impedance-based stability criterion [125], as shown in the
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example analyzed in the previous paragraph. It is understood that the double-loop
control approach should become more common in MMC application, especially in
the integration of offshore wind power plants to the onshore grid, and for this reason,
the models (implemented in Natural and Synchronous Reference Frames) presented
in the thesis might be of great relevance for the analyses of the future power grid.

6.1 Further works

Further works include the following topics:

• Investigate computational approaches to mitigate errors cased by the matrix
manipulations in SRF models;

• Using the models for fast transient analysis of complex MMC-based power
grids;

• Combine the circulating current equivalent admittance with the dc-voltage
control loop to derive an analytical model to represent the dc side of the
MMC when it is acting as a rectifier converter of an HVDC;

• Use of the proposed models for spotting resonance and stability issues involving
the integration of MMC-based HVDC with transmission lines, power plants,
FACTS and other elements composing a power grid;

• Development of analytical models for representing MMC-based multiterminal
HVDC (MTDC);

• Development of analytical for representing current-source-based modular mul-
tilevel converters and modular multilevel matrix converter;

• Development of analytical models for the MMC operating in grid-supporting
mode, i.e., under voltage control, but with frequency and voltage droop con-
trollers.
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Apêndice A

Relationships between natural and
synchronous reference frame

This appendix is focused on presenting a brief review of frame transformations and
its effects on mathematical models of three-phase systems.

A.1 Definition

To understand how frame transformation work, lets first consider a balanced three-
phase in which the bus voltage v and the current i can be represented as follows:

va(t) = Vmsin(ωt)

vb(t) = Vmsin(ωt− 2π/3)

vc(t) = Vmsin(ωt+ 2π/3)

, (A.1)


ia(t) = Imsin(ωt+ φi)

ib(t) = Imsin(ωt− 2π/3 + φi)

ic(t) = Imsin(ωt+ 2π/3 + φi)

, (A.2)

where Vm and Im are the amplitudes of voltage and current, ω is the angular fre-
quency of the fundamental component, and φi is the displacement angle. This set
of equations is represented in Natural Reference Frame (NRF), that is, they did not
suffer any frame transformation.

To simplify some mathematical manipulations, it is defined the vector vabc and
iabc containing the three phase components of v and i as follows:

vabc(t) =

 va

vb

vc

 , (A.3)
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iabc(t) =

 ia

ib

ic

 . (A.4)

The frame transformation defined in Section 4.2.1 and its inverse are rewritten
here for easier understanding:

Tdq0 =
2

3


cos (θ) cos

(
θ − 2π

3

)
cos
(
θ + 2π

3

)
sin (θ) sin

(
θ − 2π

3

)
sin
(
θ + 2π

3

)
1
2

1
2

1
2

 , (A.5)

T−1
dq0 =


cos (θ) sin (θ) 1

cos
(
θ − 2π

3

)
sin
(
θ − 2π

3

)
1

cos
(
θ + 2π

3

)
sin
(
θ + 2π

3

)
1

 . (A.6)

In both cases, the angle θ defines the frame transformation to be applied. If θ is
constant, we have a static transformation[126]. For instance, the abc to αβ0 trans-
formation (also known as Clark transformation) is obtained when θ = 0. Here the
static means that there is no change in the frequencies of the harmonic/sequence
components of either vabc or iabc due to the transformation. When θ rotates synchro-
nously with the fundamental frequency, that is, θ = ωt, the transformation in (A.5)
changes the variables into a Synchronous Reference Frame (SRF). The major effect
is that the positive-sequence fundamental components in vabc or iabc are transformed
in dc quantities (frequency shift).

For a better understanding of the mathematical approach, here it is presented
the relationships between NRF and SRF variables:

vdq0(t) = Tdq0v
abc(t)⇐⇒ vabc(t) = T−1

dq0v
dq0(t), (A.7)

idq0(t) = Tdq0i
abc(t)⇐⇒ iabc(t) = T−1

dq0i
dq0(t). (A.8)

A.2 Effects of SRF transformations into variables

with multiple harmonic/sequence components

The previous section mentioned that the SRF transformation changes fundamental-
frequency sinusoidal components into dc quantities. Here, we expand this analysis
considering different harmonic/sequence components. Let:

iabc(t) = iabc+1 (t) + iabc−1 (t) + iabc−5 (t) + iabc+7 (t) + iabc−11(t) + iabc+13(t), (A.9)
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where the subscripts + and − indicate positive or negative sequence and the integer
following them represents the harmonic order.

Each component of order ±h in (A.9) is represented by:

iabc+h(t) =

 I+h sin (hωt+ φ+h)

I+h sin (hωt− 2π/3 + φ+h)

I+h sin (hωt+ 2π/3 + φ+h)

 (A.10)

iabc−h(t) =

 I−h sin (hωt+ φ−h)

I−h sin (hωt+ 2π/3 + φ−h)

I−h sin (hωt− 2π/3 + φ−h)

 (A.11)

In this case, the currents in SRF become:

id(t) = I+1 sin(φ+1) + I−1 sin(2ωt+ φ−1)

+ I−5 sin(6ωt+ φ−5) + I+7 sin(6ωt+ φ+7)

+ I−11 sin(12ωt+ φ−11) + I+13 sin(12ωt+ φ+13), (A.12)

iq(t) = I+1 cos(φ+1)− I−1 cos(2ωt+ φ−1)

− I−5 cos(6ωt+ φ−5) + I+7 cos(6ωt+ φ+7)

− I−11 cos(12ωt+ φ−11) + I+13 cos(12ωt+ φ+13), (A.13)

i0(t) = 0. (A.14)

As it was already mentioned, the positive-sequence fundamental component
was turned into dc quantities I+1 sin(φ+1) and I+1 cos(φ+1). Equations (A.11) and
(A.11) also show that negative-sequence fundamental component was shifted into
2ω, being represented in SRF by the terms I−1 sin(2ωt+φ−1) and I−1 cos(2ωt+φ−1).
The negative-sequence fifth-order and the positive-sequence seventh-order, on the
other hand, were shifted into 6ω. Finally, the negative-sequence eleventh-order and
positive-sequence thirteenth-order harmonic components were shifted into 12ω.

It is possible to generalize the previous results as follows:

idh(t) =


+I−h sin

[
(h+ 1)ωt+ φ−h

]
, for negative sequence

+I+h sin

[
(h− 1)ωt+ φ+h

]
, for positive sequence

, (A.15)
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iqh(t) =


−I−h cos

[
(h+ 1)ωt+ φ−h

]
, for negative sequence

+I+h cos

[
(h− 1)ωt+ φ+h

]
, for positive sequence

, (A.16)

In this case, h is the harmonic order (h = 1 for the fundamental component), and
(h ± 1)ω is the frequency in which this component appears in SRF dq axes. It is
important to notice that, although the results were presented considering currents,
the same is also valid for voltages.

A.3 Effects of generic frame transformations into

variables with multiple harmonic/sequence

components

In some cases it necessary to use other reference frames for analyzing a system.
This is the case, for instance, of the analyzes in Section 4.2.2, where a D-SRF
(frame transformation considering θ = 2ω) transformation is considered. Thus,
the effects shown at the end of the previous sections are extended here for generic
transformations.

Considering a generic frame transformation where θ = ωF t, and ωF = ±hω de-
pending on the frame transformation is aligned with the positive/negative sequence
of the hth-order harmonic component. In this case, the currents in (A.11) are re-
presented in this new reference frame as follows:

idh(t) =


+I−h sin

[
(hω + ωF ) t+ φ−h

]
, for negative sequence

+I+h sin

[
(hω − ωF ) t+ φ+h

]
, for positive sequence

, (A.17)

iqh(t) =


−I−h cos

[
(hω + ωF ) t+ φ−h

]
, for negative sequence

+I+h cos

[
(hω − ωF ) t+ φ+h

]
, for positive sequence

, (A.18)

A.4 Applying the transformation into algebraic

equations

Lets first consider a generic voltage-across-resistor matrix equation in NRF:

vabcr (t) = R iabcr (t) (A.19)
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where vabcr and iabcr are the voltage and current vectors, and R is the resistance.
To change (A.19) into SRF, it necessary to substitute the following results in it:

vabcr (t) = T−1
dq0 vdq0r (t), (A.20)

iabcr (t) = T−1
dq0 idq0r (t). (A.21)

Thus,
T−1
dq0 vdq0r (t) = R T−1

dq0 idq0r (t) (A.22)

Multiplying both sided by Tdq0 on the left side:

vdq0r (t) = R idq0r (t) (A.23)

It is possible to observe that the SRF transformation does not change the pattern
of the equation. This is valid for any algebraic equation.

A.5 Applying the transformation into differential

equations

Let us consider in this time a generic voltage-across-inductor matrix equation in
NRF:

vabcL (t) = L
d

dt
iabcL (t) (A.24)

where vabcL and iabcL are the voltage and current vectors, and L is the inductance.
It is necessary, now, to follow the same steps presented in the previous section,

i.e:
vabcL (t) = T−1

dq0 vdq0L (t), (A.25)

iabcL (t) = T−1
dq0 idq0L (t). (A.26)

Making the substitution leads to:

T−1
dq0 vdq0L (t) = L

d

dt

[
T−1
dq0 idq0L (t)

]
(A.27)

Considering the chain rule of calculus, it is possible to obtain the following result:

T−1
dq0 vdq0L (t) = L

d

dt

[
T−1
dq0

]
idq0L (t) + L T−1

dq0

d

dt

[
idq0L (t)

]
(A.28)
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Multiplying both sides of the equation by Tdq0 leads to:

vdq0L (t) = L Ωc(θ) idq0L (t) + L
d

dt

[
idq0L (t)

]
. (A.29)

Ωc(θ) = Tdq0
d

dt

[
T−1
dq0

]
(A.30)

Observe in (A.29) that, differently from the algebraic case, the pattern of the
differential equation is changed. In this case, the matrix term Ωc represents the
coupling between the direct and quadrature axes. For the SRF transformation used
in Section 4.2, Ωc(θ) can be simplified as follows:

Ω = Ωc(ωt) =

 0 −ω0 0

ω0 0 0

0 0 0

 (A.31)

where ω0 is the angular frequency of the fundamental component.
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Apêndice B

Steady-state results of the
Section 3.5

This Appendix presents the results which did not fit in Section 3.5. The first section
presents the representation of the linear system used do compute the steady-state
result of the MMC, while the second presents part of the results. Due to the size
of the mathematical expressions, it was decided to provide a Jupyter notebook
containing the python code and any explanation necessary to use it in the following
reference [127]. It was wrapped in a Binder environment, which also can be assessed
clicking HERE, which allows the user to run the code without the need to install
anything on your computer.

B.1 Linear system

Xss =
[
Xicir Xvdcp Xvdcn

]T
, (B.1)

Xicir =
[

Icir2s Icir2c Icir4s Icir4c

]
, (B.2)

Xvdcn =
[
V n
dc1s

V n
dc1c

V n
dc2s

V n
dc2c

V n
dc3s

V n
dc3c

V n
dc4s

V n
dc4c

]
, (B.3)

Xvdcp =
[
V p
dc1s

V p
dc1c

V p
dc2s

V p
dc2c

V p
dc3s

V p
dc3c

V p
dc4s

V p
dc4c

]
. (B.4)

Bss =


B1
ss

04×1

B2
ss

04×1

04×1

 (B.5)
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04×1 =


0

0

0

0

 (B.6)

B1
ss =


−Es∗

0 Icir0
2

+ 1
4
I0s

−Ec∗
0 Icir0

2
+ 1

4
I0c

−1
8
Ec∗

0 I0s − 1
8
Es∗

0 I0c

−1
8
Ec∗

0 I0c + 1
8
Es∗

0 I0s

 (B.7)

B2
ss =


Es∗

0 Icir0
2
− 1

4
I0s

Ec∗
0 Icir0

2
− 1

4
I0c

−1
8
Ec∗

0 I0s − 1
8
Es∗

0 I0c

−1
8
Ec∗

0 I0c + 1
8
Es∗

0 I0s

 (B.8)

Ass =



Ec,s 02×2 02×2 02×2 02×2 02×2 Mω
Ceq 02×2 02×2 02×2

−1
2
I 02×2 02×2 02×2 02×2 02×2 02×2 2Mω

Ceq 02×2 02×2

ET
c,s Ec,s 02×2 02×2 02×2 02×2 02×2 02×2 3Mω

Ceq 02×2

02×2 −1
2
I 02×2 02×2 02×2 02×2 02×2 02×2 02×2 4Mω

Ceq

−Ec,s 02×2 Mω
Ceq 02×2 02×2 02×2 02×2 02×2 02×2 02×2

−1
2
I 02×2 02×2 2Mω

Ceq 02×2 02×2 02×2 02×2 02×2 02×2

−ET
c,s −Ec,s 02×2 02×2 3Mω

Ceq 02×2 02×2 02×2 02×2 02×2

02×2 −1
2
I 02×2 02×2 02×2 4Mω

Ceq 02×2 02×2 02×2 02×2

M2ω
rl 02×2

1
2
ET
c,s

1
4
I 1

2
Ec,s 02×2 −1

2
ET
c,s

1
4
I −1

2
Ec,s 02×2

02×2 M4ω
rl 02×2 02×2

1
2
ET
c,s

1
4
I 02×2 02×2 −1

2
ET
c,s

1
4
I


(B.9)

02×2 =

[
0 0

0 0

]
(B.10)

Ec,s =

[
Ec∗

0

4
−Es∗

0

4
Es∗

0

4

Ec∗
0

4

]
(B.11)

M2ω
rl =

[
R −2ωL

2ωL R

]
(B.12)

M4ω
rl =

[
R −4ωL

4ωL R

]
(B.13)
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Mω
Ceq =

[
0 −ωCeq

ωCeq 0

]
(B.14)

B.2 solution

Considering:

∆I = 37748736.0C4
eqL

4ω8 + 11796480.0C4
eqL

2R2ω6 + 589824.0C4
eqR

4ω4

− 3538944.0C3
eq(E

c∗
0 )2L3ω6 − 294912.0C3

eq(E
c∗
0 )2LR2ω4 − 3538944.0C3

eq(E
s∗
0 )2L3ω6

− 294912.0C3
eq(E

s∗
0 )2LR2ω4 − 5898240.0C3

eqL
3ω6 − 589824.0C3

eqLR
2ω4

+ 95232.0C2
eq(E

c∗
0 )4L2ω4 + 4864.0C2

eq(E
c∗
0 )4R2ω2 + 190464.0C2

eq(E
c∗
0 )2(Es∗

0 )2L2ω4

+ 9728.0C2
eq(E

c∗
0 )2(Es∗

0 )2R2ω2 + 350208.0C2
eq(E

c∗
0 )2L2ω4 + 13824.0C2

eq(E
c∗
0 )2R2ω2

+ 95232.0C2
eq(E

s∗
0 )4L2ω4 + 4864.0C2

eq(E
s∗
0 )4R2ω2 + 350208.0C2

eq(E
s∗
0 )2L2ω4

+ 13824.0C2
eq(E

s∗
0 )2R2ω2 + 304128.0C2

eqL
2ω4 + 11520.0C2

eqR
2ω2

− 576.0Ceq(E
c∗
0 )6Lω2 − 1728.0Ceq(E

c∗
0 )4(Es∗

0 )2Lω2 − 4416.0Ceq(E
c∗
0 )4Lω2

− 1728.0Ceq(E
c∗
0 )2(Es∗

0 )4Lω2 − 8832.0Ceq(E
c∗
0 )2(Es∗

0 )2Lω2 − 9216.0Ceq(E
c∗
0 )2Lω2

− 576.0Ceq(E
s∗
0 )6Lω2 − 4416.0Ceq(E

s∗
0 )4Lω2 − 9216.0Ceq(E

s∗
0 )2Lω2

− 5760.0CeqLω
2 + (Ec∗

0 )8 + 4.0(Ec∗
0 )6(Es∗

0 )2 + 12.0(Ec∗
0 )6

+ 6.0(Ec∗
0 )4(Es∗

0 )4 + 36.0(Ec∗
0 )4(Es∗

0 )2 + 48.0(Ec∗
0 )4 + 4.0(Ec∗

0 )2(Es∗
0 )6

+ 36.0(Ec∗
0 )2(Es∗

0 )4 + 96.0(Ec∗
0 )2(Es∗

0 )2 + 72.0(Ec∗
0 )2 + (Es∗

0 )8

+ 12.0(Es∗
0 )6 + 48.0(Es∗

0 )4 + 72.0(Es∗
0 )2 + 36.0, (B.15)

The steady-state solution for Icir2s is given by:

Icir2s =
1

∆I

[
Acir21 Acir22 Acir23 Acir24

]


2.0Es∗
0 Icir0 − I0s

2.0Ec∗
0 Icir0 − I0c

Ec∗
0 I0c − Es∗

0 I0s

Ec∗
0 I0s + Es∗

0 I0c

 (B.16)

In this case, we have the following results:
Acir21 = 589824.0C3

eqE
c∗
0 L

2Rω5 + 36864.0C3
eqE

c∗
0 R

3ω3 − 1179648.0C3
eqE

s∗
0 L

3ω6 −
73728.0C3

eqE
s∗
0 LR

2ω4 − 6144.0C2
eq (Ec∗

0 )3 LRω3 + 61440.0C2
eq (Ec∗

0 )2Es∗
0 L

2ω4 +

3072.0C2
eq (Ec∗

0 )2Es∗
0 R

2ω2 − 6144.0C2
eqE

c∗
0 (Es∗

0 )2 LRω3 − 18432.0C2
eqE

c∗
0 LRω

3 +

61440.0C2
eq (Es∗

0 )3 L2ω4 + 3072.0C2
eq (Es∗

0 )3R2ω2 + 110592.0C2
eqE

s∗
0 L

2ω4 +

4608.0C2
eqE

s∗
0 R

2ω2 + 32.0Ceq (Ec∗
0 )5Rω − 480.0Ceq (Ec∗

0 )4Es∗
0 Lω

2 +

64.0Ceq (Ec∗
0 )3 (Es∗

0 )2Rω + 96.0Ceq (Ec∗
0 )3Rω − 960.0Ceq (Ec∗

0 )2 (Es∗
0 )3 Lω2 −

2496.0Ceq (Ec∗
0 )2Es∗

0 Lω
2 + 32.0CeqE

c∗
0 (Es∗

0 )4Rω + 96.0CeqE
c∗
0 (Es∗

0 )2Rω +
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144.0CeqE
c∗
0 Rω − 480.0Ceq (Es∗

0 )5 Lω2 − 2496.0Ceq (Es∗
0 )3 Lω2 − 2592.0CeqE

s∗
0 Lω

2 +

(Ec∗
0 )6Es∗

0 +3.0 (Ec∗
0 )4 (Es∗

0 )3+9.0 (Ec∗
0 )4Es∗

0 +3.0 (Ec∗
0 )2 (Es∗

0 )5+18.0 (Ec∗
0 )2 (Es∗

0 )3+

24.0 (Ec∗
0 )2Es∗

0 + (Es∗
0 )7 + 9.0 (Es∗

0 )5 + 24.0 (Es∗
0 )3 + 18.0Es∗

0

Acir22 = 1179648.0C3
eqE

c∗
0 L

3ω6 + 73728.0C3
eqE

c∗
0 LR

2ω4 + 589824.0C3
eqE

s∗
0 L

2Rω5 +

36864.0C3
eqE

s∗
0 R

3ω3 − 61440.0C2
eq (Ec∗

0 )3 L2ω4 − 3072.0C2
eq (Ec∗

0 )3R2ω2 −
6144.0C2

eq (Ec∗
0 )2Es∗

0 LRω
3−61440.0C2

eqE
c∗
0 (Es∗

0 )2 L2ω4−3072.0C2
eqE

c∗
0 (Es∗

0 )2R2ω2−
110592.0C2

eqE
c∗
0 L

2ω4 − 4608.0C2
eqE

c∗
0 R

2ω2 − 6144.0C2
eq (Es∗

0 )3 LRω3 −
18432.0C2

eqE
s∗
0 LRω

3 + 480.0Ceq (Ec∗
0 )5 Lω2 + 32.0Ceq (Ec∗

0 )4Es∗
0 Rω +

960.0Ceq (Ec∗
0 )3 (Es∗

0 )2 Lω2 + 2496.0Ceq (Ec∗
0 )3 Lω2 + 64.0Ceq (Ec∗

0 )2 (Es∗
0 )3Rω +

96.0Ceq (Ec∗
0 )2Es∗

0 Rω + 480.0CeqE
c∗
0 (Es∗

0 )4 Lω2 + 2496.0CeqE
c∗
0 (Es∗

0 )2 Lω2 +

2592.0CeqE
c∗
0 Lω

2 + 32.0Ceq (Es∗
0 )5Rω + 96.0Ceq (Es∗

0 )3Rω + 144.0CeqE
s∗
0 Rω −

(Ec∗
0 )7 − 3.0 (Ec∗

0 )5 (Es∗
0 )2 − 9.0 (Ec∗

0 )5 − 3.0 (Ec∗
0 )3 (Es∗

0 )4 − 18.0 (Ec∗
0 )3 (Es∗

0 )2 −
24.0 (Ec∗

0 )3 − Ec∗
0 (Es∗

0 )6 − 9.0Ec∗
0 (Es∗

0 )4 − 24.0Ec∗
0 (Es∗

0 )2 − 18.0Ec∗
0

Acir23 = −589824.0C3
eqL

3ω6 − 36864.0C3
eqLR

2ω4 + 30720.0C2
eq (Ec∗

0 )2 L2ω4 +

1536.0C2
eq (Ec∗

0 )2R2ω2 + 30720.0C2
eq (Es∗

0 )2 L2ω4 + 1536.0C2
eq (Es∗

0 )2R2ω2 +

55296.0C2
eqL

2ω4 + 2304.0C2
eqR

2ω2 − 240.0Ceq (Ec∗
0 )4 Lω2 −

480.0Ceq (Ec∗
0 )2 (Es∗

0 )2 Lω2 − 1248.0Ceq (Ec∗
0 )2 Lω2 − 240.0Ceq (Es∗

0 )4 Lω2 −
1248.0Ceq (Es∗

0 )2 Lω2 − 1296.0CeqLω
2 + 0.5 (Ec∗

0 )6 + 1.5 (Ec∗
0 )4 (Es∗

0 )2 + 4.5 (Ec∗
0 )4 +

1.5 (Ec∗
0 )2 (Es∗

0 )4 + 9.0 (Ec∗
0 )2 (Es∗

0 )2 + 12.0 (Ec∗
0 )2 + 0.5 (Es∗

0 )6 + 4.5 (Es∗
0 )4 +

12.0 (Es∗
0 )2 + 9.0

Acir24 = −8.0CeqRω

[
36864.0C2

eqL
2ω4 + 2304.0C2

eqR
2ω2 − 384.0Ceq (Ec∗

0 )2 Lω2 −

384.0Ceq (Es∗
0 )2 Lω2 − 1152.0CeqLω

2 + 2.0 (Ec∗
0 )4 + 4.0 (Ec∗

0 )2 (Es∗
0 )2 + 6.0 (Ec∗

0 )2 +

2.0 (Es∗
0 )4 + 6.0 (Es∗

0 )2 + 9.0

]
All the constants and variables presented in this result were defined in Sec-

tion 3.5. The solution for the other components are omitted here due to the space
they were required, but the can be visualized running the Jupyter notebook hosted
HERE [127].
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Apêndice C

Methodology used to validate the
developed models

This appendix in focused on explaining how the validations of the models were
carried out. It is used as example the MMC in natural reference frame, but the idea
is easily adapted to the MMC in Synchronous reference frame.

C.1 Validation of the equivalent dc admittance

The equivalent dc admittance, Ydc, models the relationship between the voltage in
the dc link, vdc, and the circulating currents, ikcir. If a harmonic component vdch
appears in the dc voltage, a harmonic component ikcirh is created in the circulating
currents. Thus, to validate the model, the dc admittance can be computed using a
detailed model (in this case, the non-linear model) by inserting a harmonic compo-
nent in vdch and observing the effect caused in the circulating currents, as shown in
Figure C.1.

MMC
vdc

Zf

Gi(s)

Gcir(s)

ikcpikcn

ekc vko

Modulation

mk
nmk

p

ek∗cir

ikcir

ikcek∗c
ik∗c

Eq
(1.8)

ikc

SM SM

SM

SM

SMSM

vg

Sin
Generator

Insertion
Indices

Current Loop

icir Loop

ikcir = idc + ikcir2 + ikcirh

ik∗c = Rated

vkg = Rated

Ydch =
Amplitude(ikcirh)
Amplitude(vdch)

vdch

Figure C.1: Strategy for measuring the equivalent dc admittance of the MMC.
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In this case, the measured admittance at a given frequency is computed by:

Ydch =
Amplitude (vdch)

Amplitude (icirh)
(C.1)

C.2 Validation of the Norton-equivalent admittance

When the MMC is under current control and connected to a power grid, the har-
monic content of the voltages can distort the output current. This distortion is
caused by the harmonic current which is drawn by the Norton-equivalent admit-
tance of the converter. Thus, this admittance can be measured in a detailed model
by adding harmonic components to the grid voltages and measuring the respective
harmonic components created in the output current. Figure C.2 presents a diagram
illustrating this approach.

MMCvdc
Zf

Gi(s)

Gcir(s)

ikcpikcn

ekc vko

Modulation

mk
nmk

p

ek∗cir

ikcir ikc

ek∗c
ik∗c

Eq
(1.8)

SM SM

SM

SM

SMSM

vg

Sin
Generator

Insertion
Indices

Current Loop

icir Loop

vh

ikc = ikc1 + ikch

ik∗c = Rated

vkg = Rated

Yach =
Amplitude(ikch)
Amplitude(vkh)

ikc

Figure C.2: Strategy for measuring the Norton-equivalent admittance of the MMC.

In this case, the measured admittance at a given frequency is computed by:

Yach =
Amplitude (ich)

Amplitude (voh)
(C.2)

C.3 Validation of the Closed-loop current gain

The closed-loop current gain measures the relationship between the reference cur-
rents and the produced currents. For measuring it, harmonic components ik∗ch are
inserted in the reference signals and the effects on the output currents are measu-
red. Since the voltages are kept without distortion, the components ikch are caused
directly by ik∗ch. Figure C.3 presents an illustrative diagram for this procedure.
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Figure C.3: Strategy for measuring the closed-loop current gain of the MMC.

In this case, the measured closed-loop gain at a given frequency is computed by:

Gi
clh =

Amplitude (ich)

Amplitude (i∗ch)
(C.3)

C.4 Validation of the Thevenin-equivalent impe-

dance

To measure the Thévenin-equivalent impedance of the MMC, a harmonic component
ikoh is added to the load currents and the corresponding harmonic voltage voh is
observed. The Figure C.4 illustrated this process. Bear in mind that, despite the
fact the figure considers the single-loop voltage-controlled MMC, the approach also
used for the double-loop current/voltage-controlled MMC.

In this case, the measured closed-loop gain at a given frequency is computed by:

Zthh =
Amplitude (voh)

Amplitude (i∗oh)
(C.4)

C.5 Validation of the Closed-loop voltage gain

Thevenin gain measures the relationship between the reference voltage and the out-
put voltage. Thus, it can be measured by adding a harmonic component v∗oh in
the reference signals and observing the corresponding component in the voltage.
Figure C.5 illustrates the process.
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Figure C.4: Strategy for measuring the Thévenin-equivalent impedance of the MMC.

In this case, the measured Thévenin gain at a given frequency is computed by:

Zthh =
Amplitude (voh)

Amplitude (v∗oh)
(C.5)
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Apêndice D

Step by Step obtaining of the
feed-forward terms to produce the
virtual impedances
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Ṽ ∆k
dc
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Ĩko
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Ĩko

Ṽ k
o
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Figure D.1: Step-by-step obtaining the feed-forward term for generating the virtual
impedance of the NRF single-loop voltage-controlled MMC.
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Figure D.2: Step-by-step obtaining the feed-forward term for generating the virtual
impedance of the NRF double-loop voltage-controlled MMC.
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Ṽ d∆
dc

1
(L+2Lf )s

ω(L+ 2Lf )
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Ĩqo

D
es

ir
ed

E
ff

ec
t

1
(L+2Lf )s

R + 2Rf

ω(L+ 2Lf )
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Ẽq∗
c Ẽq
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Ĩdo
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Ṽ q
o

2

1
2
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Figure D.3: Step-by-step obtaining the feed-forward term for generating the virtual
impedance of the SRF single-loop voltage-controlled MMC.
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Ĩdo,ap
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Ĩdo
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Ṽ d
o 2

1
2
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Ĩqo
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c Ẽq

c
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vir

Ẽq
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Figure D.4: Step-by-step obtaining the feed-forward term for generating the virtual
impedance of the SRF double-loop voltage-controlled MMC.
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