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para a obtenção do grau de Doutor em Ciências (D.Sc.)

DETECÇÃO DE ANOMALIAS EM VÍDEOS DE CAMERAS MÓVEIS USANDO

DECOMPOSIÇÕES EM MATRIZES ESPARSAS E DE BAIXO-POSTO

Eric de Carvalho Jardim Silva

Setembro/2018

Orientadores: Eduardo Antônio Barros da Silva

Sergio Lima Netto

Programa: Engenharia Elétrica

Apresentamos dois métodos baseados em decomposições esparsas que podem de-

tectar anomalias em sequências de v́ıdeo obtidas por câmeras em movimento. O

primeiro método estima a união de subespaços (UdS) que melhor representa todos

os quadros de um v́ıdeo de referência (livre de anomalias) como uma projeção de

baixo-posto mais um reśıduo esparso. Em seguida, é realizada uma representação de

baixo-posto do v́ıdeo alvo (possivelmente anômalo) aproveitando a UdS e o reśıduo

esparso calculado a partir do v́ıdeo de referência. As anomalias são extráıdas após o

pós-processamento destas informações residuais. Esse algoritmo fornece bons resul-

tados de detecção, além de eliminar a necessidade de uma sincronização prévia dos

v́ıdeos. No entanto, essa técnica perde eficiência quando os v́ıdeos de referência e

alvo apresentam desalinhamentos mais graves entre si. Isso pode ocorrer devido a pe-

quenos movimentos descontrolados da câmera e tremores durante a fase de aquisição.

Para estender sua aplicabilidade, uma segunda contribuição é proposta a fim de lidar

com esse posśıvel desalinhamento. Isso é feito modelando a discrepância de pose de

câmera entre os v́ıdeos de referência e alvo com transformações geométricas agindo

no domı́nio dos quadros do v́ıdeo alvo. Um algoritmo completo de decomposição

de matrizes é apresentado para realizar uma representação esparsa do v́ıdeo alvo

como uma combinação esparsa do v́ıdeo de referência, levando em consideração as

transformações que atuam sobre seus quadros. Nosso método é então verificado e

comparado com técnicas de última geração com aux́ılio de v́ıdeos de uma base desafi-

adora, apresentando os desalinhamentos em questão. Sob as métricas de avaliação

usadas, o segundo método proposto exibe uma melhoria de pelo menos 16% em

relação ao primeiro, e 22% sobre o método melhor avaliado logo em seguida.
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This work presents two methods based on sparse decompositions that can detect

anomalies in video sequences obtained from moving cameras. The first method

starts by computing the union of subspaces (UoS) that best represents all the frames

from a reference (anomaly-free) video as a low-rank projection plus a sparse residue.

Then it performs a low-rank representation of the target (possibly anomalous) video

by taking advantage of both the UoS and the sparse residue computed from the

reference video. The anomalies are extracted after post-processing this video with

these residual data. Such algorithm provides good detection results while at the

same time obviating the need for previous video synchronization. However, this

technique looses its detection efficiency when target and reference videos presents

more severe misalignments. This may happen due to small uncontrolled camera

moviment and shaking during the acquisition phase, which is often common in real-

world situations. To extend its applicability, a second contribution is proposed in

order to cope with these possible pose misalignments. This is done by modeling

the target-reference pose discrepancy as geometric transformations acting on the

domain of frames of the target video. A complete matrix decomposition algorithm

is presented in order to perform a sparse representation of the target video as a

sparse combination of the reference video plus a sparse residue, while taking into

account the transformation acting on it. Our method is then verified and compared

against state-of-the-art techniques using a challenging video dataset, that comprises

recordings presenting the described misalignments. Under the evaluation metrics

used, the second proposed method exhibits an improvement of at least 16% over the

first proposed one, and 22% over the next best rated method.
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Chapter 1

Introduction

Anomaly detection in images and video sequences is a classical research problem

in computer vision and related areas, which has direct applications in many tasks,

ranging from domestic security and medical diagnosis to issues faced by industrial

and military activities [1, 7]. The increasing number of applications and the neces-

sity of precise results are raising the demand for alternative, less human-dependant

solutions. Apart from being a regularly known problem, automatic anomaly detec-

tion still remains a difficult and challenging topic due to several complex issues such

as camera pose, illumination, shadows, occlusions, weather conditions, camera jitter,

and so on [12]. Some of these can drasticaly increase detection difficulty, possibly

breaking with critical premises assumed by well stabilished techniques.

In several surveillance tasks, additional cameras should be employed to deal

with the problem of multiple occlusions. Some activities, especially in cluttered en-

vironments like industrial plants and offshore oil platforms, usually require multiple

viewpoints for proper inspection [2, 3]. Such a need is even greater in hazardous

environments and when there are places that are difficult to access [31, 34, 35]. In-

creasing the number of cameras also increases the amount of video to be analyzed

what can become unpractical in a large facility.

An interesting approach to deal with this issue is to monitor several viewpoints

from a single moving camera. In practice, a conventional camera can be mounted

on top of a moving platform (e.g. a car, robot, or drone), that takes the camera

to the desired positions along a predefined trajectory. While this approach can

significantly reduce the necessary number of cameras, it also enables the selection

of specific points-of-view to be monitored at the same time that it allows the au-

tomation of repetitive inspections. These factors, allied to the widespread use of

portable cameras, are spurring the interest in problems of surveillance and back-

ground/foreground separation using moving cameras [4–6, 8, 31]. Figure 1 shows an

example of detection of moving objects by a mounted moving camera as described

in [6].
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Figure 1.1: An example of detection technique of moving objects with a moving
camera. This technique tries to detect moving objects from different points-of-view.
Images extracted from [6].

This study proposes new methods to robustly detect changes in moving cameras

sequences by using special matricial factorizations. There are two types of video

sequences that are fundamental to all algorithms. Namely, the reference video, that

is previously validated as containing no anomalies, and the target video, a possibly

anomalous sequence that will be compared to reference data. Figure 1.2 illustrates

sample still frames taken from these two kinds of sequences.

(a) (b)

Figure 1.2: (a) a supposedly normal image, used as reference; (b) similar image with
an abandoned object (pink bottle).

The first proposed method uses principal subspace analysis and sparse represen-

tation to extract any anomalous information from video sequences. The process is

divided into two stages, respectively using the reference and target videos sequences

packed as matrices. First, in the modeling stage, the reference matrix is decomposed

into the sum of a low-rank representation component plus a sparse residual. These

two terms are used as input the detection stage, together with the target matrix

(i.e., the matrix that is being tested for changes) in order to isolate the changes in a

resulting matrix. During this phase, two additional sparse plus low-rank decompo-

sitions are performed. To enhance the results, a post-processing step can appended

after the detection stage. A major advantage of this method is that no video syn-

chronization or frame geometric registration is needed. The only basic assumption
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for this algorithm to work efficiently is that the camera’s poses and trajectories dur-

ing the target and reference video acquisitions are similar, in such a way that the

information in the frames of the target video is mostly contained in the frames from

the reference video. Under these circumstances, the decomposition of the target

frames as an sparse combination of the data processed from the reference frames

can be achieved by linear convex optimization, as it will be described further.

Unfortunately, in real world scenarios, the camera trembles as it moves, and

thus its pose and trajectory during recording of the reference video may present

variations relative to its pose and trajectory during recording of the target video.

A way to cope with these issues is to add to the optimization process an additional

non-linear domain-transformation term, that will require an iterative linearization

approximation. This domain transformation enables the method to find a better

correspondence between reference and target video frames, thus yielding less false

detections as result of the algorithm. Therefore, a second method is proposed with

these modifications. The latter approach is also not based on a modeling stage, as

in the first method, since in the second approach the target data can be compared

directly with the reference data.

In this document we present two methods based on sparse decomposition frame-

work in order to detect anomalies in video sequences obtained from moving cameras.

This work has the following contributions:

• Two full anomaly detection algorithms that can be applied to videos acquired

by a moving camera, without the need of previous video synchronization, based

on sparse representation and a post-processing stage;

• A parameter tuning methodology using recursive subdivision search and by

employing a K-fold cross-validation assessment;

• A qualitative and quantitative evaluation of the proposed algorithms, com-

paring their performance with competing state-of-the-art methods, using data

from a very challenging dataset.

1.1 Thesis Organization

This document is organized as follows: Chapter 2 reviews the state-of-the-art tech-

niques for linear low-rank modeling of high-dimensional data by using matrix de-

composition with sparse representations and some variations that support geometric

domain-transformations. The setup of the moving-camera surveillance problem is

addressed in Chapter 3, reviewing the literature and some testing datasets. Chap-

ter 4 introduces the problem of anomaly detection in videos acquired from moving

3



cameras and details the adaptation of one of these sparse representation-based tech-

niques for the problem at hand. Chapter 5 then discusses how to make such a scheme

robust to severe geometric misalignment between reference and target videos. The

idea is to incorporate a transformation into the optimization problem associated

to the sparse representation and validates the proposed methodology by present-

ing experimental results on a comprehensive video database, comparing it to the

state-of-the-art. Finally, conclusions are drawn in Chapter 6 emphasizing our main

contributions.
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Chapter 2

Subspace Analysis and Matrix

Decomposition

This chapter performs a modest literature review of the related techniques that

inspired this research. Section 2.1 presents the evolution of linear modeling in high-

dimensional data, from classical PCA to its modern robust derivatives that make

use of optimization techniques. At last, Section 2.2 reviews the use of geometric

domain-transformations as a mean to correct samples that are not perfectly aligned

in PCA derived methods.

2.1 Sparse and Low-Rank Decomposition

When dealing with high-dimensional observations, a very popular and successful ap-

proach is to fit the data with a simplified, lower-dimensional model. More precisely,

data is often assumed to lie approximately on some low-rank subspace, reducing

model complexity and consequently increasing model robustness and simplifying

further analysis and storage space. Unfortunately, real-world data usually comes

from sensors, which may suffer from noise and other types of perturbations. Thus,

these sensor readings can be modeled as the superposition of a low-rank compo-

nent plus some kind of undesired corruption term. Mathematically, if X ∈ Rm×n

represents a matrix whose columns are these observed values, it can be modeled as

X = L+ E, (2.1)

where the columns of L represents a low-rank model and E is a matrix of perturba-

tions. In practice, the problem of finding anomalies is reduced to the decomposition

of X, isolating the spurious data into the perturbation component E.

In statistics, principal component analysis (PCA) is perhaps one of the most

commonly known tool for analysis, and it is widely used in this kind of scenario. If
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the rank of L is previously known and the entries of E are small, following indepen-

dent and identical Gaussian distributions, the problem can be efficiently solved with

PCA by simply performing a singular value decomposition (SVD) of X and pro-

jecting its columns into the subspace spanned by the r major left-singular vectors,

sorted by its corresponding singular values in descending order.

Under these circumstances, the estimated subspace is optimal in the sense that it

minimizes the mean squared reconstruction error of the columns of X, which allows

us to rewrite the PCA as the optimization problem

min
L,E
||E||F subject to (s.t.)

{
X = L+ E

rank(L) ≤ r
, (2.2)

where ||.||F is the Frobenius norm of a given matrix.

A downside of this method is that, in many practical situations, r might not be

known a priori. Even worse, the presence of large corruptions in E can significantly

compromise the estimation of L. It is possible to demonstrate that a single cor-

rupted entry can induce PCA to estimate a solution that is arbitrarily far from the

correct one [22]. Hence, in order to generate decompositions with a broader range

of usability, more error-tolerant approaches must be considered.

Robust principal component analysis

A very common practice in linear modeling is to use images with fixed pixel dimen-

sions as long vectors. Techniques like eigenfaces are quite known in literature, which

confirms the maturity of PCA in computer vision applications like face detection

and recognition [19], for instance. In computer vision applications, it is desirable

that the presence of some visual anomalies, like partially occluding objects, does

not compromise the model accuracy. The robust PCA (RPCA) [22] presents an

interesting solution to this issue by forcing a sparse error term E, that is, with most

of its entries equal to zero. In the spirit of Eq. (2.1), it is fair to assume that E is

sparse, since an occluding object will only affect part of the image pixels. On the

other hand, the rank of L could be an intrinsic property of the underlying model

and leaving it loose could be interesting for many purposes. To this end, Eq. (2.2)

is modified so as to as generate the following minimization problem:

min
L,E

rank(L) + λ||E||0 s.t. X = L+ E, (2.3)

where ||.||0 is the l0-norm (number of non-zero entries), and the parameter λ balances

the sparsity of E and the rank of L. Notice that, unlike the case of Eq. 2.2, the rank

of L is not constrained, and should be considered an intrinsic property of the data.
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Unfortunately, this problem is intractable due to its combinatorial nature, and its

convex relaxation is considered instead [25]:

min
L,E
||L||∗ + λ||E||1 s.t. X = L+ E, (2.4)

where ||.||∗ is the nuclear norm of a matrix, defined by ||A||∗ = trace(
√
ATA). The

main advantage of this latter formulation is that is tractable and it can be solved

with high probability p under very weak conditions if λ is set to 1/
√

max(m,n) [22],

where m and n are the matrix dimensions.

The RPCA algorithm works very efficiently on scenarios with relatively static

background, usually acquired by a static camera [18]. Two classical applications of

robust PCA are in video surveillance and face recognition. In the first case, frames

from a video sequence aquired from a relatively static surveillance camera are stacked

into a matrix as flat vectors. The goal is to model the static background as the low-

rank component L, including illumination changes and slow background variations.

Foreground entities like fast moving objects generally occupy a small fraction of the

image and should be isolated into the sparse component E, not contributing to the

background model. In (a) and (b) from Figure 2.1, each row exhibits a sample of the

original frame in the first column, the estimated low-rank component in the second

column and the sparse error component in the third column. In matricial terms, each

image in a given row corresponds to a given column (flattened image) of matrices X,

L and E respectively. In (a) from Figure 2.1, notice that a standing man is modeled

as background in L, since it appears still in all frames. Additionally, passers-by

are captured as foreground objects in the E component. More accurately, what is

captured in E is the pixel difference from the original frames to the estimated low-

rank component for each frame, as can be seen in the third column of (a) and (b)

in Figure 2.1. Looking at (b) in Figure 2.1 it is possible to see that RPCA can

deal with illumination changes. In both examples, the technique seems to capture

accurately the foreground objects as sparse-component errors.

In the face-recognition case, RPCA can be used to enhance a training set of face

images by removing shadows, specularities or even accessories present in the training

samples. It is known that convex, Lambertian objects under distant illumination lie

near a nine-dimensional subspace [20]. Since human faces are not perfectly convex

nor Lambertian, self-shadows and bright spots are quite common in face pictures,

breaking the premises for the low-rank model. Fortunately, RPCA isolates shadows

and specularities as sparse errors, as can be seen in the third column of (a) and

(b) in Figure 2.2. The images of Figure 2.2 are organized in the same way as in

Figure 2.1.
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(a) (b)

Figure 2.1: Sample frames of two experiments of RPCA used in video surveillance.
In both (a) and (b), the first column represents the original frame (X), the second
shows the estimated low-rank component (L) and the third contains the sparse
component (E). Figure extracted from [22].

2.1.1 Robust Subspace Recovery (RoSuRe)

The use of convex optimization techniques was an undoubtedly important break-

through in image and video analysis. Nevertheless, the pursuit for more general

models has shown that the union of subspaces can be a more accurate representation

of high-dimensional data when compared to the single subspace approach [42, 43].

So, the new question is: how to retrieve a set of unknown subspaces from possibly

corrupted samples? This problem is clearly more complex than the single subspace

modeling, once it is difficult to say, with no previous information, if a given sam-

ple is an outlier or it is representing a subspace. That is what the method known

as robust subspace recovery (RoSuRe) intends to perform, taking into account all

samples simultaneously.

Consider S1,S2, . . . ,Sk to be subspaces in Rm and let L1, L2, . . . , Lk be matrices

where, for each Lj, the columns are uniformly sampled vectors from Sj, assuming a

sufficient sample density such that each column of Lj can be represented by the other

columns with high probability. Since each Lj is self-representative by assumption,

there exists a square coefficient matrix Wj with null diagonal which allows one to

write Lj = LjWj. Let
⋃
S be the union of the Sj subspaces, that is

⋃
S =

k⋃
j=1

Sj.

Therefore, it is fair to say that L = [L1| . . . |Lk] is a self-representative sample

matrix of
⋃
S in the same way each Lj is for Sj. Indeed, one can easily build a
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(a) (b)

Figure 2.2: Sample frames of two experiments of RPCA used in face recognition.
Shadows and specularities are extracted as sparse errors. Figure extracted from [22].

block-diagonal matrix W = diag(W1, . . . , Wk), where W is clearly null diagonal,

which provides

L = LW. (2.5)

By construction, W is expected to be sparse in general and it reveals the undelying

subspace structure represented by L, which is said to be blockwise low-rank in a basis

induced by W . So, apart from possible corruptions, recovering
⋃
S from sampled

data is equivalent to recovering L along with W . Thus, if X stacks n observations

of
⋃
S, the subspace recovery can be performed by decomposing

X = LW + E, (2.6)

where E is again the matrix of perturbations. Notice that the (2.1) decomposi-

tion still holds by replacing (2.5) in (2.6), but since the structure present in W is

important, the latter form should be considered.

The algorithm proposed in [32] assumes the sparsity of both W and E matrices

to obtain the representation in (2.6). In the same fashion as in RPCA, it does

so by solving the relaxation of a harder combinatorial optimization problem. The

resulting relaxed problem

min
W,E
||W ||1 + λ||E||1 s.t.


X = L+ E

LW = L

Wii = 0

, (2.7)

is not convex due to the bilinearity of W and E, but the global optimizer can be

approximated by the augmented Lagrangian multiplier (ALM) method [32]. By
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replacing L by (X − E), the augmented Lagrangian function can be written as

L(W,E, Y, µ) = ||W ||1 + λ||E||1 + 〈LW − L, Y 〉+
µ

2
||LW − L||2︸ ︷︷ ︸

f(W,E)

, (2.8)

where f(W,E) is the differential part of L, which is bilinear in W and E. Using

the soft-threshold operator τα and letting Ŵk = I −Wk, one can define the update

steps of W and E:

Wk+1 = arg min
W
||W ||1 + f(W,E)

= τ 1
µη1

[
Wk −

1

η1

∇Wf(Wk, Ek)

]
= τ 1

µη1

[
Wk +

1

η1

LTk+1

(
Lk+1Ŵk −

Yk
µk

)]
, (2.9)

Ek+1 = arg min
E
λ||E||1 + f(W,E)

= τ λ
µη2

[
Ek −

1

η2

∇Ef(Wk+1, Ek)

]
= τ λ

µη2

[
Ek +

1

η2

(
Lk+1Ŵk+1 −

Yk
µ

)
Ŵ T
k+1

]
, (2.10)

where η1 ≥ ||L||22 and η2 ≥ ||Ŵ ||22, as summarized in Algorithm 1, which also includes

the updates of Y and µ.

Algorithm 1 - Robust Subspace Recovery (RoSuRe) [32]

Input: X,λ, ρ > 1, η1, η2

while not converged do
Lk+1 = X − Ek
Wk+1 = τ 1

µη1

[
Wk + 1

η1
LTk+1

(
Lk+1Ŵk − Yk

µk

)]
(Wk+1)ii = 0

Ŵk+1 = I −Wk+1

Ek+1 = τ λ
µη2

[
Ek + 1

η2

(
Lk+1Ŵk+1 − Yk

µk

)
Ŵ T
k+1

]
Yk+1 = Yk + µk (Lk+1Wk+1 − Lk+1)
µk+1 = ρµk

end while

The RoSuRe method has shown to work successfuly with synthetic data, created

by sampling vectors drawn from random union of subspaces with varying dimension

added with random sparse error with varying percentage of corruption. Compared

to RPCA, RoSuRe presents a broader range of correct recoveries when varying the

intrinsic dimensions of the subspaces. The results can be seen in Figure 2.3 and

more details can be found in the original paper [32], along with a discussion on suffi-

cient conditions for exact recovery. Apart from successful tests with synthetic data,
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Figure 2.3: Overall recovery of RoSuRe and RPCA of samples drawn from random
union of subspaces with varying dimension added with random sparse error with
varying percentage of corruption. Success rate is plotted with grayscale color-code
varying from black to white, respectively meaning 0 to 100 percentage of success.
Results extracted from [32].

Figure 2.4: Example of background subtraction with RoSuRe on traffic videos [32].

the RoSuRe method demonstrated strong potential in computer vision problems.

Experiments with video surveillance and face clustering have shown its performance

pairing up with state-of-art techniques. An example of background subtraction can

be seen in Figure 2.4, in the same fashion of the RPCA experiment with video

surveillance. A further experiment with a virtual panning camera opens the pos-

sibility of dealing with moving cameras. The samples of this test were actually

generated by cropping a sliding window inside the original static surveillance video

(see Figure 2.5). The window performs a periodic movement along the video frames

as an attempt to mimic the actual movement of a panning camera, but ignoring

visual parallax. Results are shown in Figure 2.6 and are slightly worse when com-

pared with the static case. For this experiment, the coefficient matrix W computed

with algorithm 1 exhibits the periodic frame correlation, as can be seen in the left

image of Figure 2.7. Rearranging samples by the virtual camera position reveals an

approximated blockwise diagonal structure as expected, as it is shown in the right
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Figure 2.5: Virtual panning camera by cropping a sliding window inside original
frame.

Figure 2.6: Example of background subtraction with RoSuRe with a virtual panning
camera [32].

image of Figure 2.7. The success of this experiment is the main motivation for this

work, since coping with moving cameras is the main interest of our investigation.

The union of subspaces model seems to be a natural extension of the low-rank sub-

space model, since frames from different camera positions can be treated as samples

drawn from different subspaces.

2.2 Domain Transformation

The use of linear modeling techniques applied to image samples was an important

breakthrough in image analysis. However, the success of these methods is strongly

attached to the pixelwise correlation of the sampling images. It is known that

even small misalignments can break the linear structure that is being modeled,

compromising the low-rank assumption upon the data. Unless sample images are

previously registered or acquired under controlled conditions, misalignments are

very common in practice, specially when dealing with moving cameras. To work

around this issue, images can be considered to lie in a different geometric domain
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Figure 2.7: Absolute values of coefficient matrix W (left) and its rearrangement
according to camera position (right) [32].

and the misalignments can be modeled as domain transformations. In this context,

many techniques try to model simultaneously the data while they search for the best

domain transformation that optimizes the parsimony of its representation [28, 44–

47]. For future work purposes, two of these methods will be briefly reviewed.

2.2.1 TILT: Transform Invariant Low-Rank Textures

In real world, most man-made objects and structures have a great amount of sym-

metry and redundancy. For example, the facade of a regular building could be

approximately generated by a repeatable pattern of walls and windows. If it is un-

der the correct alignment, the image of this same building could be generated by the

repetition and combination of a few columns, possibly with very few corruptions,

working as a low-rank texture. The idea behind TILT is to exploit this concept

everywhere, searching for an alignment that reveals the low-rank texture of any

desired image, with as few corruptions as possible.

However, it is obvious that different image alignments will lead to different tex-

tures, probably with different ranks. This raises the question: is there a “natural

alignment” for an image, so it can be generated by a low-rank texture? To avoid the

subjectivity of this question, TILT pursues the alignment that minimizes the rank of

the generating texture, along with any possible corruption. More precisely, let I be

an observed image, which under general assumption, is misaligned and corrupted.

Let I0 be its aligned low-rank texture and τ the domain transformation that cor-

rects I. This means that I ◦ τ is aligned with I0, where the ◦ operator represents

the action of the domain transformation τ on the image I. Thus, one can write

I ◦ τ = I0 + E, where E represents the corruptions. Finally, TILT can be defined

as the folowing optimization problem:

min
I0,E,τ

rank(I0) + γ||E||0 subject to I ◦ τ = I0 + E. (2.11)

In the same fashion as RPCA, this problem can be solved by convex relaxation. Gen-
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Figure 2.8: Examples of TILT use in particular regions of the image. The red
rectangle window on the top row are user-selected regions to be tilted and the green
window are its transformed by τ . Notice the rank of the textures before and after
TILT. Figure extracted from [44].

eraly, τ is chosen to be in a differentiable group of transformations like translations,

rotations and homographies. Even τ being non-linear, it is possible to approximate

the constraint by linearization around the current estimate of τ under small changes.

These modifications are implemented in a extended version of the ALM algorithm

[44, 45]. Examples of TILT use in particular image regions can be seen in Figure 2.8.

2.2.2 RASL: Robust Alignment by Sparse and Low-Rank

Decomposition

As we said in section 2.2.1, sample misalignments can break the linearity assumption,

compromising the low-rank property of the underlying model. The RASL technique

tries to solve the RPCA problem with samples that were not previously aligned.

It uses a similar approach as TILT and works with batch alignments of linearly

correlated images, instead of aligning single images.

Let D = [I1| . . . |In] be a matrix of observations where each column is an image

stacked into a flat vector. By general assumption, its samples are not aligned and

are possibly corrupted. Let τ = [τ1| . . . |τn] be a set of domain transformations that

act on each sample of D, in such a way that

D ◦ τ = [I1 ◦ τ1| . . . |In ◦ τn], (2.12)

where resulting Ij ◦ τj vectors may have a different dimension from the Ij ones. The

entries of D ◦ τ can be thought as selected regions of the entries of D that were
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Figure 2.9: Example use of RASL to batch-align several faces of an individual under
different illuminations, poses, expressions and occluding objects. The algorithm
automatically finds a set of transformations τ such that the transformed images D◦τ
in (b) can be decomposed as the sum of a low-rank approximation A shown in (c) and
a sparse component E shown in (d). The sharpened average faces in (e) demonstrate
the how the alignment enhances the correlation between the transformed samples
and even more in the low-rank term. Figure extracted from [46, 47].

geometric transformed by each entry of τ . Suppose A is a matrix that, given a

proper τ , contains the aligned entries of D. In this sense, A is approximately low-

rank and one can write D◦τ = A+E, where E incapsulates any possible corruption.

With this constraint, RASL can be defined as the optimization problem:

min
A,E,τ

rank(A) + γ‖E‖0 subject to D ◦ τ = A+ E. (2.13)

It is quite reasonable to assume that best alignment of the samples inD will minimize

the rank of A. Assuming the sparsity of the E, the solution of problem (2.13) tries

to simultaneously align and model the samples while compensating for the presence

of any sparse corruptions. As TILT, problem (2.13) can be solved by usual convex

relaxation and the local linearization of τ in each interation step [46, 47].

Figure 2.9 shows an example of RASL being used to batch-align several faces of

an individual under different illuminations, poses, expressions and occluding objects.

Images (a), (b), (c) and (d) in Figure 2.9 respectively show D, D ◦ τ , A and E. The

average faces in (e) show the efficacy of the alignment, enhancing correlation between

samples and consequently generating a more precise and compact linear model.
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Some recent approaches, namely [51–53], explore the use of domain transfor-

mations to cope with misalignment between temporally close frames in background

subtraction applications. Although the results of these methods are encouraging,

none of them explores the use of videos acquired by moving cameras. Due to the

nature of the problem, change detection in moving-camera videos demands the abil-

ity of comparing frames acquired at different times and whose field-of-view (FoV)

only partially overlap. Thus, the use of domain transformations in this application

requires this tool to compensate for much more than slight frame misalignments due

to a camera jitter, as addressed by these previous publications.
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Chapter 3

The Moving-Camera Surveillance

Problem

This chapter introduces the literature of mobile camera solutions applied for anomaly

detection in surveillance scenarios. Section 3.1 draws the basic setup of the problem

in details, while Section 3.2 performs a short review of the state-of-the-art systems

proposed to solve it. Finally, the VDAO video dataset is introduced in Section 3.3

as an important validation tool for mounted moving-camera experiments.

3.1 Problem Setup

Despite the success of several well established surveillance techniques using fixed

cameras, the use of this type of solutions can be expensive or unpractical in certain

complex scenarios. Fortunately, attaching a camera to a moving platform poses as an

interesting work around to reach several viewpoints without increasing the number

of cameras and, consequently, all the computational complexity related to them.

This investigation addresses the problem of detecting changes in video sequences

acquired by this kind of recording arrangements.

As seen in Chapter 2, linear approximation methods can be successfully em-

ployed on video surveillance problems to model video background with one or many

low-rank subspaces and treating foreground anomalies as sparse outliers. However,

dealing with backgrounds acquired with a moving camera can be significantly dif-

ficult, specially because static background structures may exhibit different speeds

with respect to the camera, depending how far they are from the camera’s position.

Due to the perspective effect, structures closer to the camera will appear to move

faster on the video. This phenomenon can break the linearity assumption, “confus-

ing” the modeling process and introducing undesired sparse non-linear artifacts in

the corruption component.
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Figure 3.1: The generic framework of anomaly detection with a moving camera.

Another important issue is the way how modeling and detection are performed

in the framework. For a static background, these two steps can easily be done

simultaneously once a single-frame contains information of the whole background

and anomalies are not expected to be present in every sample, or at least not in

the same place. In the case of a moving camera’s background, several samples may

be needed for representing each point-of-view. Depending on the ammount and

spatial resolution of the considered frames, bundle processing might be prohibitive.

Additionally, the presence of outliers can induce the incorrect modeling of these

objects as background if their relative frequency is high (like the standing man

in Figure 2.1). In order to take into account all these concerns and enable the

possibility of human validation of the samples that will accurately model the moving

background, the framework proposed in this work will split modeling and detection

into two different steps.

To describe the precise setup of the problem, some terminology is needed.

Operator-validated sequences containing no anomalies are labeled as reference

videos. These videos should be used to model the expected behaviour of the

surveilled area. On the other hand, unsupervised video sequences that should be

inquired by the detection algorithm in order to locate any abnormal presence are

called target videos. Since most moving-camera techniques perform a frame-by-frame

comparison, temporal and geometric alignment between reference and target videos

is often required. Image processing techniques may also be considered to reduce the

effect of undesired artifacts (e.g. noise, sporadic bright spots, illumination normal-

ization, etc.). Figure 3.1 summarizes the usual framework that is followed by most

of the solutions.

3.2 Moving-Camera Surveillance Systems

A few recent works try to solve the moving-camera detection problem by a diverse

range of techniques. Solutions like [4], [6] rely on feature-tracking to perform fore-

ground/background separation. However, since the videos are not structured in a

reference-target manner, they are not suitable for comparison with our method.

One of the first attempts in anomaly-detection with moving cameras was done by

trying to solve the problem of finding abandoned objects on the streets with a cam-
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era mounted on a car, as proposed in [5]. The authors make use of GPS positioning

to perform video alignment on the reference and target videos. To geometrically

align corresponding target and reference frames, Scale-Invariant Feature Transform

(SIFT) descriptors are obtained and compared using the Random Sampling Con-

sensus (RANSAC) algorithm [48]. At last, the registered frames are compared by

computing the Normalized Cross-Correlation (NCC) between the reference and tar-

get frames. The proposed method shows good performance results, but the need for

external cues to align reference and target videos limits its applicability.

The approach presented in [31] works in a similar approach to [5] and is able

to detect abandoned objects in heavily cluttered environments. Instead of making

use of external cues to synchronize target and reference frames, it takes advantage

of the camera’s linear back-and-forth trajectory. Although it presents good perfor-

mance and real-time results, the setup is somewhat dependent on the anomaly size,

as well as the requirement of a specific type of camera movement to perform the

video synchronization limits the algorithm usefulness in the case of a more general

surveillance scenario.

The method described in [37] presents a dictionary learning with a two-stage

strategy, with the advantage that it does not require the use of motion estimation

or background subtraction. The dictionary is constructed to model portions of the

reference video, while anomalies are detected as portions that are not well repre-

sented. This approach also dispenses the use video synchronization and geometric

registration. However, the dictionary construction time is high and the results show

a high rate of false alarms.

More recently, the method proposed in [36] describes a new approach for anomaly

detection in moving-camera video signals based on a sparse representation of both

the reference and target sequences. In the proposed system, the reference video is

represented as the combination of a low-rank projection onto a union of subspaces

and a sparse residue [32], which are then employed to represent the target video.

The residue of this last representation allows one to identify video anomalies in the

target video. This scheme obviates the need of temporal alignment between the two

video sequences.

In this work, we propose a new method to detect changes in moving-camera video

sequences by performing a sparse representation of the target video in a transformed

domain that copes with high levels of geometric misalignment with the reference

video.
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3.3 Testing Datasets

In order to efficiently verify the detection quality of our proposed technique, an

appropriate set of video sequences that fits the moving-camera setup was chosen,

along with its corresponding ground truth information. Very popular testing datasets

extensively used by similar works are the image sequences introduced in [9, 10]. Both

of them present image sequences acquired with a static camera, generally taken at

public spaces with people moving around, sometimes with varying illumination or

dynamic background. Unfortunately, none of these datasets present sequences with

a moving camera. The videos presented in [11] were provided as a benchmark for

testing feature-based motion segmentation algorithms and contain a few images

with a moving camera, but they were not taken minding camera’s periodic pose

repeatability and do not fit the needs of this work. A more recent dataset described

in [12] presents several situations divided into challenge categories, like “dynamic

background”, “camera jitter” and “intermitent object motion”. In 2014 [13], new

categories were introduced in a extended version of the dataset, with a particular

interesting “PTZ”1 category, that displayed actual moving backgrounds in a periodic

fashion. However, the training data is not clean of outliers and the technique should

be adapted to correctly model the whole background. Furthermore, fixed PTZ

cameras only perform changes in pose, not actually changing the camera point-of-

view.

3.3.1 VDAO: an Abandoned Object Database

At the time of writing, the VDAO dataset [14] was the only publicly available dataset

designed for object-detection in moving-camera video sequences, to the best of our

knowledge [17]. This database contains several recordings of abandoned objects on

an industrial-like facility, simulating a real-world scenario with great complexity and

barelly controlled illumination. The dataset sequences were acquired with a rigid

camera mounted on a robotic iRobotTM Roomba platform with a back-and-forth

linear movement on a 6m-long hanging rail. Both track and robot can be seen in

Figure 3.2. Two different IP cameras were employed, having the same 1280 × 720

pixel resolution and frame rate of 24 fps. Twenty four distinct abandoned objects

were employed in the recordings, which total approximately 8.2 hours of video. The

recordings were acquired at a complex scenario, comprised of several pipes, valves

and other visually complex structures, posing as a greater challenge compared to

usual databases. In VDAO, the recordings were divided into two groups: reference

and target sequences, as exemplified in Figure 1.2. The reference sequences have no

abandoned objects, as validated by human supervision, while the target sequences

1PTZ: abbreviation for pan-tilt-zoom.
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Figure 3.2: Pictures taken at the facility where the VDAO sequences were recorded.
The left picture shows and overview of the industrial environment and the hanging
rail. The right one exhibits a close shot of the iRobotTM Roomba on the rail track
with the mounted camera.

contain one or more objects to be detected automatically by the proposed algo-

rithm. Due to track imperfections and mechanical friction with the robot wheels,

the captured sequences present considerable camera shake, which poses an additional

challenge to the detection scheme.

In VDAO, the positions of all abandoned objects along the target videos are

identified, frame-by-frame, in a separate file by their corresponding bounding boxes,

making it possible for any detection method to be rigorously assessed. A simple

annotation system was developed to mark up the ground truth data available in

the database. A sample session of this software is displayed in Figure 3.3. Object

positions can be marked with rectangular bouding boxes for every frame in all tar-

get sequences. For objects appearing in multiple connected components, subobject

annotations are also provided, as can be seen in the backpack occluded by a pipe

in Figure 3.3. This database, along with the ground truth annotations of the aban-

doned objects, can be downloaded from [15]. The complete details of the database

construction can be seen in [14].

3.3.2 VDAO-200

Since VDAO contains massive video files, which can be prohibitive in terms of the

average memory and processing power of current computers, dealing with a smaller

and representative sample of the database is an interesting option. To this end, a

special selection of the database, called VDAO-200 [16], was developed in order to

standardize a simple subset for detection quality assessing and future comparisons

between methods.

This auxiliary database is composed of 59 excerpts with 200 frames taken from

VDAO single-object target videos. The selection contains a total of 9 different ob-
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Figure 3.3: Sample session with the ground truth annotation system for the VDAO
database. Rectangular bounding boxes determine the approximate ground truth
position of the abandoned objects in target videos [14, 15].

jects in different positions and 2 types of illumination. On almost half of the videos,

the objects are partially or completely occluded. There are also several situations

of environment shadow casting, different object shapes and camera shaking, which

make the selection very challenging and also representative of the full database.
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Chapter 4

Moving-Camera Surveillance with

Low-Rank Representation

A first solution using principal subspace analysis is proposed in this chapter in order

to solve the moving-camera problem. Section 4.1 shows how to adapt the RoSuRe

technique (seen in Section 2.1.1) to the problem at hand and some preliminary

results can be seen Section 4.2. Section 4.3 describes a post-processing stage that

converts the output of the proposed algorithm to a binary video that represents the

locations of the detected anomalies. Finally, Section 4.4 describes a methodology

to tune the solution’s parameters to the testing data and the cross-validated results

of this essay. This methodology is applied to an excerpt of the VDAO dataset, as

explained in Section 4.4.1.

4.1 Adaptating RoSuRe to handle the Moving-

Camera Setup

LetXr be a data matrix whose columns are composed by reference samples, generally

the frames from a reference video stacked as long column vectors. The modeling

step uses the RoSuRe algorithm to decompose Xr according to Eq. (2.6) that is,

Xr = LrWr + Er, (4.1)

where Lr is the blockwise low-rank part of the reference samples and is assumed to

resemble the sampling of a union of linear subspaces, whose structure is described

in Wr. For this model, Er is the non-linear component, which is assumed to be

sparse. Notice that Er is not seen as matrix of anomalies, but residual information

that could not fit the recovered model in Lr.

Now let Xt be a matrix of target samples, analogous to Xr. Assuming that Xt
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shares the same subspace structure with its reference counterpart, one can rewrite

the blockwise low-rank part of Xt as a combination of the columns of Lr plus a

sparse residual. In other words, one can find sparse matrices Wt and Et, such that

the target data matrix can be written as

Xt = LrWt + Et. (4.2)

Using this description, all anomalies in Xt, such as an abandoned object or and

unauthorized passerby are encapsulated into Et. In order to perform this alternate

representation of Xt, taking advantage of Lr determined in the decomposition (4.1),

the RoSuRe algorithm must be modified to work with a given fixed term Lr. To do

so, the cost function in Eq. (2.7) should be modified to

min
E,W

= ||W ||1 + λ||E||1 s.t. LrW = X − E, (4.3)

and, following Eq. (2.8), the new augmented Lagrangian function becomes

L̂(W,E, Y, µ) = ||W ||1 + λ||E||1 + 〈LrW −X + E, Y 〉+
µ

2
||LrW −X + E||2︸ ︷︷ ︸

g(W,E)

. (4.4)

In a similar way to f(W,E) in Eq. (2.8), g(W,E) is the smooth part of the La-

grangian and will be used to compute the update steps of Wk and Ek as follows:

Wk+1 = arg min
W
||W ||1 + g(W,E)

= τ 1
µη1

[
Wk−

1

η1

∇Wg(Wk, Ek)

]
= τ 1

µη1

[
Wk−

1

η1

Lr
T

(
LrWk−X+Ek+

Yk
µk

)]
, (4.5)

Ek+1 = arg min
E
λ||E||1 + g(W,E)

= τ λ
µη2

[
Ek−

1

η2

∇Eg(Wk+1, Ek)

]
= τ λ

µη2

[
Ek−

1

η2

(
LrWk+1−X+Ek+

Yk
µ

)]
, (4.6)

as summarized in Algorithm 2. As mentioned before, performing this procedure in

Eq. (4.2) tends to isolate in Et all the target-sample information that is not present in

Lr (or Xr). However, besides the sparse corruptions generated by the anomalies, Et

will also have the residual sparse non-linear information that could not be captured

by the blockwise low-rank LrWt representation. The outlier information contained

in Et can be separated from its inherent non-linear residual by noting that, as
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Algorithm 2 - Sparse representation of X given blockwise low-rank L.

Input: L,X, λ, ρ > 1, η1, η2

while not converged do
L′k+1 = X − Ek
Wk+1 = τ 1

µη1

[
Wk − 1

η1
LT
(
LWk − L′k+1 + Yk

µk

)]
Ek+1 = τ λ

µη2

[
Ek − 1

η2

(
LWk+1 − L′k+1 + Yk

µk

)]
Yk+1 = Yk + µk

(
LWk+1 − L′k+1

)
µk+1 = ρµk

end

Xt and Xr are similar by assumption, Et will look in general quite similar to Er,

except around these anomalies. Therefore, we also perform a third and last step,

decomposing Et using Er as the input parameter L of Algorithm 2, yielding

Et = ErW + E. (4.7)

The remaining sparse component E tends to contain, as desired, just the outliers in

Xt not present in Xr. To corroborate the efficiency of this framework, target videos

with abandoned objects and their corresponding reference counterparts are used as

input and the results are presented in the next section. Figure 4.1 summarizes the

mcRoSuRe method optimization workflow.

Decompose Xr
into low-rank Lr
plus residue Er

Xr

Decompose Xt
into low-rank Lr
plus residue Et

Decompose residue Et
with Er

plus final residue Ee

Xt

Et

Er Ee

Lr

Figure 4.1: the mcRoSuRe optimization workflow.

4.2 Preliminary Results

The proposed strategy was tested for several video sequences from the VDAO

database [14] that is available from [15]. As cited before, in order to ensure a

proper decomposition of the target video sequence Xt using the blockwise low-rank

approximation Lr of the reference video sequence Xr, we have to guarantee that

all frames of Xt have sufficient corresponding frame samples in the reference video

Xr. Our experiments have shown that reference and target recordings of the same

surveilled area with equal sampling densities are sufficient to exhibit impressive re-
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Xr Xt

Lr Et

Er E

Figure 4.2: Experimental results (single frames of matrices Xr, Xt, Lr, Er, Et, and
E) using proposed representation for abandoned-object scenario (pink bottle).

sults. Since both types of video cover the same area and were acquired with the

same velocity, the sampling conditions are met if Xr contains at least one complete

lap the camera through the surveillance area.

Unfortunately, there are computational complexity limitations and a complete

surveillance lap of the reference video cannot be processed on a regular computer.

In this case, one can follow a divide-and-conquer approach by segmenting both

the reference and target videos with the care that each segment of the reference

sequence contains all the corresponding frames of the target sequence. Moreover,

video sequences were spatially subsampled to 320× 180 pixels.

Results for four different abandoned-object situations are illustrated in Fig-

ures 4.2,4.3, 4.4 and 4.5. In each case, a 70-frame reference sequence is used to

model a 50-frame target sequence contained within the reference sequence. In all

steps, algorithms 1 and 2 employed λ = 1 and ρ = 1.5. In all figures, each image
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Xr Xt

Lr Et

Er E

Figure 4.3: Experimental results (single frames of matrices Xr, Xt, Lr, Er, Et,
and E) using proposed representation for abandoned-object scenario (backpack +
wrench + box).

represent a sample frame of the matrices described in Equations (4.1), (4.2), and

(4.7). More precisely, Xr, Xt, Lr, Er, Et, and E. Each figure represents a given

experiment. The sparse component matrices Er, Et and E are visualized in terms

of their absolute values, since these matrices may contain negatives values. The E

matrix contains the detected abandoned objects and any other differences detected

in the respective target frame labeled as Xt. This procedure is performed on each

of the three RGB channels and the results are combined into a single colored image.

One can see that the proposed method can detect the abandoned objects while

having very few false positives. Local illumination changes due to shadow casting,

as well as major camera misalignments, may also lead to false positives. Strong

shadow casting can be clearly noticed at the left of the pink bottle (Figure 4.2) and

at the left of the white bottle (Figure 4.5). Subtle camera misalignments artifacts
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Xr Xt

Lr Et

Er E

Figure 4.4: Experimental results (single frames of matrices Xr, Xt, Lr, Er, Et, and
E) using proposed representation for abandoned-object scenario (backpack + green
box + mug + string roll).

can be seen at the right of the backpack in Figure 4.4. False negatives may occur

if the abandoned object has the same pixel intensities as the background, as seen

in the middle of the wrench in Figure 4.3. Most of these artifacts, however, can be

removed by simple image-processing techniques, as proposed in the next section.

4.3 Post-Processing

As seen in the last section, the E matrix obtainted in the decomposition step de-

scribed in (4.7) yields an approximated background subtracted version of the target

sequence Xt. Therefore, pixels in anomalous regions of E are likely to have higher

intensities in absolute value, while pixel intensities outside these regions are ex-

pected to be close to zero. Since the inquired database comes along with annotated
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Xr Xt

Lr Et

Er E

Figure 4.5: Experimental results (single frames of matrices Xr, Xt, Lr, Er, Et, and
E) using proposed representation for abandoned-object scenario (umbrella + bottle
+ bottle cap + mug).

information about the placement of all abandoned objects that appear in the tar-

get sequences, detection quality can be assessed by verifying if the revealed objects

in the frames of E lie inside the bounding rectangles that indicate the individual

presence of these objects. To evaluate the robustness of the proposed technique and

perform a fine adjustment of its free parameters, the frames of E must be binarized

and pixelwise compared with the annotated bounding rectangles, by assigning pixel

value to 1 in the presence of anomalies, and, otherwise, set to 0. The parameter

setup as well as the used metrics are described in the next chapter.

The post processing stage consists of a simple binary thresholding with four

additional steps, comprising filtering and morphological operations. These steps

were chosen to maximize the accuracy of the detection, eliminating major false

alarms. The first step is applied before binary thresholding and consists of an
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average spatial filtering of each unpacked frame of E to reduce noise and scatter pixel

energy, exploiting the presumed continuous nature of E. Let E0 be E reshaped as a

three-dimensional tensor representing a sequence of images in the classic MATLAB

fashion (height × width × frame). An integer parameter ω is used to represent the

lenght of the edge of the filter’s square kernel, which means that it is a ω×ω window.

Let E1 be the resulting tensor after filtering E0. Binary thresholding occurs after

this first step and each pixel of E1 is converted to 1, if its absolute value is grater

than a β threshold, otherwise is set to zero and let E2 be the resulting tensor after

this thresholding.

Then, two morphological operations are applied in sequence. First, a morpholog-

ical open with a square-shaped structure element is applied in order to remove small

spurious detections, followed by a morphological close with square-shaped structure

element used to join possible disconnected regions of the same detect object, since

it is possible that part of the anomalies might share similar pixel intensities with

its corresponding reference background. Let µ1 and µ2 be the respective (integer)

lenghts of the edges of the open and close structure elements, and let E3 and E4 be

the resulting tensors after open and close operations, respectively. Finally, a tempo-

ral voting along each pixel is performed in order to cull incorrect detections caused

by severe misalignments between reference and target sequences. This kind of arti-

fact tends to occur locally in time, opposed to anomalies like abandoned objects that

continously persists on some pixel neighborhood for some time. This assumption is

suitable for a temporal voting process in order to eliminate sporadic detections and

preserve persistent ones. The voting is done by using a odd-sized window of lenght

2κ + 1 centered at each pixel of E4, along time-dimension, where κ is an integer

paramater. If at least half of the pixels are set to 1, the resulting pixel will also set

to 1, otherwise it is set to 0. Let B be the resulting tensor after applying this voting

on E4. B is also the final tensor generated in the pre-processing stage and is the

input of the evaluation metrics, and is completely summarizes in Figure 4.6.

4.4 Algorithm Setup and Parameter Adjustment

The proposed method contains a total of six parameters (the optimization one and

the five other described in the last section) and in this section we suggest a tuning

scheme based on a hyperparametric search basis. Due to pratical hardware and

time limitations, a subset of VDAO database was selected, subsampled and sliced

into short videos (i.e., few number of frames), before they were actually used in

the experiment, as we will describe in the Section 4.4.1. The parametric tuning is

presented in the following section describing a rigorous and extensive experiment

realized by employing a K-fold cross validation scheme. The results are exhibited
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Figure 4.6: Post-processing steps: (a) shows a diagram of the summarizing the
post-processing step and (b) shows a sample frame at each step.

in the last chapter together with commentaries.

4.4.1 Batch of Video Slices

Each video in the VDAO database contains at least one full lap of the robot along the

guiding track, which takes about six minutes of recorded video with 1280 × 720 pixel

resolution at 24 frames per seconds, summing up a total of 8 billion pixels. Consid-

ering that this data will be used in matricial operations, a single uncompressed color
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video should ocupy about 96 GB of RAM, if values are modestly packed into 32-bit

floating-point format. Such amount of memory bears the edge of current computer

capabilities, becoming impratical to use full videos in the following experiments.

To deal with this, a simple and effective alternative is to work with short, ran-

domly selected video slices, that conform to a small set of constraints to ensure the

testing batch is sufficiently representative. As mentioned before, VDAO database

has single- and multi-object videos sets to allow parameter adjustment and model

validation for different object sizes. For this experiment, only single-object videos

with extra illumination were considered. A subset of 12 target videos and their

respective reference videos were chosen to be used.

The slicing constraints take into account the prevalence of selected frames that

contain abandoned objects as an attempt to equally distribute its presence between

frames for each target video, chosen to be between 45 and 55 percent. A minimal

gap of 200 frames between slices is also imposed to avoid slice overlapping. From

each target video, 4 video slices were spanned, totalizing 48 target slices. Only the

first half-lap of each target video is considered, to avoid slice overlapping. Assuming

constant speed of the platform robot, an equal number of frames approximately

covers the same visual range in different slices if they start in the same position

and direction. Considering this, for each target slice, a brute-force frame-comparing

algorithm searches for the best corresponding reference slice with the same number

of frames in a pixel-by-pixel, absolute difference basis. At the end, the slice is

manually validated.

Since RoSuRe decomposition exploits frame similarities, each frame in target

slice should be sufficiently represented by its reference slice. As insurance, after

a target and reference slice match, reference slice is expanded both ways (before

and after) by p padding frames at each side. That means, if a target slice of size

Nt matches a reference slice of the same size at position n, the first reference slice

frame will be n − p, the last one will be n + Nt + p − 1 and the number of frames

in reference slice will be Nr = Nt + 2p. The chosen values for this experiment were

Nt = 50, p = 10 and Nr = 70.

Finally, frames were appropriately subsampled to 320 × 180 pixels and converted

to grayscale using a classic luminance formula1. Ground truth annotation data were

also converted to new pixel resolution and frame range, for each slice. No frame

decimation was performed. Minding experiment reproducibility, all described tasks

for video slicing and ground truth conversion were coded into an utility command-

line script. This software is freely available and may be used for future comparisons.

1Y = 0.299R+ 0.587G+ 0.114B
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4.4.2 Parameters Adjustment

As seen in the last chapter, the complete framework ended up with six tunable

parameters: one (λ) in the matrix decomposition stage and five (β, ω, µ1, µ2 and

κ) in the post-processing stage. Since λ is a positive real value representing the

optimization weight in (2.7) and (4.4), the minimization of ||W ||1 will be prioritized

if λ ∈ (0, 1). Conversely, λ ∈ (1,+∞) will give priority to minimize ||E||1. It is

easy to see that inverse values of λ will give complementary importance to ||W ||1 or

||E||1, depending on each case. In this sense, symetric values of λ are not equally

distributed over the search range. Instead, fitting the exponent γ = log2 λ solves

this issue, once γ0 and −γ0 are symetric in the search range and λ0 = 2γ0 and

λ−1
0 = 2−γ0 have complementary importance, giving equal oportunities to symetric

values on the adjustment.

Although not many, six parameters might be hard enough to perform an exaus-

tive search due to the combinatorial growth of tests. If each parameter dimension

were divided into 10 possible values and considering that the average time to proc-

cess a single video slice is about 20 seconds, a full search will require about 231

days to process one video per fold. Alternatively, assuming some continuity of each

evaluated property along a six-dimensional parameter range, a recursive search can

test fewer parameter combinations and still achieve a local maximum with fewer

levels of recursion.

To deal with integer values, discrete parameters (ω, µ1, µ2 and κ) are treated

as real values for the recursive search, but are conveniently truncated to integer

values before testing. For example, consider a hypothetical parameter that varies

from 1 to n. To give equal probability for each integer value, the corresponding real

range must be [1, n + 1], which contains n unit-spaced ranges. For this experiment

γ ∈ [−9, 9], β ∈ [0, 1], ω ∈ [1, 31], µ1 ∈ [0, 31], µ2 ∈ [0, 51] and κ ∈ [0, 11],

reminding that truncated values of the discrete parameters will only reach the upper

limit minus one, (e.g. bκc ∈ {0, 1, . . . , 10} and so on).

4.4.3 Recursive Subdivision Search

In order to avoid excessive testing of parameter combinations, a recursive subdivision

strategy was used to estimate the best parameter set for each testing fold. The

subdivision scheme is inspired by classic binary subdivision, shortening the search

range at each step. Let π1, π2, . . . , πp be the fitting parameters and let πja and πjb
respectively be the lower and upper bounds of parameter πj, such that πj ∈ [πja, π

j
b ],

for each j ∈ 1, . . . , p. At each recursion level, for each parameter πj, the mean values

of each half of [πja, π
j
b ], whose values are πja+sj and πja+3sj, where sj = (πjb−πja)/4,

are combined to generate a set of 2p points that are uniformely distributed inside
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the search volume [π1
a, π

1
b ] × · · · × [πpa, π

p
b ]. At each level l, all 2p points are tested

against the assessing metric and the point with the best score is also compared with

the best point of the prior level (l−1), which happens to be the center of the search

volume at each level. Thus, the resulting best point of level l is chosen to be the

center of the range volume in level l+ 1, that is shortened to half in each dimension.

This is easily done by assigning πja = qjl −sj and πjb = qjl +sj at level l+1, where qjl is

the j-coordinate of the best score point ql in level l. Since there are no points before

the first level, the score at the center of the initial range volume is used in place, for

algorithmic completeness. To illustrate the subdivision process, see Figure 4.7.

Figure 4.7: Example of recursive subdivision with 2 parameters and 2 levels. First
(left), the score of the midpoint of the initial range is computed. At the first level
(middle), 4 points are generated and the best score point is selected, considering the
midpoint score. At level 2, the range volume is shortened by half at each parameter
dimension, with center at the best point of previous level (l = 1). Circled dots
highlight the best score points at each level.

Metrics

In classification literature, recall (also known as sensitivity or true positive rate)

and precision (also called positive predictive value) play a major role in classifier

evaluation. A good classification is expected to present high rates of true positives,

which is measured by recall, and low rates of false alarms, indicated by the pre-

cision. Since these metrics are not complementary, maximizing of one them does

not guarantee the maximization of the other. A commonly used overall metric is

the F-measure (or F1-measure), that combines recall and precision by performing

their harmonic mean. Thus, the F-measure was the chosen score as the parametric

tunning objective function, as it promotes a conservative trade off between the two

concerned metrics.

To compute the recall of a given tested slice, one should use the provided VDAO

annotations which indicate the placement of the abandoned objects over the target

videos. For each target frame, a binary image indicating the approximated support

of the appearing abandoned object (if any) is generated. This binary image is used
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as a logical mask to compute the correctly detected pixels on the corresponding

frame of the binary output tensor B, as described in Section 4.4.2. Let M be a

binary tensor collecting all these binary masks for some processed output tensor B,

then the computation of recall (Re) can be easily done with simple logical operations

and counting the nonzero pixels of the following binary tensors

Re =

∑
i(B ∩M)i∑

iMi

, (4.8)

where i subscript is the i - th entry of each tensor (seen as a flat vector).

Notice recall quantifies the percentage of correct detections (nonzero entries of

the intesection of B and M) over all the expected detections (nonzero entries of M).

Analogously, precision (Pr) can be defined as

Pr =

∑
i(B ∩M)i∑

iBi

, (4.9)

which quantifies the percentage of correct detections over all detections (nonzero

entries of B). F-measure is simply computed by the formula

Fm =
2RePr

Re+ Pr
. (4.10)

4.4.4 Cross-Validation Results

For the K-fold validation, 12 target videos were used to span 4 slices each, totalizing

48 target slices. For each fold, slices were divided into training and testing sets.

Each training set was then submitted to the procedure described in Section 4.4.2

to determine the best parameter adjustment. After that, these parameters were

applyed to the testing set. Recall and precision were computed with Eqs. (4.8) and

(4.9) by aggregating binary results of all slices of the concerned set into a single

division (i.e. summing all correct detections of all slices in the set and dividing by

the sum of all expected detections of all slices in the same set, for each training

and testing sets in each fold). The results of this cross validation can be seen in

Table 4.1. The second column of table shows the recall (Re), precision (Pr) and F-

measure (Fm) scores of the best parameters adjusted for the training set in each fold.

The third column shows the scores for the testing set with the same parameters,

which in turn can be seen in the fourth column. The last row presents the mean

and standard deviation of each score and parameter throughout the folds.

The target slices were arranged in such a way to avoid biasing by ensuring that

slices extracted from the same target video cannot be at the training and testing

sets at the same time in the same fold. This is simply done by grouping slices of
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training set testing set adjusted parameters

fold Re Pr Fm Re Pr Fm γ β ω µ1 µ2 κ

1 0.52 0.60 0.56 0.36 0.34 0.35 6.750 0.125 12 12 45 1
2 0.54 0.57 0.55 0.19 0.24 0.22 6.750 0.125 12 12 45 1
3 0.41 0.39 0.40 0.61 0.93 0.74 7.313 0.156 11 5 30 1
4 0.57 0.41 0.48 0.92 0.50 0.65 6.750 0.125 12 4 32 1
5 0.60 0.44 0.51 0.50 0.21 0.29 6.750 0.125 12 4 32 1
6 0.56 0.46 0.50 0.56 0.37 0.45 7.313 0.094 13 13 43 1

µ 0.53 0.48 0.50 0.53 0.43 0.45 6.938 0.125 12.00 8.33 37.83 1.00
σ 0.05 0.07 0.04 0.17 0.19 0.16 0.250 0.010 0.33 4.00 6.50 0.00

Table 4.1: Results of K-fold cross validation with K = 6 and F = 8

the same target video and setting the fold size F (which is also the testing set size)

to be a multiple of the number of slices spanned by each video (in this case, 4). To

avoid overfitting and still have a reasonable number of folds, K was set to 6 and F

set to 8, which means that each testing set contains 8 slices spanned from exactly

2 target videos and each traning set contains 40 slices spanned from exactly 10 target

videos. With this conditioning, training and testing sets do not share slices from a

same target video, for each one of the 6 folds.

Commenting the results

Before analysing the results, it is important to note that VDAO provides bounding

rectangles as the annotated locations of the abandoned objects present in the target

videos. Since we chose a pixelwise metric, even if some object is fully detected,

Re will not achieve full score unless its shape resembles a perfect rectangle with

sides parallel to the canonical axes. Therefore, it is important to realize that Re

can vary with the object’s visible shape along the same video and majorly between

videos. This alone explains why the average Re scores are not very high. One might

wonder the reason we do not use an objectwise or framewise metric to achieve

more effective results. Indeed, pixelwise metric are smoother, making them more

appropriate to perform the parametric regressions. It is also important to note

that the some target videos in the VDAO database have severe pose misalignment

between them and their corresponding reference videos. Unfortunately, it is quite

notorious in literature that these kind of linear modeling techniques are likely to fail

under these circunstances [28]. In practice, gross local misalignments will be treated

as outliers, raising the rate of false alarms. Knowing this, results should be seen

more qualitatively, once we are dealing with a very complex and open problem and

this research is a work in progress.

In a first glance, the results displayed in Table 4.1 show very positive messages,

but some caution remarks are also required. The mean scores of the testing sets

remain very similar to the ones of the training set, meaning that the proposed tech-
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nique exhibit good overall robustness, but it also present increased variance between

the testing scores. The most plausible explanation for this discrepancy, apart from

the one given above, is that the size of the training set is five times larger than

the testing set, which might attenuate the standard deviation, aggravated by fact

that, even containing 8 video slices, the testing set contains information from 2 tar-

get videos only. Another encouraging outcome is that most parameters appear to

converge near one global limit, excecpt from the morphological operations, which

appear to have two local optima. An apparent reason for this fact is that maxi-

mizing Fm can be achieved by increasing both Re and Pr. However, these metrics

often compete with each other. For example, increasing Re implies increasing sen-

sitivity which can lead to more false alarms. Conversely, a more precise algorithm

should be more cautious, reducing sensitivity. Since some videos have serious pose

misalignments, the parameter regression algorithm might choose different morpho-

logical operations to cope with the resulting false alarms.

To illustrate this problem, two different sample cases were selected: one with

good reference alignment and the other with severe misalignments. Parameters were

set to the mean values of table 4.1, that is γ = 6.938, β = 0.125, ω = 12, κ = 1,

excecpt from µ1 and µ2 that were assigned with the two likely optima indicated in

the table. Let B1 be the resulting binary image for first setup where µ1 = 4 and

µ2 = 32 and B2 the resulting image for µ1 = 12 and µ2 = 45. Both setups were

applied to both cases and the results sample frames can be seen in Figure 4.8. The

first and second rows show reference and target frame samples for each case. The

third row shows resulting binary image for the B1 (µ1 = 4, µ2 = 32) setup and the

forth row show the result for the B2 (µ1 = 12, µ2 = 45).

Column (a) in Figure 4.8 shows the results for a well aligned case. Both post-

processing setups exhibit good detection of the abandoned box at the top left of the

scene, with practicaly no false alarms. Also notice the B2 setup peforms slightly

better due to a wider structure element of the morphological close (µ2), increasing

the Re score. On the other hand, the results shown in column (b) present gross mis-

alignments between reference and target sequences, producing several false alarms.

In the B1 setup, the dark shoe at the left of the scene was partially spotted with

very low precision, due to the many erroneous detections. B2 setup removes a good

load of false alarms, but unfortunately it could not detect the shoe. This kind of

traid-off seems to explain why the algorithm has two optimal adjustments. However,

post-processing is not an effective solution for poor modeling.

Apart from the severe misalignment cases similar to one seen in column (b),

the results of the proposed method are quite impressive, considering the significant

amount of camera shaking in all VDAO videos and the fact it does not need any

kind of image registration. This framework should perform very well in cases of a
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smooth camera movement and even better in virtual camera pannings which are

very common in PTZ, spherical and cillindrical surveillance cameras.
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Figure 4.8: Result samples with different alignment conditions and different mor-
phological parameters. B1 row, processed with µ1 = 4 and µ2 = 32 and B2 row
processed with µ1 = 12 and µ2 = 45. Other parameters were set γ = 6.938,
β = 0.125, ω = 12, κ = 1.
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Chapter 5

Domain-Transformable Sparse

Representation

In this chapter we propose a novel sparse-representation algorithm for anomaly de-

tection with moving-cameras. Section 5.1 discuss the use of domain-tranformations

to cope with sample misalignments due to possible camera trepidations, while Sec-

tion 5.2 enlights the details on how other PCA derived techniques employ domain-

tranformations. Section 5.3 describes how to adapt domain-transformations to our

solution and Section 5.4 compares our proposed method against several state-of-the-

art method and discuss the results.

5.1 Domain-Transformations to correct sample

misalignments

The algorithm presented in Chapter 4 tries to model the moving background as

a blockwise low-rank factorization of the reference video matrix, plus a nonlinear

sparse residue. For small perturbations in the camera path, this technique can

successfully extract the target video foreground, exploiting the strong correlation

between consecutive frames in both the reference and target videos and also between

their corresponding frames, that is, frames in the reference and target videos that

cover the same spot. Such a method has the great advantage of obviating the

necessity of geometric registration of each frame. This is extremely useful when

the perturbations of the camera movement are not so large, or even in synthetic

moving video like “virtual pannings” generated from PTZ cameras or alike, saving

a considerable computational time.

However, in many moving-camera practical scenarios, it is quite difficult to avoid

eventual geometric misalignments between corresponding frames, as can be seen in

figure 5.1. Cameras attached to moving platforms may suffer from this problem
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since these devices may have to deal, besides normal camera vibration, with path

irregularities or unpredicted weather conditions, for example.

(a) reference (b) target

Figure 5.1: Example of significant pose misalignment due to camera rotation in
corresponding frames of reference and target videos in the VDAO dataset. Notice
the different angles between the large pipe at the top with the horizontal axis.

As pointed in Section 3.3, some video sequences in the VDAO database contain

severe misalignments between the target and reference samples. This issue ocurred

during the acquisition phase of the database due to an excessive mechanical friction

between the moving robot and the rail track, yielding to considerable shaking and

rotation of camera attached to robot.

In this chapter we discuss the use of geometric domain-transformations to model

the effect over the samples caused by the camera movement and rotation referred

above. In short, the idea is to include a transformation term in the sparse representa-

tion procedure described in Eq. (4.2), updating the optimization algorithm to reflect

these changes. The use of domain transformations together with l1-optimization was

done successfully in many recent works [28, 44–47]. The adaptation proposed in this

work is inspired by these strategies.

5.2 A closer look at Robust Alignment

It is well known in literature that pixelwise alignment is a critical assumption when

dealing with sparse representation and subspace modeling techniques. The presence

of misalignments in the samples, either in the training or testing sets, may com-

promise the method’s efficiency. Depending of the magnitude of the misalignment,

it might break some linearity assumption over the samples or simply yield enough

error to make the optimization unable to find a sparse solution to the problem. As

said before, some recent work on l1-optimization have proposed effective solutions

to deal with sample misalignment. Although these new methods basically share

the same approach, their minor differences are dependent on each problem partic-

ularities. The robust alignment approach will be reviewed here and adapted to the

problem at hand on the next section.
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5.2.1 Deformable SRC

Recently, Wright et. al. [26, 27] presented a robust face-recognition framework based

on sparse representation-based classification (SRC), that achieved a remarkable per-

formance compared to the best techniques at the time. The success of the method

relies on harnessing the expected sparsity of a coefficient vector when trying to rep-

resent a testing sample as a linear combination of the columns of a given dictionary

matrix. Let this matrix be A = [A1, A2, . . . Ak], where each submatrix Ai is a list

of training samples of a given subject i, which are present in the training dataset.

These samples are basically pre-aligned face images, stacked into the columns of

A. In this notation, given a test image y, the representation is done by finding the

sparsest coefficient vector x such that y = Ax. The sparsity of x is assumed since

the tested individual in y, say subject i, should only have non-zero coefficients at

the part of x corresponding to Ai in A. To cope with possible occlusions appearing

in y (e.g. sunglasses, hats, beards, closed eyes, etc), which are assumed to be sparse

in terms of the image basis, an extra component e is added to the equation, that

will be used further as an optimization constraint. Assuming that y was previously

registered, the optimization algorithm searches for the sparsest vectors x and e,

such that y = Ax + e, by minimizing the l1-norm of both x and e. This can be

summarized by

min
x,e
‖x‖1 + ‖e‖1, s.t. y = Ax+ e. (5.1)

However, in pratical recognition systems, the tested face in y might not be perfectly

aligned to the ones in the training set. An automatic SRC solution should also

consider the registration of the testing sample in order to work efficiently. For

example, an application that searches for an individual’s face in photos of a social

network or a security system that grants access using biometric recognition may

have to deal with uncontrolled and unregistered input images.

A solution for that issue is proposed by Wagner et. al. [28], by considering that

the testing samples are actually warped observations of the subject’s face with re-

spect to its pose in the training set. In this sense, let y∗ be a well-aligned test image,

which means that y∗ is in the range of some Ai. Now let T be some transformation

group that supposedly acts in the image domain. Assuming that y is a warped obser-

vation of y∗, there must exist a transformation τ ∗ ∈ T, such that y∗ = y ◦ τ ∗. More

precisely, assuming the presence of occlusions in y, then there exists an unwarped

error vector e∗ in the same domain as y∗, such that y∗ + e∗ = y ◦ τ ∗.
In practice, T is chosen to be a parametric, finite-dimensional, transformation

group. Regularly known choices are the group of translations, similarities, the affine

transformations and planar homographies. For implementation purposes, T can also
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be identified as the vector space Rp, where p is the number of needed parameters to

describe any τ ∈ T.

Considering the possible warp in y∗ and using this same notation, this leads to

a direct extension of problem (5.1) as:

min
x,e,τ
‖x‖1 + ‖e‖1 s.t. y ◦ τ = Ax+ e, (5.2)

where τ ∗ is also searched in T for the sparsest representation of y∗. Notice that the

modified problem is very similar to what was done in (2.13) in the RASL method

(back in Section 2.2.2). Unfortunatelly, the optimization proposed in (5.2) is non-

convex and hard to solve due the non-linearity of τ . However, for small variations

of τ , it is possible to approximate this constraint in (5.2) by linearizing y ◦ τ with

the current estimate of τ such that

y ◦ τ + J∆τ = Ax+ e, J =
∂

∂τ
(y ◦ τ) , (5.3)

where J is the Jacobian of the image vector y with respect to τ . Instead of solving

for τ directly, a small variation ∆τ about the current estimate is searched in place,

and problem (5.2) can be reformulated as

min
x,e,∆τ

‖x‖1 + ‖e‖1 s.t. y ◦ τ + J∆τ = Ax+ e. (5.4)

The solution searched in problem (5.2) can be achieved by repeatedly solving (5.4)

and then updating τ and J at each interation step. This representation should

work fine if the samples are well aligned between the different A submatrices. This

means that the samples in Ai must be well aligned with the samples in Aj for all

i, j ∈ {1, 2, . . . , k}.
In practice, the whole optimization can be computed within two loops. The

outer loop updates the Jacobian J with the current estimate of τ , and updates τ

by a ∆τ . This small variation step is recurrently computed inside the inner loop,

which estimates ∆τ along with the sparse coefficient x and the sparse error e, by

solving (5.4). An initial transformation τ0 must be provided as an initial condition

for the algorithm. In the face recognition problem, a good starting point is to

use a generic face detector to give an approximate position of the face sought in

the input image. In practice, the test vector y ◦ τ is a transformed window inside

the original input image y. An additional procedure proposed by the deformable

SRC authors is to normalize the training images at each iteration of the outer loop

to avoid degenerate solutions like zooming to a dark region of the image. The

steps described in Algorithm 3 summarize the procedure to solve problem (5.4)

iteratively for a global representation among the subjects. The output x obtained
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Algorithm 3 - SRC with transformed domain (global representation) [28]

input: Training images A = [A1, A2, . . . Ak] ∈ Rn×m, test image y ∈ Rm , trans-
formation group T and initial transformation τ0 ∈ T

τ ← τ0

while not converged do
step 1: normalize the image vector y and compute the Jacobian matrix J

ŷ(τ)← y ◦ τ
‖y ◦ τ‖2

, J ← ∂

∂η
ŷ(η)

∣∣∣∣
η=τ

;

step 2 (inner loop): solve the linearized convex optimization (5.4):

(x∗, e∗,∆τ ∗)← arg min
x,e,∆τ

‖x‖1 + ‖e‖1 s.t. y ◦ τ + J∆τ = Ax+ e;

step 3: update transformation τ

τ ← τ + ∆τ ∗;

step 4: compute convergence conditions

end while

ouput: solution x∗, e∗ and τ ∗ to problem (5.2).

in this procedure is used to perform recognition in the same way proposed in [26, 27],

observing which subject concentrates more coefficients to represent the testing face.

The work in [28] also describes how to deal when faces between the submatrices are

not well-aligned, but it deviates from the scope of this work. We have presented

here a simplified version of the algorithm to illustrate how domain transformations

can be incorporated into the l1-optimization framework.

5.2.2 RASL

The deformable SRC case is a good starting point to understand how to adapt

domain transformations with convex programming in order other kinds of problems.

The RASL technique can be used to perform batch alignment on a set of correlated

images D in the way it that it was seen in Section 2.2.2. Using the same approach

as in last subsection, the relaxed version of problem described in Equation (2.13) is

given by

min
A,E,τ

‖A‖∗ + λ‖E‖1 s.t. D ◦ τ = A+ E, (5.5)

where ‖A‖∗ is the nuclear norm of A, defined by tr(
√
A∗A), that works as the convex

surrogate for rank(A), and τ = [τ1| . . . |τn] ∈ Rn represent all the τi transformations
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Algorithm 4 - RASL (outer loop) [46]

input: Vectorized images I1, . . . , In ∈ Rm, initial transformations τ1 . . . τn ∈ T
for each respective image, where T is the finite-dimensional transformation, and
weight λ > 0

while not converged do
(step 1) compute Jacobian matrices for each τi

Ji ←
∂

∂ζ

(
Ii ◦ ζ
‖Ii ◦ ζ‖2

)∣∣∣∣
ζ=τi

, for i = 1, . . . , n;

(step 2) warp and normalize the images in D matrix

D ◦ τ ←
[

I1 ◦ τ1

‖I1 ◦ τ1‖2

| . . . | In ◦ τn
‖In ◦ τn‖2

]
;

(step 3) solve linearized convex optimization (inner loop):

(A∗, E∗,∆τ ∗)← arg min
A,E,∆τ

‖A‖∗ + λ‖E‖1 s.t.

D ◦ τ +
n∑
i=1

Ji∆τεiε
>
i = A+ E.

(step 4) update transformations τ ← τ + ∆τ

end

ouput: solution A∗, E∗ and τ ∗ to problem 5.5.

of a p-parameter group acting on each one of the n frames. Now, assuming that

∆τ = [∆τ1| . . . |∆τn] ∈ Rn is a small variation on τ , one can linearly approximate

the constraint in Equation (5.5) about the current estimate of τ such that

D ◦ (τ + ∆τ) ≈ D ◦ τ +
n∑
i=1

Ji∆τεiε
>
i = A+ E, (5.6)

where the εi represent the canonical basis for Rn, which leads to

min
A,E,∆τ

‖A‖∗ + λ‖E‖1 s.t. D ◦ τ +
n∑
i=1

Ji∆τεiε
>
i = A+ E. (5.7)

Using this formulation, it its now possible to define the outer loop of RASL, in

the same manner as in last subsection. This procedure can be seen in Algorithm 4.

Notice that the main cost of the outer loop is obviouly in the optimization performed

inside the inner loop. Hopefully, the optimization in step 3 can be efficiently solved

using the Augmented Lagrange Multiplier (ALM) method. By making use of the

45



Algorithm 5 - RASL (inner loop) [46]

input: A0 ∈ Rm×n, E0 ∈ Rm×n, ∆τ 0 ∈ Rp×n, λ > 0

while not converged do

(U,Σ, V ) = svd
[
D ◦ τ +

∑n
i=1 Ji∆τkεiε

>
i + 1

µk
Yk − Ek

]
;

Ak+1 = US 1
µk

[Σ]V >;

Ek+1 = S λ
µk

[
D ◦ τ +

∑n
i=1 Ji∆τkεiε

>
i + 1

µk
Yk − Ak+1

]
;

∆τk+1 =
∑n

i=1 J
†
i

(
Ak+1 + Ek+1 −D ◦ τ − 1

µk
Yk

)
εiε
>
i ;

Yk+1 = Yk + µkh(Ak+1, Ek+1,∆τk+1);
µk+1 = ρµk;

end while

ouput: solution A∗, E∗ and ∆τ ∗ to problem 5.7.

following auxiliary function

h(A,E,∆τ) = D ◦ τ +
n∑
i=1

Ji∆τεiε
>
i − A− E,

we can define the augmented Lagrangian function for problem 5.7 as

Lµ(A,E,∆τ, Y ) = ‖A‖∗ + λ‖E‖1 + 〈Y, h(A,E,∆τ)〉+
µ

2
‖h(A,E,∆τ)‖2

F , (5.8)

where Y ∈ Rm×n is a matrix representing the Lagrange multipliers and µ a penalty

factor in the optimization. The ALM problem can be solved by minimizing the

Lagrangian function and updating the Lagrange multipliers considering the penalty

factor as follows

(Ak+1, Ek+1,∆τk+1) = arg minA,E,∆τ Lµk(A,E,∆τ, Yk)
Yk+1 = Yk + µkh(Ak+1, Ek+1,∆τk+1).

(5.9)

Since it is infeasible to solve this problem directly, it is used an alternating

strategy to approximate the result by minimizing one unknown at a time:

Ak+1 = arg minA Lµk(A,Ek,∆τk, Yk),
Ek+1 = arg minE Lµk(Ak+1, E,∆τk+1, Yk),

∆τk+1 = arg min∆τ Lµk(Ak+1, Ek+1,∆τ, Yk).

(5.10)

Fortunately, each of these steps have a closed-form solution can be solved efficiently.

This procedure is summarized in Algorithm 5. Each J†i represents the pseudoinverse

of Ji.
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5.3 Adapting Domain-Transformations for

Sparse-Representation of Moving Camera

Sequences

Let Xr ∈ Rm×nr and Xt ∈ Rm×nt be the reference and target matrices, respectively,

containing information about their corresponding video sequences. Let m be the

number of pixels in the video frames, and nr and nt the number of frames in the

reference and target videos, respectively. In a first moment, let us assume an ideal

scenario where both reference and target sequences were acquired with exactly the

same camera path and pose with similar internal and external setups. Under these

conditions, it is fair to assume that every column in Xt has at least one corresponding

column in Xr, leading to the problem given by

min
W,E
‖W‖1 + λ‖E‖1, s.t. Xt = XrW + E, (5.11)

where W ∈ Rnr×nt is a coefficient matrix, which describes the relations of the

columns of Xt and Xr, and E ∈ Rm×nt is the error term, which has the same

dimensions of Xt. In this problem, the factor λ is used to balance the importance

of the two minimized terms and may be adjusted considering the expected amount

of sparsity in W and E. Notice that Eq. (5.11) is basically Eq. (4.2), but under

a different context where the representation is direct, and not made on top of a

subspace model.

Now, let us make an additional modification by breaking the assumption that

Xt and Xr are perfectly aligned, since there are uncontrolled camera shaking and

rotation. Since images acquired at the same center of projection can be related

by a homography transformation [39], it is possible to consider that the target

observations in Xt are in a different geometric domain with respect to Xr. This

assumption allows one to model the camera shaking as a geometric transformation

applied to a domain where corresponding target and reference samples are aligned.

In this sense, Eq. (5.11) becomes

min
W,E,τ

‖W‖1 + λ‖E‖1, s.t. Xt ◦ τ = XrW + E, (5.12)

where τ = [τ1 . . . τnt ] is an vector of domain-transformations, in the same fashion as

the discussed in Section 2.2. Each entry of τ acts on its corresponding column of

Xt, that represents the observed target samples. For implementation purposes, τ is

represented by a p×nt matrix where each column is a vector with the p parameters

necessary to describe each transformation acting on Xt.

Although, at a first glance one might think this development is a new imple-
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mentation of [47], since it appears that the domain transformations are used in the

same way, a thorough inspection of the proposed formulation shows that both Xr

and Xt are fixed in the present formulation. Also, it would come naturally from [47]

that the Xr matrix would be modified by the transforms, since it plays a similar

role in the present work as the model, as well as the A matrix in RASL. We chose,

however, to apply the transformations over Xt, since we assume here that Xr is

well known by the system and is considered to be the best representation available

to the background model. As for the Xt matrix we assume it might suffer from

misalignments that should be corrected before the decomposition is performed.

In this problem, the composition of a geometric domain-transformation with Xt

breaks the linearity of the the optimization constraint that appears on the right side

of Eq. (5.12). However, for a small variation ∆τ = [∆τ1| . . . |∆τnt ] ∈ Rp×nt of τ ,

it is possible to approximate this constraint by linearizing Xt ◦ τ with the current

estimate of τ , in a similar way it is done in [28] and [45], such that

Xt ◦ (τ + ∆τ) ≈ Xt ◦ τ +
nt∑
i=1

Ji∆τεiε
>
i = XrW + E, (5.13)

where the εi represent the canonical basis for Rnt and

Ji =
∂

∂ζ

(
(Xt)i ◦ ζ
‖(Xt)i ◦ ζ‖2

)∣∣∣∣
ζ=τi

∈ Rm×p (5.14)

is the Jacobian of the i-th column of the target matrix Xt with respect to τi. With

these definitions, we can write the following the modified optimization problem

min
W,E,∆τ

‖W‖1 + λ‖E‖1,

s.t. Xt ◦ τ +
nt∑
i=1

Ji∆τεiε
>
i = XrW + E. (5.15)

Hence, the solution of Eq. (5.12) can be achieved by repeatedly solving (5.15) and

then updating τ at each iteration step. In practice, the whole optimization of the

so-called moving-camera domain-transformation sparse representation (mcDTSR)

algorithm can be computed within two loops. In the outer loop, the Jacobian

matrices Ji are computed based on the current estimate of τ . Then, the columns of

Xt ◦τ are normalized to avoid undesired trivial solutions, like, for example, zooming

to a black pixel of a given frame of Xt, that will end up with a null column of W .

Only after that the inner loop is performed by solving (5.15). At last, τ is updated

by the ∆τ increment that is recurrently computed in the inner loop, which also

estimates the sparse coefficient W and the error E. We have empirically observed

that the relative change of the objective function is a good stopping criterion for the
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Algorithm 6 - Domain-transformable sparse representation for moving camera
videos (mcDTSR): outer loop

input: Reference matrix Xr ∈ Rm×nr , target matrix Xt ∈ Rm×nt , inital transfor-
mation vector τ = [τ1 . . . τnt ] ∈ Rp×nt and weight λ > 0

while not converged (Eq. (5.16) is not satisfied) do
(step 1) compute Jacobian matrices for each τi

Ji ←
∂

∂ζ

(
(Xt)i ◦ ζ
‖(Xt)i ◦ ζ‖2

)∣∣∣∣
ζ=τi

, for i = 1, . . . , nt;

(step 2) warp and normalize the images in Xt matrix

Xt ◦ τ ←
[

(Xt)1 ◦ τ1

‖(Xt)1 ◦ τ1‖2

. . .
(Xt)nt ◦ τnt
‖(Xt)nt ◦ τnt‖2

]
;

(step 3) solve the linearized convex optimization problem (inner loop):

(W ∗, E∗,∆τ ∗)← arg min
W,E,∆τ

‖W‖1 + λ‖E‖1 s.t.

Xt ◦ τ +
nt∑
i=1

Ji∆τεiε
>
i = XrW + E.

(step 4) update the transformation vector:

τ ← τ + ∆τ

end

ouput: solution W ∗, E∗ and τ ∗ to problem (5.12).

outer loop, meaning that given a positive value εr, the outer loop is exited when

|objk − objk−1|
|objk|

< εr, objk = ‖Wk‖1+λ‖Ek‖1, (5.16)

where k is the iteration index of the outer loop. In this procedure, an initial set

of transformations τ0 must be provided for the outer loop, along with Xr and Xt

matrices. Since both matrices are supposed to be acquired under similar conditions,

τ0 is initially chosen to be a set of identity transforms. The proposed method for the

mcDTSR outer loop is summarized in Algorithm 6. To efficiently solve Eq. (5.15)

inside the inner loop, we shall make use of the augmented Lagrangian method [25].

By defining the following auxiliary function

h(W,E,∆τ) = XrW + E −Xt ◦ τ −
n∑
i=1

Ji∆τεiε
>
i , (5.17)
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it is possible to write the augmented Lagrangian function as

Lµ(W,E,∆τ, Y ) = ‖W‖1 + λ‖E‖1 + 〈Y, h(W,E,∆τ)〉

+
µ

2
‖h(W,E,∆τ)‖2

F , (5.18)

where Y is Lagrange multiplier matrix and µ is a positive scalar. This can be solved

by estimating both Y and the optimal solution iteratively [30] as follows

(Wk+1, Ek+1,∆τk+1) = arg min
W,E,∆τ

Lµk(W,E,∆τ, Yk),

Yk+1 =Yk+µkh(Wk+1, Ek+1,∆τk+1),

µk+1 = ρµk,

(5.19)

where µ0 and ρ are tunable parameters and will be discussed later. To facilitate the

solution of Eq. (5.19), we can break it into three new equations and approximate

the result by minimizing one unknown at a time, such that

Wk+1 = arg min
W
Lµk(W,Ek,∆τk, Yk),

Ek+1 = arg min
E
Lµk(Wk+1, E,∆τk, Yk),

∆τk+1 = arg min
∆τ
Lµk(Wk+1, Ek+1,∆τ, Yk).

(5.20)

The great advantage of alternating the unknowns in (5.20) is that each one has a

direct form of computation.

As in [32], W and E can be estimated by the soft-thresholding operator, defined

as

Sγ [A] = sign (A) ·max{|A| − γ, 0}, (5.21)

where the sign and max operations are applied entrywise on the matrix A. By

expanding the expressions in Eq. (5.20) using the same rationale underlying the

development in [33], and using h as in defined in Eq. (5.17), we would have:

Wk+1 = S 1
µk

[
Wk −X>r

(
h(Wk, Ek,∆τk) + 1

µk
Yk

)]
,

Ek+1 = S λ
µk

[
Ek −

(
h(Wk+1, Ek,∆τk) + 1

µk
Yk

)]
,

∆τk+1 = S 1
µk

[
∆τk − J ∗

(
h(Wk+1, Ek+1,∆τk) + 1

µk
Yk

)]
,

(5.22)

where J ∗(θ) is the adjoint of the functional J (θ) =
∑n

i=1 Jiθεiε
>
i which is applied

over ∆τ in h(W,E,∆τ). However, in our application the ∆τ is not assumed to

be sparse, therefore we chose not to apply the soft threshold operator Sγ [·] in its

50



Algorithm 7 - Domain-transformed sparse representation for moving camera videos
(mcDTSR): inner loop

input: W0 ∈ Rnr×nt , E0 ∈ Rm×nt , Q, ∆τ 0 = 0 ∈ Rp×nt , µ0 > 0, ρ > 0, λ > 0

let h(W,E,∆τ) = XrW + E −Xt ◦ τ −
∑n

i=1Qi∆τεiε
>
i

while not converged (Eq. (5.24) is not satisfied) do

Wk+1 = S 1
µk

[
Wk −X>r

(
h(Wk, Ek,∆τk) + 1

µk
Yk

)]
;

Ek+1 = S λ
µk

[
Ek −

(
h(Wk+1, Ek,∆τk) + 1

µk
Yk

)]
;

∆τ k+1 = ∆τ k +
∑n

j=1Q
>
j

(
h(Wk+1, Ek+1,∆τk) + 1

µk
Yk

)
εjε
>
j ;

Yk+1 = Yk + µk h(Wk+1, Ek+1,∆τ k+1);
µk+1 = ρµk;

end while

∀i : ∆τi = R−1
i ∆τ i

ouput: solution W ∗, E∗, and ∆τ ∗ to problem (5.15).

update equation, replacing the last line of Eq. 5.22 by

∆τk+1 = ∆τk − J ∗
(
XrWk+1 + Ek+1 −Xt ◦ τ −

n∑
i=1

Ji∆τkεiε
>
i +

1

µk
Yk

)
. (5.23)

The functional J ∗(θ) can be approximated by
∑n

i=1 J
>
i θεiε

>
i , in our application.

Since the space-size parameter p is relatively small when compared to the frame

resolution dimension m, the Jacobian matrices Ji are likely to be ill-conditioned,

which may lead to numerical instability in the inner loop. To work this around,

one may perform a QR factorization of the Jacobians, that is, Ji = QiRi, and use

orthogonal factors Qi inside the inner loop in place of the Jacobians Ji. In this

manner, the inner loop will output ∆τi = Ri∆τi instead of ∆τi for each component

of ∆τ , also the inner loop will only see the Qi components of each Ji. Since the Ri

are invertible, ∆τ can be easily computed [47].

The mcDTSR inner loop described in Algorithm 7 solves separately for both

W and E, using the linearized alternating direction method with adaptive penalty

(LADMAP) approach [30], differently from the approach in [47], where the ALM is

applied. By expanding the Lagrangian using LADMAP one is able to reach a faster

convergence [30]. The use of LADMAP is the reason µk is updated by a positive ρ

(Eq. (5.19)). The value of ρ has influence on the compromise between approximation

accuracy and the algorithm’s running time. For the stopping criterion of the inner

loop, one may consider the ratio between the Frobenius norm of h (which can be

thought of as the residual of the cost function in Eq. (5.15)), and the norm of Xt ◦ τ
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Figure 5.2: mcDTSR block diagram.

itself. More precisely, the inner loop will stop when

‖h(Wk, Ek,∆τk)‖F
‖Xt ◦ τ‖F

< εt, (5.24)

where k is the current inner-loop iteration index.

Assuming that reference and target videos may have significant misalignments

between its correspondent frames, working with the full video frames can make the

warped frames of Xt present invalid pixels at the borders, that are the result of the

mapping of pixels beyond the borders of Xt. As these invalid pixels can affect the

algorithm convergence, a common practice is to work with a region-of-interest (ROI)

window that is smaller than the full video frame, so that it can have some freedom

to warp and avoid the mapping of pixels outside the frame’s borders. Thus, Xt and

Xr are in general ROI windows inside the full frames.

Figure 5.2 shows the block diagram for the proposed algorithm.

5.4 Experimental Results

In order to evaluate the detection efficiency of our proposed technique, two types

of experiments were elaborated. The first is intended to qualitatively assess the

application of the method on a problematic case, giving an introspective view of the

method’s components and how they evolve along the algorithm’s iterations. The

second one use assessing metrics to compare mcDTSR with the current state-of-art

techniques. The VDAO-200 dataset described in Sec. 3.3.2 is used to perform the

quantitative experiments in upcoming Section 5.4.3. Since the method promotes

changes in the domain-space of the target video, some implementation details about

how to measure the detection quality with the given ground truth annotations are

also discussed in the next section.
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5.4.1 Domain-transformation compensation

The VDAO database comes with ground truth annotations of the abandoned objects

for every target-video frame, where the object positions are marked with rectangular

bounding boxes. Since the abandoned objects have arbitrary shapes, working with

bounding boxes can lead to results which are not very precise, that may mask the

actual amounts of true and false positives.

This said, another relevant concern is that τ is computed with respect to

the target video, so any evaluation metric should take into account the domain-

transformation performed on each frame of Xt. Since a general transformation

should change the annotated bounding boxes into quadrilateral polygons, we chose

to maintain the target domain fixed and apply the inverse transformation τ−1 to the

reference domain when carrying out the performance assessment. More precisely,

applying τ−1 to both sides of the constraint in Eq. (5.12) leads to

Xt = XrW ◦ τ−1 + E ′, (5.25)

where E ′ = E ◦ τ−1. To compute E ′ we consider the transformation applied to the

whole image, and not only the region-of-interest. So, a general transformation on

XrW may yield frames that contain zero values near their boundaries, since the

image border may be overlapped by the resulting quadrilateral. To avoid dummy

false positives, E ′ is set to zero in these problematic regions. The metrics described

in the sequel are applied to this resulting error image, after all post-processing steps.

These choices are motivated by simplicity and the possibility to compare our results

with the other competing methods, since they act in the canonical geometric-domain

of the target video.

5.4.2 Qualitative evaluation

In this section, we illustrate the advantage of including domain transformations

into the optimization process. When the corresponding target and reference se-

quences have considerable levels of misalignment, the sparse representation of the

target frames performs poorly, generally introducing several artifacts into the resid-

ual component E. If some algorithm that uses low-rank or sparse representation is

used for detection purposes, this misalignment can yield a large number of false pos-

itive regions, possibly masking the actual presence of strange objects on the scene,

compromising the practical applicability of such a method. In this sense, a simple

experiment was designed to illustrate and qualitatively evaluate the gain in detection

performance provided by the proposed algorithm. To this end, the main components

of Eq. (5.15) will be inspected along the iterations of the mcDTSR outer loop de-
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scribed in Algorithm 6, providing some insights about what is happening “under

the hood”.

For this task, we have selected an excerpt of the target video from the VDAO

database entitled “Object 3 (shoe, position 3)”. This sequence presents a case of

significant misalignment with respect to its corresponding reference video, making

any conventional method that is not tolerant to camera shaking not to perform

well. A 50-frame snippet of this target video was selected together with a 100-

frame snippet of the corresponding reference video, manually chosen such that the

entire target excerpt can be represented by the reference one. It is important to

point out that, although in this case the target-reference match is guaranteed, the

algorithm has no information about which reference frames shall be used to represent

an arbitrary target frame, nor about the parameters of camera tilt between these

corresponding frames. To reduce the processing time, these video snippets where

downsampled to a 320 × 180-pixel resolution and converted to grayscale, and the

chosen regions-of-interest (ROI) were the 280×150-pixel central windows from each

frame in both videos.

By considering only planar homographies to represent the domain transforma-

tion, one gets p = 8 by using a 4-point parametrization to describe the columns

of τ . The parameter setup used in mcDTSR was λ = 102, ρ = 1.01, and

µ0 = 1.25/‖Xt ◦ τ‖, following the values used in [34]. The inner loop tolerance

for the stopping criterion was set to εt = 10−4 and the outer loop tolerance εr was

left loose. The idea was to observe how the magnitudes of the algorithm unknowns

and metrics behave along a total of 55 outer-loop iterations.

At the post-processing detection stage, a simple thresholding procedure was per-

formed by marking as foreground every entry of |E| with intensity greater than

β = 0.125, otherwise turning it as background. This value was chosen based on the

adjusted values described in Table 4.1.

In Figs. 5.3(a), 5.3(b), and 5.3(c), it is possible to see the evolution of the l1-norm

of ‖W‖, ‖E‖, and ‖∆τ‖, respectively, across the outer-loop iterations. Indepen-

dently of their magnitude ranges, one can clearly notice how the three norms evolve

in time, converging to their final values after approximately 45 iterations.

However, the great strength of the proposed method can be noticed in

Figs. 5.3(d), 5.3(e), and 5.3(f), where some detection metrics for the mcDTSR algo-

rithm are displayed. All these three metrics were computed pixelwise, by comparing

the binary mask video E ′, as given in Section 5.4.1, to the provided bounding-box

ground truth from the VDAO database.

The behaviour shown by the true-positive rate (TPR) plot in Fig. 5.3(d) is

explained by the fact that the ground truth bounding boxes are larger than the actual

object. Thus, this plot represents the superposition of the actual false positives that
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Figure 5.3: Evolution of several mcDTSR parameters and performance metrics along
outer-loop iterations, illustrating improvement over time of proposed algorithm: (a)
‖W‖1; (b) ‖E‖1; (c) ‖∆τ‖1; (d) True-positive detection rate; (e) False-positive
detection rate; (f) Precision rate.

lie inside the bounding box being eliminated, promoting a decrease in the TPR, plus

the actual object being increasedly detected. This can be appreciated by looking

also at evolution of E over the outer-loop iterations in Fig. 5.4. This figure also

explains the impressive false-positive rate (FPR) and precision plots depicted in

Figs. 5.3(e) and Figs. 5.3(f), respectively, as a result from the improved geometric

alignment between the target and reference frames. In fact, from the first outer-loop

iteration (l = 1) to the last one (l = 55), more than 99% of the false positives were

eliminated.

The geometric alignment can be crucial to the convergence of sparse representa-

tion methods. This is well illustrated by Figs. 5.5 and 5.6, which show the evolutions

of the target ROIs and the estimated W , respectively. In fact, the improved geomet-

ric alignment provided by the transformation τ , as given in Fig. 5.5, enables a more

robust and consequently more precise matrix factorization for the target video, as

seen in Fig. 5.6.

5.4.3 Quantitative evaluation

For this experiment, are considered all 59 200-frame videos excerpts from the VDAO-

200 subset, as given in Section 3.3. The parameter setup for the proposed mcDTSR

algorithm are the same as in Section 5.4.2, with addition of the stopping criterion
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Figure 5.4: Evolution of residual matrix |E| through selected mcDTSR outer-loop
iterations l, for a fixed video frame: (a) l = 1; (b) l = 5; (c) l = 10; (d) l = 15;
(e) l = 20; (f) l = 30; (g) l = 40; (h) l = 55. Notice that the gradual alignment
between target and reference correspondences contributes for an impressive reduc-
tion of potential false-positives regions, and also for a more precise detection of the
abandoned object.

set to εr = 10−5. The post-processing detection stage is composed by a thresholding

step on |E ′| with β = 0.2 (chosen empirically), followed by morphological open and

then close operations with 2 and 4 pixel-wide, disk-shaped structuring elements,

respectively. This is followed by a simple temporal voting using a 5 pixel-wide
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Figure 5.5: ROI evolution through selected mcDTSR outer-loop iterations l, for a
fixed video frame: (a) l = 0 (initial ROI); (b) l = 1; (c) l = 10; (d) l = 19; (e)
l = 28; (f) l = 37; (g) l = 46; (h) l = 55.

window, that turns the pixel on if more than half of the window is also on.

To assess the performance of the proposed mcDTSR method, the following met-

rics are employed: true positive rate (TP) and false positive rate (FP). A true

positive happens when the detection blob has a non-empty intersection with the

abandoned-object ground-truth bounding box, and a false positive happens when
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Figure 5.6: Evolution of weight matrix |W | through selected mcDTSR outer-loop
iterations l, for a fixed video frame: (a) l = 1; (b) l = 7; (c) l = 13; (d) l = 19;
(e) l = 25; (f) l = 31; (g) l = 37; (h) l = 43; (i) l = 47; (j) l = 55. Notice how
the target frames are incorrectly temporally correlated with the reference frames at
the first iterations. The optimization gradually shifts the correlation to the correct
frames, thanks to the transformations applied to the target video.

the detection blob and the ground-truth bounding boxes are disjoint. Another met-

ric used for performance assessment is the DIS metric, that integrates both TP and

FP, defined as

DIS =

√
(1− TP)2 + FP2. (5.26)

The DIS metric represents the minimum distance of the (TP,FP) point to the

point of ideal behaviour (TP = 1 and FP = 0) on the TP×FP plane. The use

of this metric allows direct comparison with the results in [31] and [36] for several

state-of-the-art methods found in the literature, namely: the spatio-temporal com-

position for moving-camera detection (STC-mc) [37]; the detection of abandoned

objects with a moving camera (DAOMC) [5]; the moving-camera background sub-

traction (MCBS) [38] the anomaly detection with a moving camera using multiscale

video analysis (ADMULT) [31]; and the anomaly detection in moving-camera video

sequences using principal subspace analysis (mcRoSuRe-A) [36]. The overall re-

sults for all these methods, including the proposed mcDTSR algorithm, are given in
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Table 5.1.

Table 5.1: Comparison results of the proposed mcDTSR method with STC-mc,
DAOMC, MCBS, and ADMULT, considering all the 59 single-object videos of the
VDAO-200 database.
Video # STC-mc [37] DAOMC [5] MCBS [38] ADMULT [31] mcRoSuRe-A [36] mcDTSR

TP FP DIS TP FP DIS TP FP DIS TP FP DIS TP FP DIS TP FP DIS
1 0.37 0.42 0.76 1.00 1.00 1.00 1.00 0.10 0.10 1.00 0.63 0.63 1.00 0.00 0.00 1.00 1.00 1.00
2 1.00 0.04 0.04 1.00 0.00 0.00 1.00 0.90 0.90 1.00 0.00 0.00 0.96 0.17 0.17 0.73 0.00 0.27
3 0.90 0.04 0.11 1.00 0.04 0.04 1.00 0.28 0.28 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.71 0.71
4 1.00 0.03 0.03 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
5 0.92 0.01 0.08 1.00 0.10 0.10 1.00 0.07 0.07 0.71 0.95 0.95 0.99 0.54 0.54 1.00 0.60 0.60
6 0.29 0.64 0.96 1.00 0.10 0.10 1.00 0.99 0.99 1.00 0.00 0.00 1.00 0.75 0.75 1.00 0.79 0.79
7 0.99 0.13 0.13 1.00 1.00 1.00 1.00 0.96 0.96 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
8 0.00 0.01 1.00 1.00 0.87 0.87 0.75 0.31 0.39 0.54 0.02 0.47 1.00 0.16 0.16 1.00 0.17 0.17
9 0.00 1.00 1.41 0.94 1.00 1.00 0.67 0.18 0.37 0.52 0.06 0.48 0.94 0.00 0.06 0.97 0.00 0.03
10 0.01 0.01 0.99 1.00 0.97 0.97 0.89 0.10 0.15 0.69 0.00 0.31 0.99 0.76 0.76 0.96 0.72 0.72
11 0.03 0.79 1.25 0.98 0.98 0.98 0.73 0.32 0.42 0.67 1.00 1.05 0.94 0.05 0.07 0.93 0.00 0.07
12 0.20 0.07 0.81 0.94 0.48 0.48 0.87 1.00 1.01 1.00 0.22 0.22 0.92 0.00 0.08 0.90 0.00 0.10
13 0.00 0.50 1.12 0.86 0.71 0.72 0.84 0.00 0.16 0.64 0.19 0.40 0.98 0.00 0.02 1.00 0.00 0.00
14 0.08 0.05 0.92 1.00 0.74 0.74 0.92 0.01 0.08 1.00 0.15 0.15 0.99 0.00 0.01 0.88 0.00 0.12
15 0.00 1.00 1.41 1.00 1.00 1.00 0.89 1.00 1.01 0.59 0.04 0.42 1.00 0.23 0.23 1.00 0.03 0.03
16 0.00 0.08 1.00 0.77 1.00 1.02 0.00 0.00 1.00 0.00 0.00 1.00 0.91 0.12 0.15 0.89 0.08 0.13
17 0.06 1.00 1.37 0.96 0.46 0.46 0.80 0.12 0.23 0.62 0.30 0.48 0.94 0.04 0.07 0.96 0.01 0.04
18 0.00 0.09 1.00 0.75 0.99 1.02 0.43 0.00 0.57 0.00 0.23 1.03 0.54 0.00 0.46 0.55 0.00 0.45
19 0.00 0.03 1.00 1.00 0.67 0.67 0.89 0.00 0.11 0.54 0.15 0.48 1.00 0.03 0.03 0.95 0.00 0.05
20 0.36 0.50 0.81 0.26 1.00 1.24 0.67 1.00 1.05 0.00 0.00 1.00 0.99 0.97 0.97 0.78 0.98 1.00
21 0.00 0.68 1.21 0.97 0.62 0.62 0.95 0.61 0.61 0.97 0.72 0.72 1.00 0.37 0.37 1.00 0.04 0.04
22 0.00 0.07 1.00 1.00 0.90 0.90 0.92 0.05 0.09 0.68 0.75 0.81 1.00 0.02 0.02 1.00 0.04 0.04
23 0.00 0.83 1.30 0.93 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00 0.93 0.76 0.76 0.72 0.04 0.28
24 0.58 0.93 1.02 0.00 1.00 1.41 0.00 0.73 1.24 0.00 0.00 1.00 0.69 1.00 1.05 0.12 0.00 0.88
25 0.00 0.02 1.00 1.00 0.90 0.90 0.58 0.00 0.43 0.56 0.55 1.00 0.51 0.00 0.50 0.54 0.01 0.47
26 0.00 0.06 1.00 1.00 0.54 0.54 0.87 0.05 0.14 0.64 0.01 0.70 0.99 0.07 0.07 1.00 0.53 0.53
27 0.26 0.34 0.82 1.00 0.72 0.72 1.00 1.00 1.00 1.00 0.10 0.36 1.00 0.41 0.41 1.00 0.02 0.02
28 0.01 0.01 1.00 1.00 0.89 0.89 1.00 0.00 0.00 1.00 0.00 0.00 0.64 0.27 0.45 0.27 0.00 0.74
29 0.00 0.14 1.01 0.91 0.98 0.98 0.76 0.02 0.24 0.68 0.01 0.32 0.43 0.81 0.99 0.00 0.00 1.00
30 0.00 0.01 1.00 1.00 0.97 0.97 0.80 0.49 0.53 0.56 0.00 0.44 1.00 0.36 0.36 1.00 0.55 0.55
31 0.00 0.01 1.00 1.00 0.61 0.61 0.87 0.80 0.81 0.61 0.55 0.67 0.95 0.81 0.81 0.95 1.00 1.00
32 0.00 0.01 1.00 1.00 0.78 0.78 0.83 0.00 0.17 0.32 0.00 0.68 1.00 0.01 0.01 0.99 0.02 0.02
33 0.78 0.81 0.83 0.83 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 0.96 1.00 1.00 0.92 1.00 1.00
34 0.00 0.02 1.00 1.00 0.69 0.69 0.70 0.00 0.30 0.56 0.00 0.44 0.95 0.02 0.05 0.97 0.03 0.04
35 0.00 0.97 1.39 0.97 0.62 0.62 0.87 0.82 0.83 0.62 0.01 0.38 0.94 0.81 0.81 0.96 0.00 0.04
36 0.24 1.00 1.26 0.02 1.00 1.40 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 0.95 0.07 0.08
37 0.43 0.18 0.59 0.99 1.00 0.96 0.93 0.00 0.07 0.93 0.00 0.07 0.99 0.00 0.01 0.97 0.00 0.03
38 0.00 1.00 1.41 1.00 0.99 0.99 0.71 0.05 0.30 0.44 0.00 0.56 0.96 0.00 0.04 0.72 0.00 0.28
39 0.09 0.04 0.91 0.91 1.00 1.00 0.84 0.93 0.94 1.00 0.25 0.25 0.91 1.00 1.00 0.92 1.00 1.00
40 0.56 0.44 0.92 1.00 0.95 0.95 1.00 0.56 0.56 1.00 0.14 0.14 0.92 0.28 0.29 1.00 1.00 1.00
41 0.00 0.78 1.27 0.64 0.99 1.05 0.88 0.87 0.87 0.87 1.00 1.01 0.96 1.00 1.00 1.00 0.03 0.03
42 0.00 1.00 1.41 0.96 0.96 0.96 0.88 0.91 0.91 0.49 0.00 0.51 0.96 0.00 0.04 0.99 0.00 0.01
43 0.00 0.08 1.00 0.72 1.00 1.04 0.14 0.00 0.86 0.00 0.00 1.00 0.93 0.15 0.16 0.93 0.11 0.13
44 0.00 0.19 1.02 0.96 1.00 1.00 0.73 0.14 0.31 0.63 0.00 0.37 0.92 0.43 0.43 0.95 0.04 0.06
45 0.15 0.92 1.25 0.01 1.00 1.41 0.82 1.00 1.02 1.00 1.00 1.00 0.71 1.00 1.04 0.37 0.41 0.75
46 0.00 0.43 1.09 0.93 0.97 0.97 0.95 0.79 0.79 0.99 0.14 0.14 0.92 0.01 0.08 0.91 0.00 0.09
47 0.01 0.20 1.01 1.00 1.00 1.00 0.93 0.00 0.07 0.91 0.22 0.24 0.98 0.30 0.30 0.97 0.26 0.26
48 0.00 0.01 1.00 0.96 0.97 0.97 0.72 0.16 0.32 0.42 0.00 0.58 0.96 0.03 0.05 0.98 0.00 0.02
49 0.00 0.04 1.00 1.00 0.99 0.99 1.00 0.06 0.06 0.93 0.00 0.07 1.00 0.24 0.24 1.00 0.76 0.76
50 0.00 0.02 1.00 1.00 0.77 0.77 0.86 0.14 0.20 0.18 0.89 1.21 0.95 0.01 0.05 0.97 0.02 0.04
51 0.01 0.86 1.31 0.97 0.92 0.92 0.85 0.66 0.68 1.00 1.00 1.00 0.94 0.98 0.98 0.81 1.00 1.02
52 0.00 0.68 1.21 0.40 1.00 1.17 0.63 0.79 0.87 0.84 1.00 1.01 0.73 1.00 1.04 0.74 0.55 0.61
53 0.06 0.82 1.25 0.79 1.00 1.02 0.69 1.00 1.05 0.88 1.00 1.01 0.84 0.09 0.19 0.85 1.00 1.01
54 0.00 0.20 1.02 1.00 0.51 0.51 0.84 0.01 0.16 0.50 0.00 0.50 0.94 0.01 0.06 1.00 0.02 0.02
55 0.39 0.75 0.96 0.86 1.00 1.01 0.59 0.32 0.52 0.49 0.00 0.51 0.76 0.44 0.50 0.71 0.00 0.29
56 0.52 0.45 0.65 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.38 0.38 0.98 1.00 1.00 0.81 1.00 1.02
57 0.36 0.09 0.65 0.96 0.92 0.92 1.00 0.67 0.67 1.00 0.21 0.21 0.99 0.01 0.01 0.95 1.00 1.00
58 0.00 0.05 1.00 0.97 0.80 0.80 0.62 0.00 0.38 0.18 0.00 0.82 0.83 0.00 0.17 0.88 0.00 0.12
59 0.00 1.00 1.41 1.00 1.00 1.00 0.73 0.79 0.83 0.53 0.00 0.47 0.44 0.00 0.56 0.61 0.01 0.39

Average 0.19 0.42 0.91 0.83 0.43 0.46 0.89 0.84 0.85 0.71 0.28 0.40 0.91 0.33 0.34 0.86 0.28 0.31

The analysis of the results presented in Table 5.1 shows that the proposed

mcDTSR method outperforms the state-of-the-art algorithms in 43 of the 59 videos,

while also pairing up in 4 other videos. This shows that mcDTSR has superior indi-

vidual performance over the other algorithms, but also that using domain transfor-

mations to deal reference/target misalignments is an improvement over mcRoSuRe-

A, which is also a sparse representation technique. The average results of Table I
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can be seen in Table 5.2, which shows that our method significantly reduces the

average DIS score. This confirms the effectiveness of the introduction of the domain

transformations in the detection pipeline.

It can be argued that object-level detection is a very harsh metric in applicability

terms, so one may consider a less strict metric for detection performance like a

frame-level analysis, which does not consider the anomaly position in the given

frame. In this frame-level context the TPfl metric is affected by the presence of any

blob detected in an anomalous frame. Conversely, the FPfl is determined by the

presence of any blob detected in a non-anomalous frame. The average results for

the frame-level comparison over the same 59 VDAO-200 videos is summarized in

Table 5.3. These results confirm that mcDTSR has a clear performance advantage

when compared to the STC-mc, DAOMC, MCBS, and ADMULT methods, and,

more importantly, it represents a significant detection improvement when compared

directly to the mcRoSuRe-A, even in a frame-level analysis.

Table 5.2: Average detection of proposed mcDTSR method compared to mcRoSuRe-
A, STC-mc, DAOMC, and MCBS methods for all 59 single-object videos of the
VDAO database.

Method TP FP DIS

STC-mc 0.18 0.38 0.90
DAOMC 0.83 0.43 0.46
MCBS 0.89 0.84 0.85

mcRoSuRe-A 0.72 0.25 0.37
mcDTSR 0.84 0.27 0.31

Table 5.3: Average detection of proposed mcDTSR method, compared to STC-mc,
DAOMC, MCBS, and mcRoSuRe-A methods for all 59 single-object videos of the
VDAO database using frame-level metrics.

Method TPfl FPfl DISfl

STC-mc 0.48 0.41 0.66
DAOMC 0.89 0.46 0.47
MCBS 0.99 0.98 0.98

mcRoSuRe-A 0.76 0.24 0.34
mcDTSR 0.86 0.23 0.27

The post-processing setups for the mcDTSR and mcRoSuRe-A algorithms, used

to obtain the results shown in Tables 5.1, 5.2 and 5.3, were adjusted by a simple

methodology. A parameter gridsearch is performed on 28 of the 59 videos, in order

to minimize the object-level DIS score. The best parameter setup is then used

to compute the results for all 59 videos in all three tables. In that search, the

morphological open and close windows range, each one, from 1 to 5; the threshold
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ranges from 0.2 to 0.3 in 0.01-steps, and the temporal voting window are tested for

the 3, 5, and 7 sizes. Although the same tuning methodology was used for both

algorithms, the best setup is chosen independently from each other, yielding the

best average results of the object-level DIS metric for each method. This explains

why the FP score of mcRoSuRe in Table 5.2 is slightly better than the one for

the mcDTSR, something that is compensated by a large margin by the superior

mcDTSR TP score. The optimal setup for each algorithm is shown in Table IV. In

practice, one may expect that the proposed mcDTSR will behave equally or superior

in terms of overall performance, as well aligned cases shall provide similar scores,

but heavily misaligned videos will benefit from the domain transformation present

in the mcDTSR algorithm.

Table 5.4: Chosen setup for methods mcRoSuRe-A and mcDTSR.

Method Open Size Close Size Binarization Threshold Vote Size

mcRoSuRe-A 4 1 0.20 3
mcDTSR 1 4 0.28 3

Fig. 5.7 illustrates the superiority of mcDTSR relative to mcRoSuRe-A in the

presence a significant geometric misalignment between the target and reference

frames, practically eliminating the false-alarm regions on the final residue matrix.

This is one of the many examples where all the previous methods fail (having DIS

metric larger than 0.85) and the proposed method excels, having a DIS metric of

only 0.03.

Since the mcDTSR is based on the same sparse representation algorithm present

in mcRoSuRe-A, the mcDTSR exhibits lower FP rates, in general, due to its intrinsic

compensation of the camera trepidations. However, there are some situations in

Table 5.1 where the mcDTSR presents more false alarms than mcRoSuRe. Having

a close look at some of these cases, it is possible to see that mcDTSR captures not

only the presence of abandoned objects, but also indirect visual artifacts caused by

them, such as shadows and reflections, which were not considered in the ground-

truth annotation for the VDAO database. This is illustrated in Fig. 5.8, which

shows how the mcDTSR captures the shadow that the box casts in the lower pipe

(Fig. 5.8(d)) yielding a false alarm region, which is ignored by mcRoSuRe-A method

(Fig. 5.8(c)). Indeed, in most practical applications, this behavior, besides not being

an issue, is even desirable. This is so because the goal is to find abandoned objects

or anomalies, and therefore the detection of indirect artifacts caused by them is

useful.

It is important to point out that the mcDTSR algorithm performs a sequence

of convex optimizations in order to correct the geometric differences between the
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(a) (b)

(c) (d)

Figure 5.7: Comparison of mcRoSuRe and mcDTSR residues for frame 150 of video
41 in VDAO-200 database: (a) Reference frame; (b) Target frame; (c) mcRoSuRe-A
residue |E|; (d) mcDTSR residue |E ′|. In this case, the mcDTSR method compen-
sates for frame misalignment removing most of false alarms regions.

reference and target domains. In practice, a more misaligned case tends to take more

steps to yield the correct alignment, and consequently, requires more processing time.

Although real-time performance was not in the scope of this work, it is important for

real-world applicability. One form to address this issue is to develop an accelerated

version of mcDTSR along the same lines that mcRoSuRe-A, an accelerated version of

mcRoSuRe, has been developed. Further acceleration of mcDTSR can be provided

by taking advantage of the expected sparsity of the W matrix, which can reduce

significantly the amount of computation in the optimization loops.
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(a) (b)

(c) (d)

Figure 5.8: Comparison of mcRoSuRe and mcDTSR results for frame 1 of video 1
in VDAO-200 database: (a) Reference frame; (b) Target frame; (c) mcRoSuRe-A
detection mask; (d) mcDTSR detection mask. In this case, the shadow cast by the
box, which does not have a bounding-box ground-truth counterpart, is ignored by
the mcRoSuRe-A method but is successfully detected by the mcDTSR algorithm.
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Chapter 6

Conclusions

6.1 Discussion

We have presented a new approach for detecting changes in videos acquired with

a moving camera by applying special matrix decompositions with sparse low-rank

representations. In the first method, the moving background is modeled as a union

of subspaces plus a sparse residual in a first stage, which are used to decompose

any given target sequences using this same representation. The residual of this

target representation is then subtracted from the reference residual, leaving only

the detected outliers. In other words, this technique provides a moving background

subtraction scheme that could be used in advanced surveillance tasks which require

moving cameras to cover the surveilled area. This job is done with no previous

geometric registration or any pose or position information from the camera or its

moving platform, needing only a very loose video synchronization between reference

and target videos.

Furthemore, a new algorithm that is tolerant to possible camera trepidations

was described. The proposed method is based on the low-rank/sparse represen-

tation of target videos using a corresponding similar decomposition performed on

an anomaly-free reference video. Both video representations are performed in a

geometrically-transformed domain in order to compensate possible camera trepi-

dations along its natural path. An iterative two-stage optimization procedure is

employed to implement the modified optimization problem: the inner loop esti-

mates the best geometric transformation, whereas the outer loop, given the current

transformation estimate, determines the best matrix factorization. This provides

a better registration between reference and target videos, reducing the amount of

false alarms in the subsequent detection stage, which becomes robust to camera

trepidations. The final algorithm has proven to be a powerful tool, in a way it is

able to outperform state-of-the-art methods in the detection of anomalies in videos
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acquired with a moving camera, as the results of the extensive experiments in a very

challenging dataset show.

The proposed method expands the capabilities of low-rank sparse representation

methods, such as mcRoSuRe-A, by incorporating, in a simple and elegant way, do-

main transformations that enable such methods to find more precise correspondences

between different parts of the data matrix. The better alignment of the frames from

reference and target videos make the experimental results of our method to present

improved true positive detection while having very few false detections.

The optimization proposed here takes inspiration on other well established do-

main transformation techniques, but goes further using convexification tools that

reach faster convergence, which allows the method to operate in challenging scenar-

ios.

Although other recent works have proposed the use of domain transformations

to improve background subtraction methods, none of the previous algorithms was

able to perform in the challenging scenario considered here. This opens a path for

new applications in trending areas such as video stabilization and anomaly detection

with freely moving cameras that currently lack simple tools that can be incorporated

into the optimization algorithm to handle large misalignment between frames.

6.2 Future Work

The proposed technique can be improved in various aspects in order to become a

complete system of change detection that works in real-time. Future implementa-

tions should take advantage of the expected sparsity of output matrices. As can be

seen in Figure 5.6, the resulting coefficient matrix W , as defined in Eq. (5.15), has

only a few nonzero entries. This fact can be exploited to create accelerated imple-

mentations of Algorithms 6 and 7 by avoiding massive unnecessary computation.

It is also important to take into account the evolution of matrix W through the

outer loop iterations and how the nonzero entries “move” along W at each step (see

Figure 5.6).

Another important concern is that, since current camera resolutions continue

to grow, working with huge data, as the videos available in the VDAO database,

might not be a feasible approach. Instead, a multiscale divide-and-conquer strategy

should be more efficient, both in terms of time and data consumption. Compressive

sensing theory applied to the matrix completion problem has shown that low-rank

matrices can be exactly reconstructed from very little retrieved information [21–24].

Exploiting this fact, an interesting alternative is to use subsampled versions of the

video tensor, which represent a rough scale of the information. An interesting and

useful question is how much one can shrink the data and still detect the changes
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in the target videos. In addition, better quality metrics and evaluation strategies

should be proposed.

Subsampling of the data will enable the processing of longer videos. It means

that it may be possible to process slices of the VDAO videos that may contain at

least one full lap of the robot. Working with these kind of reference videos may

raise the following question: is it possible to estimate Lr from equation (4.1) with

fewer samples than the reference matrix Xr? This can be approached as a dictionary

learning problem [49, 50] and one should investigate how compact this dictionary

could be. Another interesting strategy is that Lr could be divided into small clusters

to take advantage of its blockwise low-rank structure. Subspace clustering in low-

rank representation is discussed in several works [40–43]. This approach could be

useful for parallelization strategies to scale the method to work with larger data.

Finally, the robustness of the complete technique should be assessed to ensure

its utility and confidence. Several experiments should be planned and executed to

understand its efficacy and limitations. Other video datasets and real time imple-

mentations may be considered as optional goals.
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