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You’re going to be alone now, and you’re very bad at that. You’re

going to be furious and you’re going to be sad, but listen to me:

Don’t let this change you. No, listen.

Whatever happens next, wherever she is sending you,

I know what you’re capable of. You don’t be a warrior.

Promise me.

Be a Doctor.

- Clara Oswald, Doctor Who

Never be cruel, never be cowardly. And never ever eat pears!

Remember: Hate is always foolish. . . and love is always wise.

- The Doctor, Doctor Who

Excelsior!
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Àqueles que tem medo.

Àqueles que não vêem solução.

Àqueles que fraquejam.

Àqueles que sem esperança.

Àqueles que querem desistir.

Àqueles que ainda vão vencer.
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O USO DE DECOMPOSIÇÕES EM MATRIZES ESPARSAS E DE BAIXO

POSTO EM DETECÇÃO DE OBJETOS EM MOVIMENTO E DETECÇÃO DE

MUDANÇAS EM VIDEOS

Lucas Arrabal Thomaz

Dezembro/2018

Orientadores: Sergio Lima Netto

Eduardo Antônio Barros da Silva

Programa: Engenharia Elétrica

Uma solução para a detecção de anomalias, como a identificação de mudanças e

objetos em movimento em v́ıdeos, é buscar uma representação de baixo posto para

os quadros que compõem o v́ıdeo e reconstruir um dos quadros do v́ıdeo original

através da combinação de representações de baixo posto dos outros quadros. Esta

tese propõe algoritmos que projetam as estruturas de baixo posto em uma união

de subespaçoes de baixa dimensão, para solucionar esse problema sendo capaz de

lidar com contextos dinâmicos, como aqueles encontrados em v́ıdeos adquiridos com

câmeras em movimento, dentre outros cenários complexos.

Parte desta tese busca detectar mudanças em v́ıdeos obtidos com câmeras móveis.

Os algoritmos propostos apresentam bons resultados, enquanto removem a restrição

de sincronização prévia dos v́ıdeos. Adicionalmente, eles utilizam propriedades da

estrutura dos dados para restringir o espaço de busca para um número menor de

subespaços, obtendo ganhos computacionais de até 100 vezes além de 91% de ver-

dadeiros positivos e somente 33% de falsos positivos, em experimentos utilizando a

base de dados VDAO, com objetos abandonados em um cenário industrial.

Outra parte apresenta soluções para a detecção de objetos em movimento em

v́ıdeos com cenário dinâmico. As soluções propostas utilizam decomposições em

matrizes de baixo posto e esparsas com projeções em uma união de subespaços,

aplicando mapas de saliência para restringir as atualizações de matrizes que repre-

sentam os objetos. Os métodos apresentados têm baixa incidência de falsos positivos

e apresentam desempenhos comparáveis aos do estado da arte para métodos simi-

lares, obtendo 0.74 de F1 na base UCSD.
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A solution for the detecion of anomalies, such as change and moving objects in

videos, is to obtain a low-rank representation of the frames that compose the video

sequence and try to reconstruct a frame from the original video using a combination

of the low-rank representation of the others. This thesis propose algorithms that

project the low-rank structures into a low-dimensional union-of-subspaces, to solve

this problem allowing the model to cope with dynamic backgrounds such as those

found in videos acquired with moving cameras and other complex scenarios.

Part of the thesis covers change detection in videos acquired with moving cam-

eras. The proposed algorithms provide good detection results, at the same time as

obviate the need for previous video synchronization. They also use properties of

the data representation in order to restrict the search space to the most relevant

subspaces, providing computational complexity gains of up to 100 times and 91%

true positive and only 33% false positive detections on experiments using the VDAO

database, with abandoned objects in a cluttered industrial scenario.

Another part presents a solution to the detection of moving objects in the pres-

ence of highly dynamic backgrounds. The proposed solutions use low-rank and

sparse matrix decompositions to represent the background as a union-of-subspaces,

while applying saliency maps to restrict the updates of the foreground matrix. The

proposed methods presents low false positive detection rate, and is shown to achieve

state-of-the-art performance among similar methods, attaining 0.74 F1 score in the

UCSD dataset.
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Chapter 1

Introduction

This thesis presents an investigation on the use of low-rank plus sparse matrix

decompositions to perform anomaly detection in complex video sequences. There

are two main focuses in this work: first the change detection in videos acquired with

moving cameras in the presence of cluttered backgrounds; second the detection of

moving foreground in videos featuring complex moving backgrounds.

1.1 Anomaly Detection in Videos

In recent years there has been a great increase in the amount of video cameras

that are used for surveillance and monitoring systems. Most of that increase is

due to the advances in imagery technology and the decrease in the price of such

equipment. Nowadays, almost every public place has at least a single fixed color

camera monitoring an area with a large field-of-view. In private facilities, as factories

and industrial plants, the number of such devices is indeed much larger, as the

field of view of the cameras tends to be smaller, focusing in a particular spot of

the place, and several cameras are usually placed in the same region. To give an

idea of the increasing size of this market according to a report from Transparency

Market Research from 2016 [1], the video surveillance equipment market worldwide

is expected to reach U$42,810 billions by 2019.

All this surveillance infrastructure generates a huge amount of video data that

has to be analyzed if one wants to extract useful information from it. Most likely

humans will not be able to analyze properly all this data, since there are too many

video streams and most of these systems work without interruption. Therefore,

an alternative way to extract the important information from those videos in an

automatic and reliable manner is of great interest.

In the fields of signal processing and computer vision the detection of anomalies

in video, sequences is a well-known challenging problem. Several algorithms have

been developed to extract and process the significant information from the video
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stream. The automatic surveillance systems present solutions for a wide range of

applications such as personal identification [2], object recognition [3, 4], moving

object detection and tracking [5], and abandoned object detection [6].

The detection of video anomalies is an important subject as the anomalies can be

of various kinds, therefore its application spreads to: detection of moving objects [7]

(e.g. cars, people, animals), detection of abandoned objects [8] (e.g. unexpected

objects in security areas, forgotten apparel in industrial plants), detection of removed

objects [9] (e.g. stolen objects from museums and public areas), or even landscape

change detection [10] (e.g. buildings facade change or street graffiti detection).

This section reviews of several methods in the literature that are designed to

detect anomalies in videos.

When one thinks about how to detect objects using video streams, the most sim-

ple idea that comes to mind is simply to subtract consecutive frames of the video and

try to detect when and where there were significant differences between those frames.

That strategy, although very simple, does not work properly, as explained in [11].

Several factors as camera jitter, wind, illumination changes, weather variations, and

noise create problems in the detection that may lead to false negative (when no

anomaly is detected but it is present in the scene) or false positive detections (when

an anomaly is detected but in fact there is none in the scene).

Instead of using the simple (and not robust) consecutive frame subtraction, most

methods designed to detect video anomalies rely on some form of background mod-

eling or background subtraction. That is, they somehow try to create a modified

version of the image without anomalies that is not subject to any of the problems

that were listed before and then subtract it from the frame to analyze the residue

and detect whether there are anomalies in the present frame.

The following review of the methods in the literature will be divided in two

segments: methods that use fixed cameras and those that perform the detection

from videos with moving cameras. A thorough review of many methods designed to

detect anomalies is available in [12].

1.1.1 Fixed Camera Algorithms

One of the most straightforward strategies for detecting abandoned objects using

background subtraction is presented in [13]. In this work a reference background

model is generated from frames that were labeled as having no objects of interest

and no movement is present in the scene. Then, a buffer of several consecutive

frames is created to model the dynamic background of the scene and create a cur-

rent background model. A dual background subtraction is performed by using the

reference background and the current one. This dual background step is responsible
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for making the algorithm robust to slow illumination changes and smooth modifi-

cations of the background. Finally if there were potential object detections in the

frame, a temporal consistency (the object must be detection throughout several con-

secutive frames) of the object is required for the system to trigger an abandoned

object alarm.

A different approach is presented in [14]. In this work several reference images

(where no anomalies are present) are used to create a model of background by

using a Gaussian distribution in the RGB color space of every pixel. After that,

a background model is composed for every pixel in every new frame of the video

stream, if the pixel value does not match the background model (the verification is

made by using a Mahalanobis distance), an alarm is triggered for the pixel, else if

the pixel value match the background model, the model is updated to cope with the

new frame statistics.

To detect moving objects in a video, the authors of [15] present a simpler version

of the previous method by substituting the Gaussian model of the background by a

simpler median-filtering model. This simpler method is said to reduce the amount of

computation needed to perform the calculation with respect to the previous Gaussian

model. Also, this method uses a classifier to judge whereas the detected anomaly is

a moving object, a shadow, or a ghost (series of connected points detected as motion

by the background subtraction algorithm that does not correspond to real motion of

the video). By classifying the detected anomalies in these categories, this algorithm

is able to be robust against noise and illumination challenges in the video stream.

In the opposite sense, by using more complex yet more robust techniques, the

authors of [16] are able to detect stationary anomalies in scenes while being robust

to small variations in the background (as tree branches movement, water surface

reflections, and small flags in the wind). The algorithm uses a more comprehensive

background model than [14] by applying a Gaussian mixture model (GMM) to

generate the background model. This method allows every pixel to be modeled as

a combination of several Gaussian distributions and if the new pixel matches the

model, the model is updated, whereas if it does not match, an alarm is triggered for

the pixel being processed. The modeling of the background with a GMM enables

the method to cope with small variations of lighting and small movements in the

background, making this method robust to such slight variations in the background.

Another technique that is commonly used in the context of anomaly detection of

video sequences the optical flow [17] analysis. The optical flow allows one to observe

the coherent motion of points between consecutive frames. In [18] this method is

used to extract information concerning the presence of abandoned objects in crowded

scenes. To detect the presence of the object, a background model is generated and

a background subtraction is performed to detect blobs that may contain abandoned
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objects. Later, as the goal of this algorithm is to detect unattended baggages, a

k-nearest neighbours classifier is used to classify the anomaly as being or not a bag.

In the case of positive detection the scene is analysed using optical flow to find the

original owner of the baggage by following the evolution of the coherent motion of

the scene.

Completely different approaches can be used to detect anomalies by classifying if

something is part of the background or an entity of the scene foreground. One case

of neural networks being used for this purpose is presented in [19]. In this work the

neural network is trained to classify every pixel as foreground or background. This

approach needs previous training and is very susceptible to illumination changes and

noise in the video. A different neural-network approach has been developed with the

advances on deep learning. In [20] a LeNet-5 [21] deep network is used to compare

frames from two different videos and detect the presence of foreground anomalies.

A distinct way to deal with the issue of detecting some kind of anomaly in video

streams is to assume that everything in the scene can be statistically predicted from

previous frames. Therefore everything that is not predictable in this way can be

considered an anomaly. One work that presents this kind of algorithm is detailed

in [22]. The aim of the work is to detect the presence of abandoned objects for secu-

rity purposes. The algorithm divides the image in blocks and try to decompose them

using the previous blocks of the video: if a block cannot be decomposed using the

previous ones it is considered as having an anomaly. After selecting the anomalous

blocks the algorithm classifies them to check if there are any security threats in the

environment. A similar approach is presented in [23] where the algorithm divides

the image in blocks and detects movement in each block by performing an incre-

mental PCA (principal component analysis) [24] decomposition over a sequence of

blocks. After the motion detection, a region of interest in the frame is selected as the

blocks containing movement. The blocks that form the region of interest are then

processed to classify the type of anomaly using a support vector machine classifier.

There are even other methods [25] that use techniques based on the robust PCA

method (RPCA) [26] to not only identify similar images, as proposed in the original

paper, but also to perform some sort of background subtraction and therefore detect

anomalies in the video stream.

Table 1.1 summarizes the main techniques employed by each fixed camera

method discussed in this section.

1.1.2 Moving Camera Algorithms

Although the use of automatic anomaly detection using fixed cameras usually yields

good results, as can be seen by inspection the results reported in the reviewed works
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Table 1.1: Fixed camera algorithms and the techniques employed in them.

Method’s Reference Main Technique

WAHYONO [13] Dual background subtraction
GALLEGO [14] Gaussian model
CUCCHIARA [15] Media-filtering model
HASSAN [16] Gaussian-mixture model
BHARGAVA [18] Optical flow
MADDALENA [19] Shallow neural network
BRAHAM [20] LeNet deep neural network
CHANG [22] Statistic foreground dtection
MIEZIANKO [23] PCA
GUYON [25] RPCA

Target
Recording

Object 
Detection

Reference 
Recording

Target
Pre-processing

Reference 
Pre-processing Video 

Alignment
Post-

processing

Figure 1.1: Traditional framework of abandoned object detection using moving cam-
eras.

above, in some surveillance applications the equipment needed to perform the evalu-

ation of all the desired characteristics of the environment may be too expensive to be

attached in a single fixed position and overlook a single section of the environment.

In this case a possible solution is to attach this equipment to a mobile platform that

has some freedom of movement and therefore can cover a greater area.

The use of such moving cameras tends to increase due to the popularization of

moving platforms (e.g. robots, cars, and drones) that perform the surveillance of

large areas employing several sensors (e.g. gases, radiation, etc), and cannot be

installed in fixed positions [27–30].

Most methods present a similar framework to cope with the challenge of detect-

ing video anomalies while using the video stream from a moving camera. Even if

some variations may exist between two different methods, the general outline of an

anomaly detection algorithm using moving cameras consists in recording a refer-

ence video (that is certified to have no anomalies), recording a target video (where

there may be anomalies), pre-processing both videos to comply with the method

requirements, aligning both videos, performing the detection, and post-processing

the results for better performance, as can be seen in Figure 1.1.
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Video Alignment

An important difference between fixed and moving camera methods for detecting

abandoned objects is the presence of two different video streams (reference and

target) that are obtained at different moments. Also, due to the existence of more

than one video, it is now necessary to align both sequences, as can be seen in the

block-diagram in Figure 1.1.

Some works have addressed the task of aligning videos for anomaly detection.

Reference [31] presents a method that aims to align videos obtained from cameras

with equal intrinsic parameters by implementing a divide-and-conquer strategy to

align the videos via the matching of each sequence optical flow. Also, to avoid later

problems while performing the detection, the method proposes the use of a geometric

registration technique with a geometric transformation between the frames using the

fundamental matrix [32] of every frame from both video streams.

A different approach for video synchronization was proposed in [33], where an

image descriptor is used instead of the pixel values of the frames of each video stream,

resulting in less data points. This is proposed because much of the information is not

relevant for the alignment of the video, therefore this method is able to perform it

with much less computation. The method then performs a similarity measurement

with the descriptor of every frame between both videos and align them this way.

Also this method uses external sensors to check the correctness of the proposed

alignment. In this case the external signal is a global positioning system (GPS)

signal that is available along with the video sequences in the dataset used.

Another video alignment algorithm was recently proposed in [34]. It deals with

the alignment of video sequences recorded in different times by moving cameras

that follow a similar path while detecting anomalies. As in the previous work,

in the dataset used to develop this method other sensors are available along with

the video stream. Therefore, to speed up the alignment step, the video stream

is not used to compute the alignment. Instead, an array of diverse sensors that

is synchronously recorded with the video streams is used to compute a similarity

measurement between the signals from reference and target video and then find the

alignment between both videos.

More recently in [35] the authors propose a video alignment algorithm that uses

a sequential implementation of the dynamic time-warping algorithm [36] to find time

correspondences between the video stream of reference and target videos. Differently

from the previous algorithms, this one takes into consideration differences in the

speed of the cameras of the two videos allowing the method to align videos in which

the camera stopped or even changed the direction with much better precision than

the previous proposals. Similarly, this implementation is robust to challenging videos
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with cluttered background and the presence of noise.

Detection Algorithms

Some solutions have been proposed in the last few years to cope with the problem

of detecting anomalies while using videos recorded with moving cameras. A notable

attempt to solve the moving-camera anomaly-detection problem was proposed in [6].

In this work a camera mounted on a car searches for abandoned objects on streets.

To do so an algorithm similar to that in [33] was used to align the reference and

target videos using the GPS signal as an external cue. The frames in this method

were geometrically registered using the Random Sampling Consensus (RanSaC) al-

gorithm [32] on Scale-Invariant Feature Transform (SIFT) descriptors [37]. Also, to

detect the abandoned objects, the registered frames were compared by computing

the Normalized Cross-Correlation (NCC) between the reference and target frames.

Despite the method’s good performance, the need for an external signal to align

reference and target videos limits its usefulness.

The algorithm developed in [11, 38, 39] is able to detect abandoned objects in

a heavily cluttered environment in real-time. Video synchronization is performed

without the use of any external sensor other than the camera by taking advantage

of the a priori knowledge of the camera’s linear back-and-forth trajectory. The

real-time applicability of this method makes it one of a kind. However, similarly

to the method presented in [6] the algorithm’s efficiency is also dependent on the

correct setup of the NCC window size. Furthermore, the requirement of a specific

type of camera movement to perform the video synchronization limits the algorithm

applicability in the case of a more general surveillance scenario.

In another recent approach [40], a camera mounted on a train is used to detect

the presence of objects across the train path. The alignment and geometric reg-

istration techniques (referred to as DeepFlow [41]) used on this method are based

on the matching of features extracted with a deep convolutional neural network.

This algorithm uses the location of the rails to select the region-of-interest (ROI) in

the frame where the algorithm has to search for the anomalous entities, thus avoid-

ing excessive false detections. This method has good performance in the scenario

for which it was designed to operate, but has high computational cost due to the

DeepFlow-based video alignment. It is also hard to generalize to other surveillance

configurations.

More recently, a two-stage dictionary learning approach [42] has been proposed

for the analysis of video sequences. It dispenses with the need of motion estimation,

tracking or background subtraction. The resulting system considers as anomalies

portions of video that are poorly represented by the dictionary. Thanks to the use

of a dictionary to represent the target-video images, and unlike most of previous and
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existing approaches, this algorithm requires neither temporal nor geometric video

alignment. The dictionary construction, however, imposes a latency to the system

that may not be always tolerable.

Yet another method that works in a cluttered environment and is able to detect

anomalies in such scenarios is presented in [8, 43]. This work presents a method to

detect anomalies in videos without the use of any geometric registration in advance

and also requiring only that the reference and target videos are roughly aligned. To

do so the algorithm uses a technique developed in [44] to transform reference and

target videos into a different space and computes a similarity metric between the

frames in that space to detect if there are anomalies in the target frame. To cope

with the challenge of alignment and registration a hierarchical method is proposed

to test some different alignments and rotations between reference and target frames.

A considerably different approach is presented in [45]. In it, a method that

performs a sort background subtraction is proposed by exploring the sparsity of

dense trajectory representations. In this work dense trajectory maps (e.g.: optical

flow) are extracted from a moving-camera video and the matrices that compose

this dense trajectories are decomposed using a singular value decomposition (SVD).

By exploiting the sparsity of the SVD representations of the dense trajectories and

knowing some application priors it is possible to detect the presence of independent

moving objets in the videos.

In the same line of thinking as the previously presented work, the solution pro-

posed in [46] uses sparse decomposition of matrices to detect the presence of anoma-

lies in the video stream. This work decomposes every frame of the reference video

in a low-rank representation and uses this representation to try to represent the

frames from the target stream. By doing so, the algorithm is able to represent the

parts of the target frames that are similar to that of the reference, and is not able to

properly represent the region of the frames where there are anomalies. Therefore the

anomalies would be identified as the residue of the low-rank representation of the

target video frames. The method uses a technique proposed in [47, 48] to create the

low-rank representation of the frames and modifies it to perform the target-frame

decompositions.

With the ever growing applications of deep neural networks some solutions using

those techniques have surfaced in the past few years. In [49] the authors propose

a background subtraction approach based on the application of the deep learning

framework of residual networks using reference and target videos. Although the

method employs several image downsamplings along the network, it is able to out-

put an detection mask with the same dimensions of the original images by employing

different reconstruction methods to restore the original image resolution. Also in [50]

the authors propose a method that uses deep convolutional neural networks to ex-
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tract visual features from frames of the reference and target videos and determine

via fully connected neural networks and random forest classifiers whether there are

or there are not abandoned objects in the scene.

Table 1.2 summarizes the main techniques employed by each moving camera

method discussed in this section.

Table 1.2: Moving camera algorithms and the techniques employed in them.

Method’s Reference Main Technique

KONG [6] Normalized cross-correlation
CARVALHO [11] Normalized cross-correlation
MUKOJIMA [40] Deep-flow + background subtraction
Nakahata [42] Dictionary learning
THOMAZ [8] Subspace projection
CUI [45] Dense trajectory background subtraction
JARDIM [46] Low-rank plus sparse matrix decomposition
CINELLI [49] Deep residual network background subtraction
AFONSO [50] Deep neural network feature classification with random forests

1.1.3 Moving Object Detection in Moving Backgrounds via

Matrix Decomposition

One of the most common applications of the computer vision methods is to detect

moving foreground objects. Some of the state-of-the-art techniques designed to deal

with this task are briefly discussed here.

The transformed Grassmannian Robust Adaptive Subspace Tracking Algorithmt

(t-GRASTA) [51] obtains two matrices (low-rank background model and sparse

foreground) from a set of original images and a geometric transformation (such

as a rotation). In order to do so, it uses an incremental gradient descent (GD)

constrained to the Grassmanian manifold of the estimated subspaces.

The Grassmannian Online Subspace Updates with Structured-sparsity (GO-

SUS) [52] performs the decomposition using a sequential subspace learning algo-

rithm. It applies a structural restriction to the updates on a Grassmannian manifold

based on a group-norm.

The work presented in [53] proposes a sequential RPCA algorithm that uses ge-

ometric transformations for image alignment. Unlike most methods, in [53] these

transformations are not applied on the noisy input samples, but only on the recov-

ered samples.

Translational and rotational incremental principal component pursuit (PCP) [54]

is a method that aims to processes one frame at a time, avoiding the need for batch
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processing and yielding a small memory footprint. It is also capable of dealing with

translational and rotational jitter which makes it more robust than its predecessors.

Motion-Aware Graph Regularized RPCA (MAGR-RPCA) [55] creates a back-

ground model by using a modified version of RPCA to generate a low-rank matrix

from a set of matrices. In order to do so, an optical flow algorithm is used to estimate

the motion, and intra-frame and inter-frame graphs are used to preserve geometric

information in the low-rank matrix estimation.

The Spatiotemporal Robust Principal Component Analysis (SRPCA) [56] pro-

poses the use of a motion mask that separates the pixels clearly belonging to the

foreground. These pixels are labeled as missing data while estimating a temporally

smooth background model from the remaining data.

Comprehensive surveys about these low-rank decomposition for forground/back-

ground separation methods can be found in [57, 58] and implementations of the

algorithms can be found in [59].

Table 1.3 summarizes the main techniques employed by each moving object de-

tection method discussed in this section.

Table 1.3: Moving object detection algorithms using low-rank plus sparse decompo-
siontion and the techniques employed in them.

Method’s Reference Main Technique

t-GRASTA [51] Gradient descent
GOSUS [52] Grassimannian manifold restrictions
sequential RPCA [53] Geometric transformations plus RPCA
PCP [54] Principal component pursuit
MAGR-RPCA [55] Optical-flow motion estimation
SRPCA [56] Motion masks restrictions

1.2 Objectives and main contributions

For the first part, change detection in moving camera videos, our investigation is

centered on the development of novel methods to perform the detection of anomalies

using videos recorded with moving cameras. The framework of the algorithm to be

developed is similar to those that employ two videos acquired at different times to

perform the anomaly detection. As an inspiration for the method to be proposed,

the work in [46] will be used and expanded in a way to allow better performance

and to operate without the need of previous video alignment, nor the use of external

cues or signals to perform the video synchronization.

For the second part, moving object detection in dynamic backgrounds, we aim

to develop methods that expand the capabilities of the current state-of-the-art on
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sparse plus low-rank decomposition methods. We aim to do so by allying these

decompositions to the use of eye-fixation prediction methods. Such methods fo-

cus the attention of the decompositions and avoid the appearance of false positive

detections. In this part the main inspiration to our proposals is the method pro-

posed in [60], which aim to perform the same task by projecting the low-rank matrix

representation into a low-dimensional subspace.

The main contributions of this work are related to the minimization of data

usage in the representation to achieve essentially the same results, while performing

less computations. For the moving camera case, we will also incorporate the time

alignment, that is usually applied to the videos as a pre-processing step, into the

algorithm, while using intrinsic properties of the decomposition matrices. For the

moving object detection case we will propose to use a tri-sparse optimization scheme

to obtain new batch and sequential algorithms with state-of-the art performances.

1.3 Text Organization

In order to organize the text, the following chapter structure is used: Chapter 2

presents the algorithms that were used as inspiration to the development of our

methods for change detection in videos obtained with moving camera. Chapter 3 fea-

tures the developed algorithms to automatically perform change detection in videos

acquired with moving cameras using sparse plus low-rank matrix decomposition.

Chapter 4 discusses the current state-of-the-art on moving foreground detection in

the presence of dynamic background, as well as some algorithms that inspired our so-

lution to this problem. Chapter 5 shows our contributions to the moving foreground

detection in the presence of dynamic background algorithms. Finally Chapter 6 will

summarize the work discussed in this thesis and propose ideas for its continuation.

1.4 Associated Publications

This thesis work for moving object and change detection was carried out by the

author between March 2015 and December 2018 at Federal University of Rio de

Janeiro (UFRJ) and during a research internship at North Carolina State University

(NCSU) between March 2017 and February 2018. The majority of the developed

work has been published in international conferences and in peer reviewed journals.

Some other work that approach the same subject using different techniques was

developed by the author in partnership with other colleagues and is also briefly

discussed throughout this thesis. A list of the most relevant publications from the

author that was developed during this period is shown bellow
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Chapter 2

Review of Change Detection with

Sparse Representation in Moving

Camera Videos

Some of the main inspirations for the development of the present work are the algo-

rithms that explore low dimensional structures in high dimensional spaces while

analysing high dimensional data. By converting the data that lies in a high-

dimensional space into less complex representations one is able to simplify the data

analysis that follows.

This chapter discusses methods that are able to perform background subtraction

by means of representing target videos as a combination of low-rank surrogates of

the reference video. By doing so, one may detect video anomalies as the sparse

residue that was not represented by the low-rank surrogate combination.

This chapter is divided as follows: Section 2.1 presents some of the most widely

used databases for object detection using moving cameras; Section 2.2 presents

the concept of principal subspace analysis (PSA) along with the most traditional

algorithms to solve these problems; Section 2.3 presents the RoSuRe algorithm, a

PSA algorithm that was one of the main inspirations to this work; finally Section 2.4

presents mcRoSuRe, a modification of the RoSuRe algorithm that will be later

modified on the course of this thesis.

2.1 Moving Camera Object Detection Databases

With the goal of testing the performance of automatic anomaly detection algorithms,

some databases were designed and recorded. Most of them address multiple chal-

lenges, as the tracking and recognition of personal and objects in several different

scenarios which are subject to various challenging interferences.
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One of the most famous databases for anomaly detection in security applications

is that of the performance evaluation of tracking and surveillance (PETS) program

(2000-2007) [61]. It contains videos from various scenarios with or without the pres-

ence of people and with a variable number of cameras observing the same area. The

main goal of this database is to evaluate the detection of abandoned and removed

objects in the scene.

Another database created specifically to test algorithms of anomaly detection in

video sequences is the one called imagery library for intelligent detection systems

(i-LIDS) [62]. This database contains videos of 4 different scenarios: abandoned

baggage detection, parked vehicle detection, doorway surveillance, and sterile zone

monitoring. Every video of the database is provided with a ground-truth marked

manually with a description of every event and the location of every moving or static

object.

The changeDetection.net (CDNET) [63] is a database containing videos designed

to test algorithms that deal with six different challenges in anomaly detection: dy-

namic background, camera jitter, detection of shadows, intermittent object motion,

thermal anomaly detection, and a combination of several of those challenges. All

videos have ground-truth labels.

Although several distinct challenges are present in the above mentioned

databases, only a minor part of them has videos that contain significant camera

motion. Even in cases where there are videos with such motion, it is restricted only

to camera jitter or PTZ (pan-tilt-zoom) movement. Some applications that deal with

anomaly detection using moving camera are designed to deal with a different kind

of camera movement (e.g. translational movement).For the moving camera object

detection applications a useful database is the one called video database for aban-

doned objects (VDAO) [64], available at [65]. This database contains over 8 hours

of videos recorded in visually cluttered complex environments of industrial plants.

The database videos contain several challenges as illumination variation, occlusion

of objects, and camera jitter. All videos feature reference and target sequences with

manually marked ground-truth labels.

The VDAO database was recorded using a camera mounted on top of a moving

robotic platform that follows a linear path of about 6 m in a hanging rail at a

height of approximately 2.5 m. The camera is pointed at a cluttered environment

comprising several pipes and valves simulating a scene of interest inside an industrial

facility. Figure 2.1 shows the experimental setup used to record the database. The

database videos are separated in two groups: single and multi objects. The single

object videos have only one abandoned object placed along the camera path, while

the multi-object videos have at least two abandoned objects present in every frame

of the video. Figure 2.2 shows the objects used in the single object videos while
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Figure 2.3 shows the objects featuring the multi-object sequencies.

(a)

(b)

Figure 2.1: General setup of abandoned-object detector and database recording
using a moving camera on a robotic platform. (a) rail placement (b) robotic moving
platform
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(a) (b) (c) (d) (e) (f)

(g) (h) (i)

Figure 2.2: Objects used in the single object videos (scales have been changed for a
better presentation): (a) shoe; (b) dark blue box; (c) camera box; (d) pink bottle;
(e) black backpack; (f) white jar; (g) brown box; (h) towel; (i) black coat.

2.2 Principal Subspace Analisys

When dealing with high-dimensional data one usually wants to find a representation

with a reduced dimensionality that allows the data to be analyzed and stored using

less resources. A common assumption in those cases is that the data was acquired

from a real-world source (e.g. a sensor or a transducer). This implies that it is

most likely subjected to noise and other perturbations, which tend to be reduced

in the low-dimensional model. In this section, we provide a unified framework for

some of the main methods used to project high-dimensional data onto subspaces of

low dimension, which is known as subspace learning or principal subspace analysis

(PSA) [66].

Let X = [x1,x2, · · · ,xn] be an m × n data matrix with xi comprising m-

dimensional observations. The projection algorithms model the data as

X = L + E, (2.1)

where L is a low-rank matrix and E is a sparse residue matrix.

One of the most well-known and widely used algorithms for this type of analysis

is the principal component analysis [24], which employs the singular value decom-

position [67] to find out the orthonormal basis that supports the low-dimensional

data subspace, while casting the remaining noisy components to the residue matrix.

This approach is able to find the optimal subspace that minimizes the projection
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

(l) (m) (n)

(o)

Figure 2.3: Objects used in the multi object videos (scales have been changed for
a better presentation): (a) string roll; (b) bag; (c) white box; (d) lamp-bulb box;
(e) spotlight box; (f) mug; (g) blue coat; (h) wrench; (i) bottle; (j) blue box; (k)
backpack; (l) pink backpack; (m) bottle cap; (n) umbrella; (o) green box.

error of the columns of X and may be expressed as

min
L,E
‖E‖F s.t.

{
X = L + E

rank(L) ≤ r
, (2.2)

where ‖.‖F denotes the Frobenius [68] norm and r is the maximum rank of matrix

L. The PCA, however, is only able to cope with small corruptions in the original

data, since large corruption levels modify the subspace support vectors significantly,

compromising the resulting data decomposition. Also, the maximum rank of the L

matrix must be known a priori, thus requiring some previous knowledge about the

data.

The so-called robust PCA [26] is a refined version of the PCA algorithm that is

able to recover a low-rank matrix L even when the original data matrix X includes

outliers (heavy-tail noise). Note that formulation of RPCA assumes the rank (r)

unknown, and hence an intrinsic property of the underlying model to be unveiled.
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Mathematically the formulation of RPCA may be written as

min
L,E

rank(L) + λ‖E‖0 s.t. X = L + E, (2.3)

where ‖.‖0 is the l0-norm (number of non-zero entries in the matrix) and λ is a

weighting parameter. Although this problem formulation is very simple and effec-

tive, it is an intractable NP-hard problem that cannot be solved for large data sizes.

A relaxed version is often used [26],

min
L,E
‖L‖∗ + λ‖E‖1 s.t. X = L + E, (2.4)

where ‖.‖∗ is the nuclear norm (defined as ‖A‖∗ = tr(
√

AHA), with AH denoting

the conjugate transpose of A) and ‖A‖1 is the sum of the absolute values of all the

entries of A.

2.3 RoSuRe Algorithm

Both PCA and RPCA are able to project the data onto a single subspace. When the

data matrix is better interpreted by the projection onto a union of subspaces of lower

dimensions, however, one may consider the Robust Subspace Recovery (RoSuRe)

algorithm proposed in [47, 48]. This method is able to represent data originally

located in high-dimensional spaces into a union of subspaces (UoS). Unlike some

of the predecessors, it is able to cope with the presence of corrupted data and still

provide good results.

The formal problem formulation is the following: If one considers the union

of subspaces S = ∪Ji=1S i and L1,L2, · · · ,LJ being matrices whose columns lj are

uniformly sampled from S i, with sufficient sampling density, every column lj can

be represented by a linear combination of columns li6=j from the same subspace. In

this formulation, one considers the UoS S = ∪Jj=1S(j) with L being a matrix whose

columns are uniformly sampled from S. We group all the samples from the same

subspace S(j) into matrix L(j) so that

L =
[

L(1) L(2) · · · L(J)
]
. (2.5)

With sufficient sampling density, every column l
(j)
k of L(j) can be represented by

a linear combination of the other columns l
(j)
i , i 6= k from the same subspace. In

this case, one can say that the set of columns of L(j) is self-representative, and it is
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possible to state that

L(j) = L(j)W(j), (2.6)

where W
(j)
i,i , the entry of the W(j) matrix in the i-th column and in the i-th line,

the diagonal, is equal to zero for all values of i.

Differently from the projection onto a single subspace, the projection of the data

onto a UoS allows the data model to cope with a wider range of values. This happens

since in a single subspace all datapoints should be obtainable as a combination of

other datapoints within the subspace, while in a UoS, a given datapoint can be

obtained as a combination of other lying in the same subspace but not necessarily

as the combination of other points from a different subspace in the same UoS, thus

allowing the representation of high dimensional structures in a sparse way. In the

single subspace projection to cope with high dimensional data, the projection matrix

would be nearly full rank, in opposition to the low-rank matrix obtained in the UoS

projection. This flexibility allows the model to store less data and yet display a

powerful representation capability.

As a result, from Eq. (2.5) one can write that L = LW, with

W =


W(1) 0 · · · 0

0 W(2) · · · 0
...

...
. . .

...

0 0 · · · W(J)

 , (2.7)

where, from Eq. (2.6), W
(j)
k,k = 0, j = 1, . . . , J . Note that by observing the underly-

ing structure from W it is possible to infer the subspace structure from L, which is

said to be blockwise low-rank as induced by W.

Let now X be such that it can be represented as an element belonging to the

UoS S added to a sparse residue E. This is equivalent to stating that X can be

decomposed as

X = LW + E, (2.8)

where, from Eq. (2.7), W is blockwise diagonal with Wk,k = 0 for all k, L is

blockwise low-rank, and E is sparse.

The RoSuRe method assumes sparsity both on W (due to its structure) and E

(as it is considered that each Ei is sparse). To perform the decomposition and assure
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the above constraints, the method solves the following optimization problem:

min
W,E
‖W‖0 + λ‖E‖0, s.t.


X = L + E

LW = L

Wi,i = 0, ∀i
, (2.9)

where ‖ · ‖0 represents the number of non-zero entries on the matrix. As this is a

hard non-convex optimization problem, [48] proposes solving a relaxation of it given

by

min
W,E
‖W‖1 + λ‖E‖1, s.t.


X = L + E

LW = L

Wii = 0, ∀i
. (2.10)

Due to the presence of the bilinear term composed by the simultaneous opti-

mization of W and E this problem is clearly non-convex [69]. To deal with that

by using convex optimization methods it is necessary to use some technique like

the alternating direction method of multipliers (ADMM), where the optimization

is performed by minimizing the l1 norm of W and E, alternatively, thus varying

the direction of minimization between every step. This can be further improved by

applying the augmented Lagrangian method (ALM) [69].

Particularly to this application a variation of the ADMM called linearized alter-

nating direction method (LADM) [70] was used instead of the traditional one, due

to its faster conversion. By using this method one can find the solution to the opti-

mization problem by solving a dual problem instead. As stated in Theorem 4 in [71],

if the objective function is lower bounded and the solution exists then the duality

gap is zero, thus the dual problem can be solved to achieve the global solution via

the ALM.

The optimization proposed in Eq. (2.10) can be solved with the use of Algo-

rithm 1. In this and in the subsequent algorithms, the variable µk is the augmented

Lagrange multiplier, ρ is the step used to update µk, η1 ≥ ‖L‖2
2 and η2 ≥ ‖Ŵ‖2

2

are normalizing weights, τα(·) is the soft-thresholding operator for the augmented

Lagrangian multiplier, defined as [72]

τα(x) =


x− α, x ≥ α

0, |x| ≤ α

x+ α, x ≤ −α.

(2.11)

Further details can be found on [48].

The RoSuRe algorithm was proven [47] to work properly on synthetic and real

data created by randomly sampling vectors from UoS and adding sparse corrupting
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Algorithm 1 RoSuRe

Input: Data matrix X ∈ Rm×n, λ, ρ > 1, η1, η2, µ0, W0 = E0 = Y0 = 0, Ŵ0 = I.

while not converged do
k = k + 1
Update W by linearized soft-thresholding:
Lk+1 = X− Ek

Wk+1 = τ λ
µkη1

(
Wk − 1

η1
LT
k+1

(
Lk+1Ŵk − Yk

µk

))
Wii

k+1 = 0
Update E by linearized soft-thresholding:
Ŵk+1 = I−Wk

Ek+1 = τ 1
µkη2

(
Ek + 1

η2
(Lk+1Ŵk+1 − Yk

µk
)ŴT

k+1

)
Update the Lagrange multiplier Y and the augmented Lagrange multiplier µk
Yk+1 = Yk + µk (Lk+1Wk+1 − Lk+1)
µk+1 = ρµk

end while

noise with different signal-to-noise ratios (SNR). The original paper in [47] details

the results of testing with synthetic data.

The method has proven useful for other applications including computer vision

ones, as it was successfully applied to face clustering and surveillance videos for

background subtraction and anomaly detection. As the focus of this investigation

is to use sparse decomposition methods to detect anomalies in video sequencies, the

results of RoSuRe in surveillance applications are very encouraging.

In Figure 2.4 the results of the method for background subtraction in static

camera application are shown. Here the background is modeled into the low-rank

L matrix from the previous frames of the sequence and, as new objects appear,

the decomposition algorithm casts them upon the residue matrix E, separating

that“sparse noise” from the background formed by the previous frames combination.

Yet more encouraging are the results of RoSuRe in moving camera scenarios.

Tests were made using synthetic movement created by simulating panning in the

previous surveillance footages, without considering the parallax effect. Figure 2.5

shows some experimental results of the RoSuRe algorithm that have proven to pass

the proof of concept stage.

Another good feature is the structure of matrix W which, as seen in Figure 2.6,

that W’s structure carries information about the path of the panning camera, giving

a hint that it can be used to align videos.
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Figure 2.4: Background subtraction using RoSuRe for static camera scenario. (Fig-
ure acquired from [48])

Figure 2.5: Background subtraction using RoSuRe for moving camera scenario.
(Figure acquired from [48])

2.4 mcRoSuRe Algorithm

Based on the previously discussed work, reference [46] presents an anomaly detection

algorithm intended to work with videos acquired with moving cameras. As stated

in Chapter 1, the algorithm aims to work with detection of anomalies in video

sequences from moving camera and since its goal is to find static objects in the

scene, the traditional scheme that features acquisition of reference and target videos,

alignment and detection, is used.

Inspired by the application of RoSuRe with the panning surveillance videos, the

work [46] presents a PSA method designed to work with a slowly moving camera that

has mainly translational movement. Because of its inspiration and the target appli-

cation, the method is called moving camera RoSuRe (mcRoSuRe). The assumption
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(a) (b)

Figure 2.6: Coefficient matrix W. (a) without rearrangement according to the
position of the camera (b) with rearrangement according to the position of the
camera. (Figure acquired from [48])

of slow movement of the camera is important as it is necessary that consecutive

frames of the video share approximately the same low-rank representation.

The first step of the algorithm consists in the exact application of RoSuRe in

the reference video Xr, which is decomposed as

Xr = LrWr + Er, (2.12)

Er = Xr − Lr, (2.13)

where Lr is the low-rank1 representation of Xr and Er is its sparse complement. Note

that Eqs. (2.12) and (2.13) imply that LrWr = Lr. The corresponding optimization

problem then becomes

min
Wr,Er

‖Wr‖1 + λ‖Er‖1, s.t.


Xr = Lr + Er

LrWr = Lr

Wrii = 0, ∀i
. (2.14)

In the absence of any anomalous content, the corresponding frames in both the

reference and target videos in the surveillance system depicted in Fig. 1.1 share the

same low-rank representation. Therefore, one can use the low-rank representation

1The self-representative matrix Lr is guaranteed to be low-rank for a single subspace. For a
UoS, as presented in this case, it is usually low-rank, but there may be cases where the construction
of a specific UoS may not lead to a low-rank matrix Lr. Nevertheless, as for making the notation of
the methodology compatible with that of previous works, we will refer to Lr as either “low-rank”
or “self-representative” matrix interchangeably.
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Lr of Xr to represent the target video Xt such that

Xt = LrWt + Et, (2.15)

with Wt and Et both being sparse matrices, to which the corresponding optimization

is

min
Wt,Et

‖Wt‖1 + λ‖Et‖1, s.t. LrWt = Xt − Et. (2.16)

By modifying the original RoSuRe algorithm [48], the optimization problem in

Eq. (2.16) can be solved as summarized in Algorithm 2.

Algorithm 2 Sparse representation of X given the low-rank representation L

Input: L, X, λ,ρ > 1, η1, η2, µ0, W0 = E0 = Y0 = 0.
while not converged do
k = k + 1
L′k+1 = X− Ek

Wk+1 = τ λ
µη1

(
Wk − 1

η1
LT
(
LWk − L′k+1 + Yk

µk

))
Ek+1 = τ 1

µη2

(
Ek − 1

η2

(
LWk+1 − L′k+1 + Yk

µk

))
Yk+1 = Yk + µk

(
LWk+1 − L′k+1

)
µk+1 = ρµk

end while

Solving the problem in Eq. (2.16), all the anomalous information in Xt that

could not be represented from LrWt are cast upon Et. Actually, there are in Et

other artifacts (such as high-frequency components not representable by the low-

rank matrix Lr) that are not related to the anomalies of interest. Those artifacts,

however, are indeed supposed to be present in matrix Er. Therefore, one can remove

these artifacts from Et by performing an additional decomposition of this matrix

using Er as its low-rank component, as given by

Et = ErWe + Ee, (2.17)

such that the final residue matrix Ee contains only the anomalies of interest in

the target video. To allow such representation, one has to perform the following

optimization

min
We,Ee

‖We‖1 + λ‖Ee‖1, s.t. ErWe = Et − Ee. (2.18)

A summarized version of the complete moving-camera RoSuRe algorithm is pre-

sented in Algorithm 3. The optimizations in each line are described in detail in

Algorithms 1 and 2.

Figure 2.7 shows some of the results obtained with mcRoSuRe method. From
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Algorithm 3 Moving-camera RoSuRe algorithm

Require: Xr, Xt

minWr,Er ‖Wr‖1 + λ‖Er‖1, s.t.Xr = Lr + Er, LrWr = Lr, Wrii = 0
minWt,Et ‖Wt‖1 + λ‖Et‖1, s.t.LrWt = Xt − Et

minWe,Ee ‖We‖1 + λ‖Ee‖1, s.t.ErWe = Et − Ee

this figure, one can easily see that the algorithm has a good performance when the

anomalies to be detected using a moving camera are abandoned objects in visually

cluttered environments.

Figure 2.7: Experimental results (single frames of matrices Xr, Xt, Lr, Er, Et, and
E) using the low-rank representation proposed in [46] for 4 different abandoned-
object scenarios: (a) pink bottle; (b) backpack + wrench + box; (c) backpack +
green box + mug + string roll; (d) umbrella + bottle + bottle cap + mug. (Figure
acquired from [46])

2.5 Summary

This chapter presented a view of the current state-of-the-art on change detection

algorithms using sparse representation. Some of the most well known datasets

for abandoned object and change detection were presented along with the VDAO

dataset, which has some unique characteristics that make it the best choice for this
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thesis experiments.

A brief overview on the most well-known PSA algorithms was presented in Sec-

tion 2.2 which led to the description of the RoSuRe method, that is able to project

the data into a UoS, instead of a single subspace as in most PSA methods. Later,

in Section 2.4 the mcRoSuRe method was presented. This method, based on the

RoSuRe, is capable of extending the PSA capabilities of the RoSuRe method and al-

low the application of such method in the traditional framework for moving camera

object detection.

In the next chapter our contributions on change detection using sparse represen-

tation using moving cameras will be presented. Our proposals extend and improve

the capabilities of the mcRoSuRe method allowing it to be executed in feasible time.
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Chapter 3

Contributions to Change

Detection with Sparse

Representation

Both algorithms discussed in Chapter 2 have shown to be very effective on their

target applications that are background subtraction for static surveillance videos for

RoSuRe [47, 48] and anomaly detection on videos acquired from moving cameras

for mcRoSuRe [46]. Besides the important results presented in the articles that

introduce each of the methods, it is possible to see that both of them have severe

limitations that do not make them able to perform in the traditional anomaly-

detection frameworks, achieving near real-time performances.

The obvious drawback from RoSuRe is that the method is not prepared to deal

properly with many kinds of moving background nor is able to perform adequately

with the traditional framework of moving camera anomaly detection that was pre-

sented in Chapter 1, since the algorithm’s structure only supports a single video

stream.

The mcRoSuRe was proposed to adapt the RoSuRe method to the traditional

framework of moving camera anomaly detection. But as the authors affirm in the

original paper [46] the method is too heavy to perform for large videos, like those

usually used in the surveillance schemes. Also it still relies on external methods

to assure that the target video field-of-view (FoV) is completely comprised on that

of the reference video. For this reason the authors of mcRoSuRe have performed

tests to assess the quality of detection of their algorithms only on small chunks of

reference and target videos featuring about 70-frame target videos and 100-frame

reference videos of 320×180 [46].

In this chapter several experiments that were done aiming to improve the effi-

ciency of the methods will be presented. They are presented in the way the algo-
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rithms were developed in a historical and incremental approach.

In the video alignment techniques, several attempts are made while trying to

detect the best way to use the mcRoSuRe matrix Wt to extract the temporal infor-

mation that allow reference and target videos to be synchronized without the use

of any other external information, as that provided by peripheral sensors. In the

preprocessing part, two different approaches will be used to transform the videos be-

fore the beginning of the algorithm while correcting some differences between both

videos and allowing better correspondence between their frames. In the section re-

lated to speed-up techniques, the knowledge acquired in the video alignment part of

the work will be used to reduce the reference video allowing the algorithm to work

with less data, thus speeding it up by a great amount. Finally, a post-processing

technique will be discussed to improve the results of the detection residue matrices.

This chapter is organized as follows: Section 3.1 presents the mcRoSuRe-TA

algorithm, that was initially presented in [73], and that implements a new version

of the mcRoSuRe algorithm with intrinsic video time alignment; Section 3.2 in-

troduces further modifications to mcRoSuRe-A, originally developed in [74], that

accelerate the algorithm to near real-time performance; Section 3.3 shows a compu-

tational complexity analysis for the RoSuRe algorithm family methods, showing the

superior performance of the proposed algorithms; Section 3.4 presents the experi-

mental comparison between the proposed methods and some of the state-of-the-art

methods; finally Section 3.5 presents our conclusions about this chapter.

3.1 mcRoSuRe-TA

3.1.1 Video Alignment

In this section some experiments that were performed aiming to extract information

from the raw videos matrix X and the combination matrix W of the mcRoSuRe

method to perform the video synchronization will be described. The experiments

will be presented in the following order:

� Attempt to use plain mcRoSuRe Wt matrix for video alignment;

� Check how the temporal downsampling of the reference impacts the ability to

find correspondences between reference and target videos;

� Detection of camera direction changes using the Wt matrix;

� Detection of camera direction changes in target videos using the Wt matrix

and reference videos that do not have camera direction changes;
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� Localization of target videos in large reference videos using mcRoSuRe Wt

matrix;

� Localization of target videos in large reference videos using a modified version

of Wt matrix;

One of the first attempts during this investigation was to explore the possibility of

using the plain mcRoSuRe matrix W as a feature to perform the alignment between

reference and target videos. This idea came from the observation of the W matrix’s

structure from RoSuRe in [48] for the moving camera experiment as depicted in

Figure 2.6. Some early experiments were performed using small reference and target

videos of 320×180 pixels per frame. The reference videos were about 200-frames long

and the target videos were 70-frames long.

For the following experiments we employed videos from the VDAO [65] database,

which is described in Section 2.1. The videos feature translational camera movement

and eventually direction changes.

Figure 3.1 displays the structure of the Wt matrix in this experiment. It is

possible to see that the organization of the weights in this matrix supports the idea

of using it for video alignment as the region from which each frame was extracted

is clear in the observed matrix. Since the high values of in the Wt represent the

contribution of a given frame in the reconstruction of another frame, locating which

frames contribute the most to the reconstruction of the frames of the target video

allows one to infer a rough alignment between reference and target video.

The second test performed was about the effects of downsampling the reference

video. This investigation intended to find out if even with downsampled reference

videos the target frames could be correctly reconstructed and find out how the

matrix Wt would appear in such cases. In this experiment reference and target

videos originally had a similar number of frames, around 400.

Figure 3.2 shows the Wt matrices that resulted from those experiments. It is

possible to note that even with large downsampling rates (the reference videos were

temporally downsampled with 1:1, 5:1, and 10:1 ratios) the Wt matrices still possess

good spatial correspondences. This conclusion drawn from this experiment was a

seed to a pre-processing idea proposed later.

Another experiment was performed intending to find out if it was possible to de-

tect changes in the direction of movement of the target video. For this investigation

reference and target videos of similar length were used, both reference and target

videos feature changes in the direction of the camera movement. Here, the reference

videos are only a few frames longer to insure that the target FoV is contained in the

reference one. Also, in this test, the behaviour of the Wr matrix was observed.

The analysis of the Wr and Wt matrices in Figure 3.3 shows that it is possible
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Figure 3.1: Matrix Wt generated with mcRoSuRe method. Brighter pixels denote
higher values in the matrix. The horizontal dimension corresponds to the target
video frames and the vertical dimension to the reference video frames. The region
from which the frames from the reference video were taken to reconstruct the target
frames can be seen here.

to detect the position (in frames) where the direction change happened. In these

images the “X”-like structures come from the fact that the both before and after

the direction change in the video the camera covers the same path, therefore pre-

senting similar FoV. As a consequence frames from both paths contribute for the

reconstruction of frames in the other path, hence the symmetric structure in the

Wt matric. It is clear, however, that an accurate assessment of the turning point

cannot be made due to the abundance of high values on the Wt matrix around that

position. In contrast, when observing the Wr matrix, the change of direction in the

reference video can be detected with much greater accuracy.

Another important conclusion that could be drawn from the analysis of the Wr

and Wt matrices in Figure 3.3 is that it is only necessary that the reference video

has one passing in the scene, since in a single passing in the scene the camera

covers completely the field-of-view, therefore we will have all the frames available

to reconstruct the target video. The multiple passings of the reference video only

contributes to the increase of the computational complexity in the algorithm (as it

is dependent of the size of Xr) and makes the attempt of using matrix Wt to align

reference and target videos more challenging.

With those analyses in mind the test was repeated using reference videos that

had no direction change. Figure 3.4 shows the results. The behaviour of the Wr
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(a) 1:1 (b) 5:1 (c)
10:1

Figure 3.2: Matrices Wt generated with the mcRoSuRe method while downsam-
pling the reference videos. (a)1:1 downsampling ratio. (b)5:1 downsampling ratio.
(b)10:1 downsampling ratio. Brighter pixels denote higher values in the matrices.
The horizontal dimension corresponds to the target video frames and the vertical
dimension to the reference video frames. The region from which the frames from
the reference video were taken to reconstruct the target frames can be seen here.

and Wt matrices in this experiment reaffirms the conclusions presented before. The

localization of the turning point in the target videos can be performed with more

accuracy using this setup. On the other hand, the matrix is still not sharp enough

and therefore the synchronization by inspecting matrix Wt is still not solved.

After performing several tests using reference and target videos that had no more

than 400 frames new experiments were designed. Now reference videos of about 900

frames and target videos of about 100 frames were used. The goal of those tests was

to detect the region in the reference videos that corresponded to the target ones.

Again Wt matrix was to be used to extract the spatial information. The idea was

to find, for every column of Wt matrix, its largest value and get the correspondence

between reference and target videos from that. Figure 3.5 shows the results of these

experiments.

Although it is possible to perceive up to some precision the region in refer-

ence video that corresponds to the target sequence, the method of selecting the

columnwise maximum of Wt matrix fails with high probability, therefore the method

is not suitable for locating the target background from the reference video.

One of the main reasons behind the failure to locate the frame correspondence

between reference and target videos is that the high frequency components of the
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(a) 1:1 (b) 5:1 (c)
10:1

(d) 1:1 (e) 5:1 (f)
10:1

Figure 3.3: Matrices Wt generated with the mcRoSuRe method while downsam-
pling the reference videos to test the localization of turning points (detection of
moving direction changes). (a)Wr matrix 1:1 downsampling ratio. (b)Wr matrix
5:1 downsampling ratio. (c)Wr matrix 10:1 downsampling ratio. (d)Wt matrix
1:1 downsampling ratio. (e)Wt matrix 5:1 downsampling ratio. (f)Wt matrix 10:1
downsampling ratio. Brighter pixels denote higher values in the matrices. The hori-
zontal dimension corresponds to the target video frames and the vertical dimension
to the reference video frames. The frames where the moving direction changes can
be found in every matrix up to some precision.
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(a) 1:1 (b) 5:1 (c)
10:1

(d) 1:1 (e) 5:1 (f)
10:1

Figure 3.4: Matrices Wt generated with the mcRoSuRe method while downsampling
the reference videos to test the localization of turning points (detection of moving
direction changes). Now reference videos do not change movement direction. (a)Wr

matrix 1:1 downsampling ratio. (b)Wr matrix 5:1 downsampling ratio. (c)Wr

matrix 10:1 downsampling ratio. (d)Wt matrix 1:1 downsampling ratio. (e)Wt

matrix 5:1 downsampling ratio. (f)Wt matrix 10:1 downsampling ratio. Brighter
pixels denote higher values in the matrices. The horizontal dimension corresponds
to the target video frames and the vertical dimension to the reference video frames.
The region from which the frames from the reference video were taken to reconstruct
the target frames can be seen here.

reference video are important to make the precise correspondences between both

videos. Since matrix Lr, that is used to decompose the target video and is related

with the distribution of Wt, is composed only by low-frequency components of Xr,
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(a) (b) (c) (d) (e) (f)

Figure 3.5: Experiment to locate target videos inside reference ones. (a),(c),(e) Wt

matrix. (b),(d),(e) Columnwise maximum from Wt matrix. Brighter pixels denote
higher values in the matrices. The horizontal dimension corresponds to the target
video frames and the vertical dimension to the reference video frames. It is possible
to perceive up to some precision the region in the reference video that correspond to
the target. This process, however, it is not accurate, and the method of maximum
location sometimes fail.

it may not be the ideal input to use in this application.

If the above assumption is correct, a possible solution is to use, in place of the

mcRoSuRe Xt decomposition, the following proposal

Xt = XrWt + Et. (3.1)

In this equation the problem with high-frequency terms is solved. An example of

Wt matrices obtained for some videos using the new decomposition proposal instead

of that from mcRoSuRe is shown in Figure 3.6. It can be seen in this example, as
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compared to the results shown in Figure 3.5, that the localization becomes easier and

the maximum yields a better estimate of the correspondences between the frames

of both reference and target videos.

(a) (b) (c) (d) (e) (f)

Figure 3.6: Experiment to locate target videos inside reference ones using the newly
proposed decomposition of Eq. 3.1. Using the proposed decomposition instead of
that from the mcRoSuRe method. (a),(c),(e) Wt matrix. (b),(d),(e) Columnwise
maximum from Wt matrix. Brighter pixels denote higher values in the matrices.
The horizontal dimension corresponds to the target video frames and the vertical
dimension to the reference video frames. The detection with the newly obtained Wt

shows the improvement in the capacity of finding the correspondences between the
frames of reference and target videos.

After analysing those experiments the newly proposed decomposition scheme

was selected as being the most suitable for the video alignment, since it presents

the sharper looking Wt matrix, thus allowing a more precise alignment between

reference and target videos.
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3.1.2 Pre-processing

One of the steps of the traditional framework on moving-camera anomaly detection

is the pre-processing stage. There is a variety of methods available for the pre-

processing of videos. In this work some techniques were investigated intending to

make the reference and target videos more similar to each other so that the algorithm

would not make false detections in the case of illumination variation of even small

irrelevant artifacts.

Two experiments were performed to test the best way to pre-process the video

data:

� Global video illuminance normalization;

� Frame-by-frame video illuminance normalization;

The first attempt was to normalize of the variance of the whole video, using an

average of every frame luminance. To do so for each entry xi,j in the i-th line j-th

column of the X m× n video matrix for both reference and target video we did:

xi,j =
xi,j − 1

m·n
∑m

i=1

∑n
j=1 xi,j

maxi,j xi,j −mini,j xi,j
. (3.2)

Some tests were performed to assess the validity of this approach. The results

are depicted in Figure 3.7. It is possible to note in these results, that the proposed

pre-processing normalization yields better results than the original ones, depicted in

Figure 3.6, as the Wt matrix becomes more sparse and the correspondence between

reference and target frames more precise.

The main reason behind the improvement obtained by the use of this method is

that by normalizing the luminance of each frame one is able to correct some minor

illumination differences between reference and target videos. This makes both videos

more similar and therefore allows the algorithm to find better correlations between

the frames of both videos.

Another version of the pre-processing technique that could be used to improve

the detection results is to perform a frame-by-frame luminance normalization. In

this approach for each entry xi,j in the i-th line j-th column of the X m × n video

matrix for both reference and target video we did:

xi,j =
xi,j − 1

n

∑n
j=1 xi,j

maxj xi,j −minj xi,j
(3.3)

Figure 3.8 shows the results of the experiments concerning this pre-processing

technique. In the figure it is possible to note that the Wt matrix becomes more

sparse and thus the correspondence between frames from reference to target videos

becomes sharper and more precise than the early approach. This is due to the fact
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(a) (b) (c) (d) (e) (f)

Figure 3.7: Experiment to locate target videos inside reference ones (using whole
video luminance normalization). (a),(c),(e) Wt matrix. (b),(d),(f) Columnwise
maximum from Wt matrix. Brighter pixels denote higher values in the matrices.
The horizontal dimension corresponds to the target video frames and the vertical
dimension to the reference video frames. The detection with the newly obtained Wt

shows that the correspondence between the frames from both videos becomes more
precise and Wt becomes more sparse than the approach without pre-processing.

that the amount of light in the scene is dependant of the part of the environment.

Therefore, when one uses a frame-by-frame normalization this illumination change

is taken into account. This was considered the be the best normalization set-up

between those considered and will, therefore, be used in the proposed algorithm.

3.1.3 Speed-up Techniques

Since the proposed algorithm uses large matrices in its computations and performs

several matrices additions and multiplications it is expected that the bottleneck

for the algorithm’s processing speed is the dimension of the matrices used in the

multiplications. In this section we aim to reduce the size of the reference matrix so

that the resulting multiplications are smaller, therefore the algorithm is able to run

faster.

The first step of this work looked for features to refine the Wt matrix. The modi-

fied approach shows a better correspondence between the target and reference video,

allowing one to improve the localization of important frames from the reference video

to represent the target. The following step investigated a way to use this advantage

to ease the processing and allow the method to run with less computational effort.

The algorithm originally proposed in [46] uses the whole Xr data matrix as a

38



(a) (b) (c) (d) (e) (f)

Figure 3.8: Experiment to locate target videos inside reference ones using the pro-
posed frame-by-frame luminance normalization. (a)Wt matrix. (b)Columnwise
maximum from Wt matrix. (c)Wt matrix. (d)Columnwise maximum from Wt

matrix. (e)Wt matrix. (f)Columnwise maximum from Wt matrix. Brighter pixels
denote higher values in the matrices. The horizontal dimension corresponds to the
target video frames and the vertical dimension to the reference video frames. The
detection with the newly obtained Wt shows that the correspondence between the
frames from both videos becomes more precise and Wt becomes more sparse than
with the previous pre-processing technique.

search space to obtain the frames that will be used to decompose the frames from

Xt. After analysing the Wt matrix one can notice that, if the reference video has

more frames than the target (that is a common scenario) the algorithm is performing

unnecessary work. Therefore, to allow the algorithm to process less content and yield

similar results, an alignment step was proposed before the traditional algorithm.

To perform this step the decomposition presented in the previous section is to be

performed as the first step of the algorithm, just after the video normalization. After

the decomposition, the columnwise maximum from the Wt matrix is found.Then,

one can select the region from the Xr reference matrix that shall be used in the rest

of the algorithm by cropping matrix Xr using matrix Wt as a guide to form a new

simpler matrix that will be called X′r matrix.

In the X′r matrix only the frames that correspond to the target video are present,

thus there are fewer columns in X′r than in Xr, what will greatly reduce the resulting

computational complexity. Figure 3.9 shows the difference between Wt matrices

obtained with X′r and Xr. It is obvious in the figure the difference between both

matrices, as the proposed X′r has to find correspondences between much less frames.

In the experiment depicted in the figure, the original Wt is a 200×5535 matrix and
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the new Wt is 200× 262 as some extra frames are kept before and after the region

of interest for assurance.

After composing matrix X′r and performing again the decomposition in Eq. (3.1),

one obtains a matrix W′
t and a residual E′t. The resulting W′

t will look somewhat

like Figure 3.9(b).

As in the original mcRoSuRe scheme, after performing the decomposition and

obtaining the E′t matrix, one then has to perform the decomposition of E′t obtained

from Eq. (2.15) with E′r matrix (using Eq. (2.12) with X′r matrix). Therefore, in the

newly proposed scheme, besides the step in Eq. (3.1), three more steps are needed

X′r = L′rW
′
r + E′r, (3.4)

Xt = X′rW
′
t + E′t, (3.5)

E′t = E′rWe + Ee. (3.6)

One example of the resulting residue matrix E′t side by side with E′e is shown

in Fig. 3.10.

The proposed scheme implements a modification in the mcRoSuRe method that

incorporates the alignment step in the detection. Using the proposed method ob-

viates the need of an external temporal alignment step, usually present in the tra-

ditional moving-camera anomaly detection framework, as it performs said temporal

alignment in its first step by cropping the reference video matrix Xr based on the in-

spection of the Wt matrix. The four step algorithm that is proposed is summarized

in Algorithm 4. This method was published in [73] and is called mcRoSuRe-Time

Alignment (mcRoSuRe-TA).

Algorithm 4 Object Detection Using Proposed mcRoSuRe-TA

minWt,Et ‖Wt‖1 + λ‖Et‖1, s.t.Xt = XrWt + Et,
Crop reference frames of interest based on Wt matrix. Create X′r.
minW′

r,E′r ‖W′
r‖1 + λ‖E′r‖1, s.t.X′r = L′r + E′r, L′rW

′
r = L′r, W′

ri,i = 0
minW′

t,E′t ‖W′
t‖1 + λ‖E′t‖1, s.t.X′rW

′
t = Xt − E′t

minWe,Ee ‖We‖1 + λ‖Ee‖1, s.t.E′rWe = E′t − Ee

3.1.4 Post-processing

As the pre-processing step, the post-processing has been commonly used in the

traditional organization of the moving-camera anomaly detection algorithms. This

step is responsible for formatting the output of the algorithm to yield the best

possible results.
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(a) (b)

Figure 3.9: By using Wt in Eq. (3.1) one can select frames of the reference video that
correspond to the target video frames and create a smaller reference matrix X′r that
contains only the relevant reference frames for processing the target frames. Using
such a smaller reference sequence saves a lot of computation. (a) Represents the Wt

obtained using the whole reference matrix Xr (b) Represents the Wt obtained using
the cropped version of the reference matrix X′r
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(a) Residue matrix E′t. (b) Residue matrix Ee.

Figure 3.10: There are fewer undesired artifacts in the residue matrix Ee when
compared with E′t.

Until this point the algorithm outputs have shown good results in detecting the

anomalies in the videos. A common problem has been the pose of the camera that

changes from reference to target videos and make the algorithm to detect some high

frequency artifacts which could not be removed by the use of the last decomposition

of E′e.

A possible way to try to solve these problems is to apply a morphological filtering

in the output of the algorithm trying to eliminate the very thin lines that are caused

by the geometrical mismatching between the frames of reference and target videos.

The most simple form of dealing with that task is to apply a morphological opening

in the frame using a very small structuring element (possibly a disk of a few pixels).

The results of some tests involving this technique can be seen in Figure 3.11. In

this figure it is possible to note that the impact of the artifacts is reduced by a great

amount and the object is kept very much visible. There is, however, a drawback in

the use of this technique that the object (or any anomaly) becomes more blurred.

Nevertheless, this problem is not very severe since the residue image that outputs

from the algorithm can be used as a detection mask after the end of the algorithm,

thus a threshold can be applied to the output image to create a binary mask of

detection.

3.1.5 Fast Subspaces Selection Interpretation

The original mcRoSuRe formulation does not require a precise frame-by-frame syn-

chronization of the reference and target videos, but only that the area covered by

the target video is contained within the area covered by the reference video excerpt.

This is clear from the analysis of Eq. (2.12), where target-video data matrix Xt

can be reconstructed by Lr, the low-rank component of the reference video, up to a
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(a) (b)

Figure 3.11: Ee matrices before and after the application of the morphological open-
ing. It is possible to note that the thin artifacts fade away while the object remains
visible.

sparse error Et. Using the modifications proposed in this section, which were origi-

nally introduced in the mcRoSuRe-TA paper [73], one could reduce the number of

columns of Lr to include only those corresponding to the exact portion of the target

video under analysis, great computational savings could be obtained. This is the

same as saying that the UoS search space in the optimization problem described in

Eq. (2.16) is restricted to a limited number of relevant subspaces.

Before mcRoSuRe-TA, the way of selecting these reference frames of interest

is to observe the resulting Wt matrix in Eq. (2.15). This required, however, the

computationally expensive implementation of the first two steps of the mcRoSuRe

algorithm described in Eqs. (2.14) and (2.16), that are detailed in Algorithm 3.

The proposed way to avoid this issue was to precompute Wt by representing the

frames from the target video not as a combination of the low-rank representations

of the reference frames Lr, but as a combination of the actual reference frames Xr.

This proposition allows the construction of a version of the Wt matrix without

the need to find the low-rank representation of the Xr matrix. This is, indeed,

the most time costly step of the mcRoSuRe algorithm as will be shown later in

the experimental results section. To perform this precomputation step one should

compute the decomposition below [73]

Xt = XrWt + Et. (3.7)

This new added step requires solving the optimization problem defined by

min
Wt,Et

‖Wt‖1 + λ‖Et‖1, s.t. Xt = XrWt + Et, (3.8)

whose implementation is summarized in Algorithm 5.

Selecting from Xr only the frames that correspond to the portion of the target

video Xt being analyzed, one can execute the optimization steps represented by
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Algorithm 5 Decomposition of Xt using Xr instead of Lr.

Input: X′r, Xt, λ, ρ > 1, η1, η2, µ0, W0 = E0 = Y0 = 0.
while not converged do
k = k + 1
X′r(k+1) = Xt − Ek

Wk+1 = τ λ
µkη1

(
Wk − 1

η1
XT
r

(
XrWk −X′r(k+1) + Yk

µk

))
Ek+1 = τ 1

µkη2

(
Ek − 1

η2

(
XrWk+1 −X′r(k+1) + Yk

µk

))
Yk+1 = Yk + µk

(
XrWk+1 −X′r(k+1)

)
µk+1 = ρµk

end while

Eqs. (2.14), (2.16), and (2.18), replacing Xr by a much smaller X′r matrix, thus

reducing the computational cost associated to the resulting algorithm.

3.2 mcRoSuRe-A Algorithm

As stated before, the mcRoSuRe algorithm shows great performance in the detection

of abandoned objects in a cluttered environment, with a good detection performance

and a reduced false-positive rate, as shown in [73]. However, the algorithm is compu-

tationally intensive and is therefore not suited for real-time applications. In fact, the

computational complexity of the mcRoSuRe algorithm increases significantly with

the size of the videos being analyzed (see Section 3.3 for a precise analysis). This

explains the small video excerpts (70-frame long videos of 320 × 180-pixel frames)

processed in [46]. To allow the reduction on the execution time of the algorithm,

one may take advantage of some of its intrinsic properties concerning the resulting

data representation. In this section new accelerating techniques that benefit from

this innate representation, in addition to those introduced in the previous section

and in [73], and modify the initial method are discussed.

3.2.1 Matrix Downsampling

The mcRoSuRe-TA [73] algorithm is able to reduce the amount of computation

needed to perform the reconstruction of the target frames by reducing the number

of subpaces where one should search for the correspondences of the reference frames.

However, the proposed first alignment step of the algorithm became the more com-

putationally complex part of the algorithm, since it is the only step to deal with

large data structures that depends on the size of the reference videos, which are

usually large.

In this section we propose to further reduce the computation complexity in this

costly first step. To do so one should note that all the data lying in one of the
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subspaces is considered to be similar, which can be understood when one accepts

that a frame can be reconstructed by a low-rank representation of the reference

videos. Therefore, it is expected that the error corresponding to represent a frame

(column of video matrix) by another one inside the same subspace is expected to

be smaller that the representation of the same frame by another, coming from a

different subspace. Indeed, one could propose to use a different representation of

the reference data matrix where a smaller number of frames lie in each subspace, and

yet attain an equivalent alignment in the algorithm first step. This can be achieved

by performing a uniform temporal downsampling of the original reference video,

yielding a smaller, yet representative, reference data matrix Xds
r . If one observes

the Wt matrices obtained by the decomposition performed by Eq. (2.16) with the

original Xr and with Xds
r it is possible to observe that the width of Wt matrix

computed with Xds
r is very much reduced in comparison with that obtained with

the original Xr matrix. Nevertheless, the interval that relates to the frames of the

target video is still clear, allowing a precise selection of the reference frames used

to decompose the target video. Fig. 3.12 shows an example of the Wt matrices

generated using the original Xr and decimated-in-time Xds
r .

(a) (b)

Figure 3.12: Example of resulting Wt matrices from Eq. (3.1) using: (a) complete
reference data matrix Xr; (b) downsampled-in-time reference matrix Xds

r .

From this figure, one can readily see the size discrepancy between the two ap-

proaches, which translates in a much reduced computational effort for the latter.

Note that X′r corresponds to an interval of Xr; Xds
r is only used to determine the

limits of this interval.

3.2.2 Proposed Algorithm

With the addition of the proposed pre-processing step, that aligns the reference

and target videos using a preliminary decomposition, the accelerated version of the

mcRoSuRe approach becomes as summarized in Algorithm 6 and is called mcRo-

SuRe Accelerated (mcRoSuRe-A).

The proposed mcRoSuRe-A is similar to the previous mcRoSuRe-TA algorithm

since all the steps are the same except the first one, that in the proposed framework

is able to be performed in a fraction of the time, while also attaining the same

results. It will be shown in the next section that the proposed modifications to the
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Algorithm 6 mcRoSuRe - Accelerated

Downsample reference video to create Xds
r .

minWt,Et ‖Wt‖1 + λ‖Et‖1, s.t.Xt = Xds
r Wt + Et,

Crop reference frames of interest based on Wt matrix. Create X′r.
minW′

r,E′r ‖W′
r‖1 + λ‖E′r‖1, s.t.X′r = L′r + E′r,, L′rW

′
r = L′r, W′

rii = 0
minW′

t,E′t ‖W′
t‖1 + λ‖E′t‖1, s.t.X′rW

′
t = Xt − E′t

minWe,Ee ‖We‖1 + λ‖Ee‖1, s.t.E′rWe = E′t − E′e

original mcRoSuRe are capable of reducing the computations and yet produce the

same results.

3.3 Computational Complexity Analysis

We now consider the number of arithmetic operations required to implement the

different versions of the mcRoSuRe algorithm discussed in Section 2.4. For the

calculation of the number of computations, the numbers of additions and multipli-

cations were obtained from Algorithms 1, 2, and 5. For this analysis, let Nr and Nt

be the numbers of R×C-pixel frames in the reference and target videos, respectively,

and let P = RC be the number of pixels per frame, as indicated in Table 3.1.

Table 3.1: Variables related to the assessment of the computational complexity of
the algorithms.

Variable Related quantity

P Total number of pixels in each frame
Nr Number of columns (frames) in Xr

Nt Number of columns (frames) in Xt

Nds
r Number of columns (frames) in Xds

r

N ′r Number of columns (frames) in X′r

The RoSuRe method, described in Algorithm 1, operates on Nr × P matrices,

where each iteration requires

A(Nr, P ) = 2N2
r + 5PNr (3.9)

additions and

M(Nr, P ) = 4PN2
r + 2N2

r + 3PNr + 7 (3.10)

multiplications, which, in practice, is dominated by the O(PN2
r ) term [48].

The more computationally intensive mcRoSuRe algorithm, described in Algo-

rithm 3, requires even more operations in each of its iterations, as given in Al-

gorithm 2. In the first step, one has the RoSuRe algorithm with the associated

O(PN2
r ) cost. The second and third mcRoSuRe steps, however, perform a distinct
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optimization as given in Algorithm 2, which deals with P ×Nr, P ×Nt, and Nt×Nr

matrices. With that in mind the method needs in each iteration

A(Nr, Nt, P ) = NrNt + 8PNr (3.11)

additions and

M(Nr, Nt, P ) = 3PNrNt + 3NrNt + 3PNt + 7 (3.12)

multiplications, which results in an overall cost of O(PNrNt).

The mcRoSuRe-A algorithm, introduced in Section 3.2 and described in Algo-

rithm 6, creates an additional optimization step as summarized in Algorithm 5. Its

first step considers an optimization on a downsampled reference video sequence con-

taining Nds
r � Nr frames. Therefore the actual number of arithmetical operations

for each iteration in this step is

A(Nds
r , Nt, P ) = Nds

r Nt + 8PNds
r (3.13)

additions and

M(Nds
r , Nt, P ) = 3PNds

r Nt + 3Nds
r Nt + 3PNt + 7 (3.14)

multiplications, which is dominated by the O(PNds
r Nt) term. After this step, a

new reference sequence is created with only N ′r � Nr frames, corresponding to the

original reference video excerpt used to reconstruct the target frames. The following

steps use the same optimization described in Algorithm 2 but using P ×N ′r, P ×Nt,

and Nt ×N ′r matrices, requiring in the second step

A(N ′r, P ) = 2N ′2r + 5PN ′r (3.15)

additions and

M(N ′r, P ) = 4PN ′2r + 2N ′2r + 3PN ′r + 7 (3.16)

multiplications for each iteration and in the subsequent steps

A(N ′r, P ) = N ′rNt + 8PN ′r (3.17)

additions and

M(N ′r, Nt, P ) = 3PN ′rNt + 3N ′rNt + 3PNt + 7 (3.18)

multiplications for each iteration.

These operations lead to an overall cost of the order O(PN ′2r ) for the second

step and O(PN ′rNt) for the third and fourth ones, which once again is much smaller
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than O(PN2
r ) and O(PNrNt) respectively, as N ′r � Nr.

A summary of the final computational complexities of the algorithms analyzed

is given in Table 3.2. From the above analysis, one can infer that mcRoSuRe-TA

and mcRoSuRe-A reduce drastically the resulting overall complexity when compared

with mcRoSuRe, as verified quantitatively in Section 3.4.

Table 3.2: Computational Complexity per iteration of the evaluated methods (in
number of multiplications).

Step RoSuRe mcRoSuRe mcRoSuRe-TA mcRoSuRe-A

1 O(PN2
r ) O(PN2

r ) O(PN2
r ) O(PNds

r Nt)
2 - O (PNrNt) O(PN ′2r ) O(PN ′2r )
3 - O (PNrNt) O (PN ′rNt) O (PN ′rNt)
4 - - O (PN ′rNt) O (PN ′rNt)

To provide numerical information on these computational complexities, we show

here the figures associated with an example from Section 3.4-B. In this experimental

scenario, based on a real-world application, R = 320, C = 180, yielding P = 57600,

Nr = 5000 and Nt = 200. Using a typical value for the downsampling value one will

have Nds
r = 500. Provided that the camera does not stop during the translational

movement (common case in real applications) N ′r = 210 (the size of Nt plus a guard

interval). For a list of the variables refer to Table 3.1.

With these values the mcRoSuRe method would have the following numbers of

multiplications per iteration

� First step: 9.14 · 108 multiplications

� Second step: 1.73 · 1011 multiplications

� Third step: 1.73 · 1011 multiplications

while mcRoSuRe-A would have

� First step: 1.73 · 1010 multiplications

� Second step: 1.02 · 1010 multiplications

� Third step: 7.29 · 109 multiplications

� Fourth step: 7.29 · 109 multiplications

The gains in computation complexity in every step by using the proposed algo-

rithm can be inferred from this example.

It would be expected that the use of sparse matrices would yield a lower number

of additions and multiplications in the computational complexity analysis. However,
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due to the fact that the W and E matrices are only considered sparse at the end of

the algorithm we chose not to perform this analysis using the sparsity aware matrix

multiplication complexity. Furthermore, since we are comparing the complexity of

similar algorithms whose major changes are due to the dimensions of the matrices

we considered that the analysis using the full matrix multiplication would be enough

to give a figure of the complexity reduction.

3.4 Performance Evaluation

In this section, performances of the proposed algorithms are compared with algo-

rithms for of the other mcRoSuRe family algorithms and also with the ones of other

state-of-the-art anomaly detection using moving cameras.

In the first step the goal is to demonstrate that the proposed methods are less

computationally complex than the mcRoSuRe while still achieving similar or better

detection results.

In the second part the goal is to show the superior detection capability of the

proposed algorithms in challenging scenarios involving moving cameras and complex

datasets.

3.4.1 Experimental Assessment of the Proposed Algorithms

In a first experiment we compare the three versions of the mcRoSuRe algorithm: the

original one summarized in Algorithm 3 (mcRoSuRe) [46] presented in Section 2.4,

the one in Algorithm 4 (mcRoSuRe-TA) [73] presented in Section 3.1, and the accel-

erated version (mcRoSuRe-A) proposed in [74] and presented in Section 3.2 which

uses a 10:1 decimated version of the reference video in the first step of the algorithm.

For comparison purposes, we evaluate the performances of these three versions

when matrix Xr is composed by Nr = {5000, 1000, 200} frames of a given VDAO

reference video and Xt is comprised of Nt = {200, 200, 100} frame excerpts, respec-

tively, from each of the 59 single-object VDAO target videos. As for parameter ini-

tialization, we used: λ = 1, ρ = 1.5, η1 = 3, η2 = 1.1σ1(Xr), and µ0 = 1.25/σ1(Xr),

where σ1(Xr) is the largest singular value of input matrix Xr, following the param-

eter selection of the mcRoSuRe method presented in [46].

Table 3.3 shows the time (in seconds) taken by each algorithm step when ana-

lyzing all videos in an Intel i7-3630QM with 2.4GHz and 16GB of RAM, running

MATLAB ©2012b. From this table, it is noticeable how the proposed modifica-

tions accelerate the algorithm, particularly in the first step, which is the dominant

one in the original mcRoSuRe version. Comparing the total running time of each

algorithm, one notices how the proposed mcRoSuRe-A (using 10:1 downsampling
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ratio) outperformed the other two, specially for longer video sequences where the

acceleration factor becomes 2.6 with respect to the mcRoSuRe-TA and 100 with

respect to mcRoSuRe.

Table 3.3: Time (in seconds) used by each step of the mcRoSuRe, mcRoSuRe-
TA, and mcRoSuRe-A methods when analyzing the VDAO database with different
reference/target video lengths.

Short Videos - Nr = 200 and Nt = 100 frames

Step mcRoSuRe mcRoSuRe-TA mcRoSuRe-A
1 44.09 17.45 9.77
2 16.70 12.66 13.57
3 16.15 12.79 12.78
4 - 14.29 14.23

Total 76.94 57.19 50.34

Medium Videos - Nr = 1000 and Nt = 200 frames

Step mcRoSuRe mcRoSuRe-TA mcRoSuRe-A
1 764.65 95.69 29.05
2 97.01 58.85 58.56
3 86.79 36.75 35.83
4 - 38.66 36.35

Total 948.46 229.97 159.80

Long Videos - Nr = 5000 and Nt = 200 frames

Step mcRoSuRe mcRoSuRe-TA mcRoSuRe-A
1 27333.18 537.20 66.06
2 529.32 122.31 124.43
3 477.92 50.55 49.10
4 - 48.25 52.14

Total 28340.42 758.31 291.73

It must be emphasized that this speed improvement occurs without hindering

the system’s detection capability. In fact, when one compares the outputs of both

mcRoSuRe and mcRoSuRe-A methods, one readily observes that both methods have

very similar (if not exactly equal) results, as depicted in Fig. 3.13. Similar results

for the mcRoSuRe-TA method can be found in [73].

3.4.2 Abandoned Object Detection Algorithms Using Mov-

ing Camera

The performance of the proposed mcRoSuRe-A algorithm has been assessed by

comparing it with those of some of state-of-the-art methods, such as the detec-

tion of abandoned objects with a moving camera (DAOMC) [6], the moving-camera
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Figure 3.13: Comparative results for the mcRoSuRe and mcRoSuRe-A algorithms
(single frames of matrices Xr, Xt, Er, Et, and E of both methods) for 4 different
abandoned-object videos from VDAO [64] database: (a) blue box; (b) shoe (c) pink
bottle; (d) camera box. The similar detection performance of both methods is clear
from these experiments.

background subtraction (MCBS) [40], the spatio-temporal composition for moving-

camera detection (STC-mc) [42], and the anomaly detector using multiscales (AD-

MULT) [11]. To this end we used the annotated videos from the VDAO database.

As the algorithms of [6, 40], and [42] could not be executed in a reasonable amount

of time for the complete VDAO videos, only short-length 200-frame videos were

employed.

The selected 200-frames video excerpts used in the experiments described in this

paper are publicly available at [75]. The results of all experiments carried out with

the competing methods, that are reported here, can also be found at [75].

For comparison purposes, the reference-target video synchronization was per-

formed manually for the DAOMC algorithm. In our implementation of the DAOMC,
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an NCC window small enough to detect all objects in the database was used to

allow a fair comparison. For the MCBS algorithm, since the application of the

method changed from a railway surveillance problem to a more general scenario, the

post-processing steps that find the railway tracks were removed from the original

algorithm. For the STC-mc the original author’s implementation of the algorithm

was used. For the ADMULT we compared with the results published in [11]. In

addition, the results presented for the MCBS algorithm were obtained after the

application of the optimized parameter configuration for the two similarity metrics

used in the original paper [40], namely: the normalized vector distance (NVD) [76]

and the radial reach filter (RRF) [77].

To obtain quantitative results for the mcRoSuRe-A algorithm, the output matrix

Ee was post-processed with simple open and close morphological operations with 1

to 5 pixel-wide structuring elements. Also, simple binary thresholding was applied

to obtain the final detection mask, its value of 0.32 was selected in a grid search

from 0.25 to 0.75 using three randomly selected videos of the [75] dataset.

The performance for all methods was initially quantified with the following met-

rics: (i) True positive (TP) detection rate, where a TP occurs when the detec-

tion blob has at least one coincident pixel with the abandoned-object ground-truth

bounding box; (ii) False positive (FP) detection rate, where an FP arises when the

detection blob has all pixels outside the ground-truth bounding box; (iii) False neg-

ative (FN) detection rate, where an FN occurs when the ground-truth bounding box

has no detected pixels inside it; (iv) True negative (TN) detection rate, where a TN

is associated to a frame with no bounding box and no detected pixels. In addition,

we consider the DIS parameter defined as

DIS =

√
(1− TP)2 + FP2, (3.19)

which can be interpreted as the minimum distance of all operating points to the

point of ideal behaviour (TP = 1 and FP = 0) in the TP×FP plane. The use of

this metric allows direct comparison with the results in [42].

Even though the temporal consistency of the detections is paramount to the

overall quality of the detection algorithms, we will not consider it as a metric in our

experiments in order to make them compatible with previous publications in the

literature.

In a first experiment, the same seven video excerpts of [42] were considered. Since

those videos contain only frames with objects, only the TP and FP measurements

are shown in Table 3.4 along with the distance parameter.

It is clear from the results in Table 3.4 that for those limited scenarios considered

in [42] the mcRoSuRe-A method’s performance is superior to most of the other
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Table 3.4: Detection comparison of proposed mcRoSuRe-A method with that of
STC-mc, DAOMC, MCBS, and ADMULT methods for the same seven videos ex-
tracts employed in [42].

Object STC-mc DAOMC MCBS ADMULT mcRoSuRe-A

TP FP DIS TP FP DIS TP FP DIS TP FP DIS TP FP DIS
Dark blue box 1 1.00 0.04 0.04 1.00 0.00 0.00 1.00 0.90 0.90 1.00 0.00 0.00 0.96 0.17 0.17

Towel 0.92 0.01 0.08 1.00 0.10 0.10 1.00 0.00 0.00 1.00 0.00 0.00 0.99 0.47 0.47
Shoe 0.90 0.04 0.11 1.00 0.04 0.04 1.00 0.28 0.28 1.00 0.00 0.00 1.00 0.00 0.00

Pink bottle 0.99 0.13 0.13 1.00 1.00 1.00 1.00 0.96 0.96 1.00 0.00 0.00 1.00 0.00 0.00
Camera box 1.00 0.03 0.03 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

Dark blue box 2 0.37 0.42 0.76 1.00 1.00 1.00 1.00 0.10 0.10 1.00 0.00 0.00 1.00 0.00 0.00
White jar 0.29 0.64 0.96 1.00 0.10 0.10 1.00 0.99 0.99 1.00 0.00 0.00 1.00 0.75 0.75

Average 0.78 0.19 0.59 1.00 0.32 0.32 1.00 0.47 0.47 1.00 0.00 0.00 0.99 0.20 0.20

algorithms’ and very close to that of the more recent ADMULT for all considered

metrics. The average mcRoSuRe-A TP of 0.99 shows that in almost all the cases

the algorithm is able to detect the presence of anomalies, with a somewhat low

FP detection rate of 0.20. The DIS value of 0.20 indicates that the mcRoSuRe-

A algorithm achieves a good balance between the TP and FP detections for this

problem being second only to ADMULT’s performance in the considered metric.

In a more extensive analysis, we considered the algorithm average performances

for all 59 single-object VDAO videos, as given in Table 3.5. In these videos there

are both frames with and without objects.

Table 3.5: Average detection comparison of proposed mcRoSuRe-A method with
that of STC-mc, DAOMC, MCBS, and ADMULT methods for all 59 single-object
videos of the VDAO database.

Method TP FP TN FN DIS

STC-mc 0.18 0.38 0.59 0.82 0.90
DAOMC 0.83 0.43 0.54 0.17 0.46
MCBS 0.89 0.84 0.02 0.11 0.85

ADMULT 0.71 0.28 0.63 0.29 0.40
mcRoSuRe-A 0.91 0.33 0.63 0.09 0.34

By analyzing the results presented in Table 3.5 one notices that the mcRoSuRe-A

method is consistently superior to the other four competing methods in every metric

considered. The average mcRoSuRe-A TP detection rate is the only one above 0.90,

while yielding one of the lowest average FP detection rate. Unlike most of the

competing algorithms mcRoSuRe-A provides over 0.60 of TN detections. In the

case of the VDAO database this is most challenging metric as even small changes in

illumination and camera position can yield false detections. Finally the mcRoSuRe-

A is the only one among the tested methods to have less than 0.10 average FN,

providing the least amount of undetected anomalies. As a result for the complete

VDAO-200 database the proposed algorithm has the lowest DIS result, being the

only one below 0.40, among the tested algorithms.
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In this experiment we used the parameter values tuned for the initial seven video

experiment shown in Table 3.4 for all the compared methods. Since the videos in

this experiment present more challenging features (as objects being occluded) and

a larger variation in objects shapes and illuminations, not all methods kept their

good results, notably the ADMULT that came of a DIS of 0.00 to 0.40. In contrast

with most of the competing methods mcRoSuRe-A has shown to be robust to the

challenges presented in this database having shown the smallest decrease in the

performance when compared with the initial test results.

If one is not concerned with the identification of the anomaly position inside a

given frame, but wants only to determine whether a frame presents an anomaly, a

more relaxed version of the detection metrics can be used. By considering only a

frame-level detection analysis, one may define a TPfl (or FPfl) by the presence of

any detection blob in an anomalous (non-anomalous) frame and an FNfl (or TNfl) by

the absence of a detection blob in an anomalous (non-anomalous) frame. Average

results for these frame-level metrics for all four detection algorithms and for all

59 single-object videos from the VDAO database are shown in Table 3.6. In this

experiment the results for the ADMULT method are not displayed since they were

not available in the paper.

Table 3.6: Average detection comparison of proposed mcRoSuRe-A method with
that of STC-mc, DAOMC, and MCBS methods for all 59 single-object videos of the
VDAO database using frame-level metrics.

Method TPfl FPfl TNfl FNfl DISfl

STC-mc 0.48 0.41 0.59 0.52 0.66
DAOMC 0.89 0.46 0.54 0.11 0.47
MCBS 0.99 0.98 0.02 0.01 0.98

mcRoSuRe-A 0.95 0.37 0.63 0.05 0.37

Table 3.6 leads to similar conclusions as Table 3.5. Since here the localization

of the anomaly inside the frame is no longer an issue, then slightly misplaced de-

tection blobs now count as a correct detection thus making the small objects more

frequently detected by all methods, improving, for instance, the TPfl mcRoSuRe-A

measurement to 0.95. Although the TPfl results for the MCBS method are supe-

rior to the ones of mcRoSuRe-A, it also yields 0.98 of FPfl detection, showing it is

unreliable for this type of application. On the other hand, the FPfl also increased

for all methods, as now only the frames where there are no anomalies count for this

verification, thus making every error more relevant on the statistics.

Another test was performed using the multi-object videos from the VDAO

database. Those videos are much more challenging than the single-object videos,

as in this case, there are very small objects that can be hard to detect. Also, the
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Table 3.7: Average detection comparison of proposed mcRoSuRe-A method with
that of STC-mc, DAOMC, MCBS, and ADMULT* methods for the 9 multi-object
videos of the VDAO database.

Method TP FP DIS

STC-mc 0.67 0.74 0.81
DAOMC 1.00 0.68 0.68
MCBS 1.00 0.59 0.59

ADMULT* 0.71 0.42 0.51
mcRoSuRe-A 0.96 0.25 0.25

contrast of the videos is not as good as that of the single-object videos. The results

of these experiments are summarized in Table 3.7.

Since in the multi-object videos each frame has at least two objects (as ex-

plained in Section 2.1), there are no TN frames. Thus, as a result, similarly to what

happened with the 7-video tests, only the TP, FP, and DIS results are displayed.

Unfortunately, by using the metrics that were chosen for the other experiments it is

not possible to take into account the number of objects that were correctly detected

in a frame with more than one object.

When analysing the results from this experiment, it is clear again that, in this

more challenging scenario, mcRoSuRe-A presents more reliable results than the

other compared methods. Although DAOMC and MCBS have better TP results,

those two methods present much higher FP results as well, as can be seen by inspect-

ing the DIS measurement in the last column of Table 3.7. In the original paper [11],

only 3 of the 9 multi-object videos were used in this experiment.

Finally, the time performance of all the competing algorithms was compared

using a computer with Intel i7-4790K with 4.0GHz and 32GB of RAM, running

MATLAB ©2015a. Table 3.8 presents the total time taken by each algorithm to

run the seven videos considered in Table 3.4. From these results, one can easily

notice how the mcRoSuRe-A method is the fastest one, being able to run at least

twice as fast as ADMULT and seven times faster than the other methods in this

test.

3.5 Summary

This work presented a family of algorithms that use sparse representations for detect-

ing anomalies in video sequences obtained from slow moving cameras. The proposed

techniques project the acquired data from a reference (anomaly-free) video onto a

union of subspaces, and select a small number of those subspaces that contain most

of the information needed to reconstruct the target (possibly anomalous) video.
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Table 3.8: Time (in seconds) used by algorithms STC-mc, DAOMC, MCBS, AD-
MULT, and mcRoSuRe-A methods when analyzing seven videos from the VDAO
database.

STC-mc DAOMC MCBS ADMULT mcRoSuRe-A
Dark blue box 1 433 265 50924 106 52

Towel 345 280 50403 105 38
Shoe 542 293 50427 112 38

Pink bottle 415 280 50170 121 38
Camera box 448 299 50238 115 45

Dark blue box 2 221 289 51740 114 38
White jar 248 282 49901 128 36

Average 379 284 50543 114 41

The present work has shown the efficiency of the mcRoSuRe-A method demon-

strating that it is able to cope with challenging scenarios in much less processing

time than the other methods in mcRoSuRe family, while attaining qualitatively sim-

ilar results. Depending on the size of the videos, the method was shown to be able

to run up to 2.6 times faster than mcRoSuRe-TA [73] and 100 times faster than

the original mcRoSuRe [46] algorithm, placing it among the fastest methods for

anomaly detection in moving-camera videos.

Extensive experiments were conducted comparing the mcRoSuRe-A detection

performance with alternative state-of-the-art approaches using the challenging

VDAO database. The algorithm was shown to perform well in this database at-

taining the best average performance in all tests, reaching an average rate of 0.91 of

true positive detections and around 0.33 of false positive detection, having the best

compromise among the tested methods.

56



Chapter 4

Review of Moving Object

Detection in Dynamic

Backgrounds

Another challenging application related to the detection of anomalies in videos

is the detection of moving objects in the presence of moving backgrounds. The

videos in this kind of scenario feature moving foreground objects int the presence of

dynamic backgrounds, usually created by moving elements in the background such

as moving water, clouds, trees or by slight movement of camera. The challenge arises

from the fact that it is hard to differentiate the background movement from that

of the foreground, leaving the classification of what an algorithm should detect in a

gray area. As a general rule-of-thumb one can consider as foreground any element

that last for a limited number of frames in the videos, whereas the background

element are present in all the frames of the video, even if perturbed by visible or

invisible elements throughout the video.

Due to its non-stationarity, many traditional solutions based on background

subtraction fail to model the background, hence being unable to properly detect the

objects. On the other hand, it would be possible to apply methods similar to those

designed to detect static objects in videos acquired with moving cameras for such

applications, since they possess superior modeling capabilities. However, the use of

such algorithms tends to yield many false positive detections, since the background

motion in these applications can vary in more unpredictable ways than that derived

from the camera motion does.

This chapter presents a review of the state-of-the-art on moving object detection

in presence of moving backgrounds, highlighting databases and algorithms designed

for this application. Also, it presents some methods that were used as inspiration
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to the algorithms developed in Chapter 5, as well as a few algorithms designed for

saliency detection, which will be latter used in our algorithm proposal.

The chapter is organized as follows: Section 4.1 presents some databases designed

to assess the performance of moving object detection algorithms; Section 4.2 presents

moving object detection algorithms via constrained matrix decomposition, that will

be used as inspiration to the developed algorithms in later chapters; Section 4.3

describes methods for saliency detection; Section 4.4 reviews some of the state-

of-the-art moving object detection algorithms; finally, section 4.5 summarizes the

discussion of this chapter.

4.1 Moving Objects with Moving Backgrounds

Databases

Some databases were specifically designed to allow the comparison of moving object

detection algorithms in the presence of moving backgrounds. In this section we

describe three of those, that are broadly used in the literature, namely the UCSD,

2014 Change Detection.net and Singapore Maritime Dataset. Those datasets vary

in level of difficulty and specificity of applications, as described below.

The University of California San Diego Background Subtraction Dataset

(UCSD) [78] consists of 18 video sequences recorded in many different scenarios and

featuring distinct types of moving background. The types of moving foreground

objects vary among animals, pedestrians, swimmers, people practicing sports, cars,

planes, motorcycles, and other examples, and the moving backgrounds are related

to camera motion, waves, snow, haze, smoke, among others. The foreground ob-

jects movement is smooth and continuous, with no occlusions by the background. A

manually annotated binary groundtruth mask is provided for 15 of the 18 available

videos (as of November/2018). Over 70% of the frames present some foreground

object. The number of frames per video varies from 30 to 246. The resolution of

the videos varies, with the smallest being 232× 152 pixels and the largest 468× 348

pixels. Figure 4.1 displays sample frames from each video in the dataset.

The CDNET [63], that was briefly mentioned in Chapter 2, also presents mov-

ing objects in videos with moving backgrounds. The dataset is divided into 11

categories. The subset called “dynamic background” presents the videos with the

desired qualities for our application. Differently from the UCSD dataset, in the

CDNET dataset, the videos include occlusions, intermittent movement and also a

great variability in the size of the foreground objects. The moving objects in this

dataset comprise boats, cars, trucks, and pedestrians, while the moving background

is mostly composed of water surfaces. A manually annotated binary groundtruth
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(p) (q) (r)

Figure 4.1: Sample frames from the UCSD dataset. (a) Bird; (b) Boats; (c) Bottle;
(d) Chopper; (e) Cyclists; (f) Flock; (g) Freeway; (h) Hockey; (i) Jump; (j) Landing;
(k) Ocean; (l) Peds; (m) Rain; (n) Skiing; (o) Surf; (p) Surfers; (q) Traffic; (r) Zodiac.
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is available for every video in the dataset. In each video only a few frames have

moving objects, while the great majority features only the moving background. The

number of frames per video varies from 1184 to 7999. The frame resolution of the

videos varies from 320×240 up to 70×480 pixels. Figure 4.2 displays sample frames

from each video in the “dynamic background” subset of the dataset.

(a) (b) (c)

(d) (e) (f)

Figure 4.2: Sample frames from the Change Detection.net dataset. (a) Boats; (b)
Canoe; (c) Fall; (d) Fountain01; (e) Fountain02; (f) Overpass;

The Singapore Maritime Dataset (SMD) [79] features a very specific set of sce-

narios for moving foreground detection, as the dataset displays videos from naval

applications. The dataset is divided into three subsets: visible on-shore dataset,

visible on-board dataset, and near-infrared on-shore dataset. The visible on-shore

dataset features 40 videos from the ocean acquired from the shore. The visible

on-board dataset features 11 videos from the ocean acquired from a boat. The near-

infrared on-shore dataset features 30 videos from the ocean acquired from the shore,

using a near-infrared spectrum camera. All videos come with groundtruth annota-

tions of the horizon and the moving foreground objects. The frame resolution of

each video is 1920× 1080 pixels. To construct this dataset the videos were acquired

in different weather conditions and during different times of the day. Figure 4.3

displays sample frames from each subset in the dataset.

In the experiments discussed in Chapter 5 we will use the videos from the UCSD

and 2014 CDNET, since they have the most variations in scenarios and due to the

fact that many other works have made their results available in such datasets. The

SMD dataset was not used in our experiments as it has limited application and lack

of other methods reporting their results on it.
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(a) (b) (c)

Figure 4.3: Sample frames from the Singapore Maritime dataset. (a) Visible on-
shore example; (b) Visible on-board example; and (c) Near-infrared on-shore exam-
ple.

4.2 Constrained Matrix Decomposition Methods

Using the same concepts of subspace modeling and matrix decomposition discussed

in Chapters 2 and 3, some methods in the literature discuss the viability of obtaining

a more reliable detection of moving objects. In this section we discuss three methods

that do so by means of constraining the objective functions using specially designed

matrices imbued with some type of prior knowledge of the scene.

The three-term decomposition model (3TD) proposed in [80] introduces a three-

term rank minimization problem that aims to detect moving objects in challenging

applications. The method proposes to use a turbulence model to capture the struc-

ture of the background and imposes sparsity constraints to the moving foreground

matrix. Thus, this method intends to solve the following problem

min
B,O,E

Rank(B) + τ‖Π�O‖0 + λ‖E‖2
F,

s.t. A = B + O + E,
(4.1)

where τ and λ are weighting parameters, O is the object matrix, E is an undesired

error matrix, B is the background matrix, and A is the video matrix (we chose to

call the video matrix A in this application to differentiate from the reference and

target videos in the previous chapters, as in the present application there is only one

video). The � symbol denotes the point-by-point matrix multiplication operator.

The constraining confidence matrix Π is obtained as

Π = 1− [vec(C1) . . . vec(CT )], (4.2)

with Ci, i = 1, . . . , T being the confidence maps obtained via motion and intensity

cues of the turbulence model and the operator vec(·) transforming a matrix into a

vector by stacking all the columns of the matrix.

The use of this prior knowledge constraining confidence matrix C allows the

method to avoid false positive detections, as it limits the possible updates of the

object matrix O.
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Another method, namely the Robust Motion-Assisted Matrix Restoration

(RMAMR), presented in [81], uses a different constraint matrix to perform a similar

task. This method proposed to expand the RPCA formulation by adding prior in-

formation concerning the motion maps of the video, which are previously acquired

and transformed into an update constraining matrix Θ. The problem formulation

then becomes:

min
B,F
‖(B)‖∗ + λ‖E‖1,

s.t. Θ�A = Θ� (B + F),
(4.3)

where λ is a weighting parameter, B is the background matrix, F is the foreground

matrix, and A is the video matrix. The constraining motion maps matrix Θ ∈
Rmn×k (with k being the number of frames in the video with m×n frame resolution)

is obtained as

Θj,k =
1

1 + exp
(
α
(
−
√

(ox
j,k)2 + (oy

j,k)2 + β
)) , (4.4)

with oxj,k being an entry of ox, the mn × k matrix form of the horizontal motion

fields obtained using the optical flow method [17] of all frames in A, oyj,k an entry of

oy, the corresponding mn× k matrix form of the vertical motion fields, and α and

β are tunable parameters.

With this constrained objective function the method is able to obtain iterative

updates using the ADMM-ALM method, discussed in Chapter 2, and perform the

object detection.

In [60], the authors propose to decompose a video matrix A into three matrices:

L - Low-rank background model, S - sparse foreground, and E - residual detections.

So using a method called Shape and Confidence Map-based RPCA (SCM-RPCA).

Inspired by the 3TD and RMAMR, the more recent SCM-RPCA goes a few steps

further and proposes the simultaneous use of both restrictions, hence decomposing

the data matrix as A = (L + Θ� S + E).

In the SCM-RPCA implementation, the authors use only static information as

the priors to constrain the object matrix, instead of using complex dynamic methods,

such as dense motion maps, optical-flows, and turbulence maps. The SCM-RPCA

proposes the use of a much simpler tool based on a visual saliency, which is explained

in the next section. Although the matrix constraints do not take into account any

temporal consistency, the method is still able to perform well in dynamic background

scenarios, as reported in [60]. With the proposed constraining matrices the SCM-

RPCA algorithm performs the background-foreground separation by decomposing
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the video matrix as follows:

min
L,S,E

‖L‖∗ + λ‖Π� S‖1 + γ‖E‖2
F ,

s.t. A = L + Θ� S + E,
(4.5)

where the video contains k frames of dimensions m × n, Π ∈ Rmn×k and Θ ∈
[0, 1]mn×k are the confidence map and shape constraints, respectively.

As explained in [60] the use of the confidence map and shape constraints rein-

forces the updates of the matrices focusing the attention on the most salient pixels,

which are often related to the moving foreground. In order to solve this optimization

problem the SCM-RPCA uses the ADMM-ALM method as in [81].

In Chapter 5 we will show the development of two object detection methods via

constrained matrix decomposition that were inspired by the methods described in

this section.

4.3 Saliency Detection

Saliency detection algorithms, as the one used to define the confidence maps of [60],

are algorithms designed for predicting the position in an image where the human eye

will most likely fixate when exposed to it. In this section we will review some of the

non-biologically inspired methods to detect the salient areas of an image or video.

These algorithms segment the images into blocks or superpixels and explore the

relations between neighbouring blocks to find out which of those can be considered

are more likely to call the human’s eye attention, therefore being classified as salient.

In this section we explore a brief review of some saliency detection algorithms that

can be used to obtain the constraining region proposal matrices that feature an

important step in the SCM-RPCA and in the our proposed algorithms that will be

discussed in Chapter 5.

In [82] the authors propose a method called Graph-Based Saliency (GBVS).

This algorithm proposes a three-step procedure to obtain the saliency masks. First

it computes the feature maps by linear filters followed by elementary non-linearities.

Second it creates the activation maps using a Markovian approach, which computes

a dissimilarity measure of each node in the previous step and outputs those that are

above a pre-set threshold. Finally, the activation map is normalized, and the output

saliency mask is created.

The method called Geodesic Saliency is proposed by the authors of [83]. Differ-

ently from most methods, in this work the authors focus more on the background

determination than the saliency. To do so they explore two common priors of back-

ground images: boundary and connectivity. Initially the method creates a weighted
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graph of the image using as vertices image patches. Secondly it performs a con-

nectivity check using a threshold based on the difference between the mean color of

connected patches. Finally, the algorithm checks whether any of the salient patches

belong to the image boundary; if they do, a third stage of the algorithm analyzes

how likely a given boundary patch belongs to the image background.

The algorithm proposed in [84], uses a graph-based manifold ranking to obtain

the saliency maps. The algorithm has two stages. In the first one it explores

the boundary prior, by considering that all boundary image patches belong to the

image background. Four maps are generated in this first step, by considering the

boundaries of each image patch in one of the maps. The four labelled maps are then

combined to form the first saliency map. In the second step the opposite procedure

is performed, as a binary segmentation is applied to the patches that were labeled as

foreground in the first step and the resulting foreground nodes are taken as salient

queries. The nodes are then ranked based on their saliency using the ranking method

proposed in [85] and the final saliency map is created.

The Boolean Map based Saliency Model (BMS) introduced in [86] implements a

three-step method for saliency detection. This method explores the surroundedness

cue for a robust saliency detection, that is, the method intends to find shapes that

are surrounded by a continuous area of background. The first step of the method

is the obtention of a Boolean map. The Boolean map is generated by randomly

thresholding the input image’s color maps using pre-computed intensity distributions

as

B = thresh(φ(I), θ), (4.6)

where θ is a preset threshold, φ(I) denotes a feature map of the image I. The

second step creates an activation map. This activation map (M(B)) is constructed

by determining the surrounded regions of the foreground in the Boolean maps. The

maps are then separated into sub-activated maps that are obtained through logical

AND operation between the original activation maps and both the Boolean maps

and their logical complement, by doing the following operations

M+(B) =M(B) ∧ B, (4.7)

M−(B) =M(B) ∧ ¬B, (4.8)

where ¬ is the Boolean inverse (creating the logical complement), ∧ is the pixel-

wise Boolean conjunction operation, andM+(B) andM−(B) represent the selected

and surrounded regions on B and ¬B respectively. The resulting sub-activation

maps are normalized with the L2-norm and the result is further penalized with a

morphological dilation operation, creating the A+(B) relative to the sub-activation

mapM+(B), and A−(B) relative to the sub-activation mapM−(B). An average of
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the resulting normalized maps is taken to compose the mean attention map, that is

the algorithm’s output which is obtained by doing

A((B) =
1

2

(
A+(B)

‖A+(B)‖2

+
A−(B)

‖A−(B)‖2

)
. (4.9)

The algorithm presented in [87] introduces the use of the deformed smoothness-

based manifold ranking (DSMR), that uses a smoothness constraint to obtain the

desired saliency map. First the input image is represented as a super-pixel graph.

Secondly, a coarse saliency map is proposed using the DSMR method, using as

background seeds the super-pixels from the image boundaries. An objectness map

is created via an object proposal algorithm obtained from [88]. Lastly, the refined

saliency map is created by integrating the information contained in the two maps

by an iterative optimization refinement procedure described in [87]. The DSMR

method, that is the core of the algorithm, consists of a constrained version of the

manifold ranking method based on the object smoothness. The method reports to

solve the issue of misclassified salient regions of the image due to low contrast with

the background.

Finally, in the same line as the previous method, the work in [89] proposes the

Probabilistic Saliency Estimation (PSE). This algorithm jointly optimizes saliency

cues, such as boundary connectivity and smoothness constraints, to obtain the de-

sired saliency maps. The algorithm finds a closed form solution of their cost-function

based on graph-cut methods, by relaxing some of the constraints that make the orig-

inal formulation an NP-hard problem. Using the resulting method the algorithm

is capable of generating a robust smooth saliency map based on the original image

super-pixel graph representation.

Due to its simple implementation, that is available at [90], and its reported fast

performance, this method is used to generate the confidence maps of [60]. It will

also be used in our implementation to obtain the attention matrices, as described

in Chapter 5.

4.4 Other State-of-the-Art Methods

So far in this chapter we discussed some of the ways to solve the moving object

detection in the presence of dynamic backgrounds problem via constrained matrix

decomposition methods. However, many of the works in the literature approach this

problem through other methods that feature completely different ideas.

This section is divided in two parts, the first one discusses supervised learning

methods, that is, that learn their parameters by reinforced learning using part of the

groundtruth annotation in a training step. The second part presents other methods
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that do not rely on the existence of a training step to work.

4.4.1 Supervised Methods

Most of the supervised methods present deep neural network solutions to the detec-

tion problems. For instance, the work in [91] presents two deep learning approaches,

namely FgSegNetS-S and FgSegNetS-M, to solve the problem of moving object de-

tection in challenging scenarios. The authors propose an encoder-decoder approach

using convolutional neural networks (CNN) and transposed convolutional neural

networks to create the detection framework where each frame of the video sequence

is input and a probability mask is obtained as the output of the system. The con-

volutional neural network model employed on the proposed systems is that of a

pre-trained VGG-16 network [3]. The authors report good results in many different

scenarios, stating that the proposed methods are robust to illumination changes,

dynamic background, shadow occurrence, and camouflage effects.

The authors of [92] introduce the Cascade CNN method. This method aims

to create an automatic groundtruth annotation system using as inputs a limited

number of manually annotated frames of surveillance videos. The proposed system is

composed by two connected CNNs. The first network is used to obtain a foreground

probability map that is later concatenated with the original frame tensor (containing

the RGB color channels) and input to the second neural network. The output of the

second network is, thus, a refined foreground probability map. Both networks share

the same architecture and during the training step of the method, the parameters

of one network are fixed while the parameters of the other network are trained.

The method presented in [93], namely the DeepBS, uses a cascade of a CNN,

plus multi-layer perceptron (MLP) [94], which are fully-connected neural network

layers, and some post processing techniques to implement a real-time capable back-

ground subtraction method. The background model used as input for the CNN is

obtained through a constantly updated library of background pixels as classified by

an auxiliary network, namely the SubSENSE [95]. The CNN model in the DeepBS

method uses only three convolutional layers and two MLP layers. The output of the

MLP layers is post processed using median filters for temporal consistency.

Many other supervised learning methods have been proposed in the past few

years. A survey that overviews many of those methods, including the already men-

tioned [49], is presented in [96].

Although the discussed methods report good results - some of them present the

highest score across the results reported in the 2014 CDNET dynamic background

website [63] - these methods rely on training for a specific scenario, therefore requir-

ing individual setups for each application. An even greater problem arises from the
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fact that those methods use a lot of data in the training phase, as reported in the

paper that propose them, limiting their use when large amounts of annotated data

are not available.

Table 4.1 summarizes the main techniques employed by each supervised learning

method discussed in this section.

Table 4.1: Supervised learning algorithms and the techniques employed in them.

Method’s Reference Main Technique

FgSegNetS [91] Encoder-decoder CNNs
Cascade CNN [92] Connected CNN for FG and BG classification
DeepBS [93] CNN feature extractor plus MLP classifier
HASSAN [16] Gaussian-mixture model
CINELLI [49] Deep Background Subtraction

4.4.2 Unsupervised Methods

The approaches employed by the unsupervised methods to solve the moving object

detection problem present a much broader spectrum of methods. The big advantage

of such methods, when comparing with the supervised ones, lies on the fact that

these methods can perform without a training step, thus not requiring annotated

groundtruth data for the parameter setups.

The work presented in [97], namely “In Unit There is Strength” (IUTIS), uses

genetic programming to select the best of several change detection algorithms and

composes a novel method that combines different methods strengths in a single algo-

rithm. To perform such method the IUTIS implements a combination, using logical

ANDs and ORs, of the outputs of different change detection methods, according

to a specific fitness functions that is optimized on a set of benchmark dataset of

video sequences. The resulting solution tree outputs the final algorithm that can

be used in the detection of moving objects. A post-processing step is also created

as a combination of geometrical erosion, dilation, median filter, logical OR, logical

AND, and majority vote obtained in another genetic programming algorithm.

The Pixel-based Adaptive Word Consensus Segmenter (PAWCS) is proposed

on [98]. This method presents a codebook approach that is updated using

persistence-words to cope with background variations on long time periods. The

so-called “background words” use texture and color information of the pixels to

compose the background dictionary. There are two types of “background words” in

the method, namely persistent and infrequent ones. The infrequent ones are con-

stantly updated in the dictionary, while the persistent remain in the dictionary for

long. The dictionary thresholds and learning rate are automatically adjusted during
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the execution of the algorithm, based on the analysis of the background dynamics.

A post-processing step based on simple morphological operations and median filters

is applied at the output of the system to obtain the final masks.

The authors of [99] propose the Adapting Multi-resolution Background Extractor

(AMBER), which was later expanded in [100]. The algorithm introduces a pixel-

wise background subtraction model, where at every new frame the values of the pixel

model are updated based on the “efficacy” of the values currently in the model, not

by age (i.e. the number of iterations a value has remained in the model) as most

methods. The resulting algorithm is designed for pixel-level parallelism which allows

it to run on multi-processor hardware platforms in less time than similar algorithms.

The classification of each pixel relies on template matching with the current pixels in

the model: if the pixel does not match any of the current templates it is considered

as foreground; on the other hand, if is matches any of the templates, it increases that

template’s “efficacy” and decreases that of the others. At any point if a template’s

“efficacy” becomes zero this template becomes inactive and a new template is created

based on pixels that remained with the same values for long.

In [101] the Sliding Window-based Change Detection (SWCD) is proposed. The

method performs change detection with background subtraction based on some key

ideas: the background model is updated with a sliding window approach by using

dynamic controllers presented in the SubSENSE paper [95], using a noise-free dis-

tance map to classify the pixels as foreground or background. Adaptive learning

rates and thresholds for the distance maps are employed in the algorithm to deal

with background changes and variations in the scene.

The change detection method introduced in [102], namely the CwisarDRP after

the Wilkes, Stonham and Aleksander Recognition Device, presents a neural model

that forgoes the initial training phase that characterize the supervised learning meth-

ods. It does so by employing a learning step after every classification step, creating

a continuous learning process. Therefore, the method can perform the classification

from the first frames of the video, in opposition to some methods that use the initial

frames of the video to establish a background model. The core of the algorithm is

the weightless neural network (WNN) called WisarDRP, whose core components are

the discriminator: a layer of n-tuple neurons that map a set of n bits extracted from

a binary input pattern called retina into values that are input into the network. In

the learning phase the neurons have their values increased if they were stimulated

by the retina or penalized if they were not. In the classification step each neuron

outputs one if the stimulus was above a given threshold or zero if it was not.

The state-of-the-art methods discussed in this section are among the top-ranked

unsupervised methods in the 2014 CDNET dataset. Their performances are really

close to those of the supervised methods, presented in the previous section, and they
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do not rely on the availability of large amounts of annotated data for training. In

Chapter 5 we will compare the results of our methods with those discussed in this

section for the experiments in the 2014 CDNET dateset.

Table 4.2 summarizes the main techniques employed by each unsupervised learn-

ing method discussed in this section.

Table 4.2: Unsupervised learning algorithms and the techniques employed in them.

Method’s Reference Main Technique

IUTIS [97] Genetic Algorithm to combine methods
PAWCS [98] Dictionary Learning
AMBER [100] Efficacy-based background subtraction
SWCD [101] Sliding window-based background modeling
CwisarDRP [102] Continuously learning neural network for BG subtraction

4.5 Summary

This chapter introduced some concepts related to methods that detect moving ob-

jects in videos with moving backgrounds. We discussed some datasets that are used

to assess the performance of such methods, as well as many methods that are able to

perform this task. Some special attention was given to matrix decomposition meth-

ods, as they were used as inspiration to the algorithms for moving object detection

we propose in the next chapter.
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Chapter 5

Contributions to Moving Object

Detection in Dynamic

Backgrounds

Based on some ideas presented in the previous chapter and on the already extensively

explored concepts of PSA, in this chapter we explore the possibility of using sparse

plus low-rank matrix decomposition techniques to cope with the detection of moving

objects in the presence of a moving background, as such described in Chapter 4.

The central idea of our proposed methods is to use the attention matrices (confi-

dence map and shape constraint), obtained from the saliency detection as explained

in the previous chapter, to enhance the classical structure of sparse plus low-rank

matrix decompositions by restricting the updates on the sparse foreground matrix.

These attention matrices work as a priori information that limits the possible re-

gions where the moving foreground object can appear. The use of such constraining

matrices allow the methods to separate the moving foreground detection into two

sparse matrices, one responsible for the actual moving foreground and the other

composed of the residue derived from poorly modeled moving background.

The proposed approach was inspired by a similar use of the saliency maps in [60],

where the authors use two attention maps, namely Π - the confidence map and Θ -

the shape constraint, to modify the RPCA algorithm making it capable of perform-

ing background/foreground separation in the presence of dynamic background.

Two distinct algorithms were developed. First, a batch algorithm that processes

the complete video data at once and uses all the frames of the video to perform the

low-rank plus sparse decomposition. Second, a sequential algorithm that is able to

process each frame as it arrives and outputs the detection based only on the current

and previous frames.

This chapter is organized as follows: Section 5.1 describes the development of a
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batch algorithm to solve the problem of moving foreground detection in the pres-

ence of moving background; Section 5.2 proposes a similar implementation of the

algorithm using a sequential algorithm; Section 5.3 discusses the experimental eval-

uation of the proposed methods; and finally Section 5.4 presents our conclusions

about the discussed topics.

5.1 Batch Algorithm

Both in Chapter 3 and in a previous work [73], we argued that the RoSuRe method

is a more general and powerful tool for background/foreground separation in videos

than RPCA, since it is capable of representing the background of a video as a

union of subspaces instead of a single subspace. Therefore, we propose the following

algorithm by applying the same saliency maps as [60] in a modified RoSuRe [48]

framework.

5.1.1 Attention Matrices

In order to focus the algorithm attention to specific parts of the frame, avoiding

the presence of false positive detections, a very common problem in this kind of

application [80, 81], we use two types of matrices that either put different gains to

different parts of the data matrices or mask it altogether with binarized thresholds.

This idea was already introduced in Section 4.2 and in the SCM-RPCA paper [60].

Due to its effects we call the confidence map (Π) and shape constraint (Θ)

matrices Attention Matrices. The processes involved in obtaining them is described

bellow.

If we consider a previously computed sequence of k saliency maps denoted by

M1,M2, . . . ,Mk, where Mi ∈ Rm×n obtained as the output of the saliency detection

algorithm in [86], or some of the other saliency detection algorithms discussed in

Section 4.3 to a k-frames long video, then we can obtain constraining matrices as

in [60] by doing

Π = [vec(norm(M1)) . . . vec(norm(Mk))], (5.1)

Θ = [vec(thresh(M1)) . . . vec(thresh(Mk))], (5.2)

where norm(·) is the min-max normalization, which scales every entry of M between

0 and 1, that is,

norm(Mi,j) =
Mi,j −Mmin

Mmax −Mmin

, (5.3)

with Mmin and Mmax being the minimum and maximum values of the M matrix,

respectively. Mi,j is the element of the M matrix belonging to the row i ∈ [1, . . . ,m]
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and column j ∈ [1, . . . , n], while the thresh(·) is defined as:

thresh(Mi,j) =

{
1 if (0.5Mi,j)

2 < µ

0 otherwise
, (5.4)

where µ = 0.5η(std(vec(M)))2, and std(·) denotes the standard deviation of a data

vector. In this work, as in [60], η was experimentally chosen as 10.

For the experiments performed here, we obtain the attention matrices Π and Θ

using previously computed saliency maps obtained by applying the algorithm in [86]

to every frame from the original video, which is represented as the matrix A.

5.1.2 Tri-Sparse Decomposition

Using the rationale behind the PSA algorithms discussed in the previous chapters

as inspiration, we want to obtain a decomposition of the data matrix A, which

represents the moving background with moving object video, in such a way that we

can have the moving objects projected in a sparse matrix S.

Also, due to the characteristics of the videos of interest in this application, there

should be a matrix L which is a low-rank representation of the moving background.

As in the other algorithms of the RoSuRe family, we expect the matrix L to be

self-representative1. Therefore it is expected that there will also be a matrix W

that is assumed to be sparse due to small number of subspaces that are needed to

compute the representation of a frame using the low-rank surrogates. Also, due to

the characteristics of the highly dynamic background of the videos, it is expected

that frames that are temporally distant from each other will have different low-rank

representations.

Using the videom·n×k matrix A, them·n×k low-rank background matrix L, the

m ·n×k sparse residue matrix E, and the m ·n×k sparse foreground objects matrix

S in combination with the attention matrices obtained in the previous section, we

are able to write an initial optimization problem

min
W,E,S

‖W‖1 + λ1‖Π� S‖1 + λ2‖E‖1,

s.t.


A = L + Θ� S + E

LW = L

Wii = 0, ∀i
,

(5.5)

where W is the k × k weight matrix bearing the relations between the columns of

1As in the other cases the self-representative matrix Lr is guaranteed to be low-rank for a
single subspace. For a UoS, as presented in this case, it is usually low-rank, but there may be cases
where the construction of a specific UoS may not lead to a low-rank matrix Lr. Nevertheless, as
for making the notation of the methodology compatible with that of previous works, we will refer
to Lr as either “low-rank” or “self-representative” matrix interchangeably.
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the low-rank representation L of the data matrix A, Wii are the diagonal elements

of the W matrix, S is the sparse matrix where foreground objects shall lie, E is the

sparse residue matrix composed of the parts of A not represented by neither L nor

S, and λ1 and λ2 are weighting parameters.

To find a solution for this optimization problem, we employ the ALM and the

ADMM as in [73]. This solution is detailed in the sequel. From Eq. (5.5), one has

that

LW − L = 0, (5.6)

and

L = A−Θ� S− E. (5.7)

Replacing Eq. (5.6) into (5.7), we get

(A−Θ� S− E)W − (A−Θ� S− E) = 0, (5.8)

which yields the following expanded cost function using the ALM-ADMM

method [70]

Γ(W,E,S,Y1, µ1) = ‖W‖1 +λ1‖Π�S‖1 +λ2‖E‖1 +〈LW−L,Y1〉+
µ1

2
‖LW−L‖2

F ,

(5.9)

where Y1 is the augmented Lagrangian term and µ1 is a weighting factor.

The updates for every matrix in this optimization can be shown, after some

derivations (presented in the Appendix A), to be:

Wk+1 = argminW

[
‖W‖1 + 〈Lk+1W − Lk+1,Y1(k)〉+

µ1(k)

2
‖Lk+1W − Lk‖2

2

]
,

(5.10)

Sk+1 = argminS

[
λ1‖Π� S‖1 + 〈(−Θ� S)Ŵk+1,Y1(k)〉+

µ1(k)

2
‖Lk+1W − Lk‖2

2

]
,

(5.11)

Ek+1 = argminE

[
λ2‖E‖1 + 〈−EŴk+1,Y1(k)〉+

µ1(k)

2
‖Lk+1Wk+1 − Lk+1‖2

2

]
,

(5.12)

where Ŵ = W − I.

Using a similar development to that presented in [48], the final updates for the
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W, S, and E matrices may then be written as:

Wk+1 = τ 1
µ1(k)η1

Wk +
LT
k+1

(
Lk+1 − Lk+1Wk −

Y1(k)

µ1(k)

)
η1

 , (5.13)

Sk+1 = τ λ∗1
µ1(k)η2

Sk +

(
(Θ� Lk+1)Ŵk+1 +

(Θ�Y1(k))

µ1(k)

)
ŴT

k+1

η2

 , (5.14)

Ek+1 = τ λ2
µ2(k)η3

Ek +

µ1(k)

µ2(k)

(
Lk+1Ŵk+1 +

Y1(k)

µ1(k)

)
ŴT

k+1

η3

 , (5.15)

with, τα [·] being the soft-threshold operator defined in Eq. 2.11, and

Lk+1 = A−Θ� Sk+1 − Ek+1, (5.16)

Y1(k+1) = Y1(k) + µ1(k)(Lk+1Wk+1 − Lk+1), (5.17)

µ1(k+1) = ρ1µ1(k). (5.18)

5.1.3 Large Residue Constraint

To assess the potential of the proposed algorithm, a few experiments were performed

using a few videos from the moving background UCSD dataset [78].

The goal of these initial experiments was to detect whether the decomposition

of the data matrix A into matrices S, L, and E was being performed in the correct

manner. The second column of Figure 5.1 shows the E matrices, and corresponding

A matrices for four frames using the proposed algorithm.

One can infer from the observation of the residue frames displayed in the second

column of Figure 5.1 that the residue matrix E is too sparse and is not capturing

properly the non-foreground abrupt changes that happen between neighbour frames

in the data matrix A. Indeed, the modeling of the low-rank matrix L and the

detection of moving foreground objects in matrix S is subject to unwanted artifacts.

To cope with this issue a modification in the optimization equation is proposed.

To guarantee that the sparse residue matrix captures the abrupt changes between

neighbouring frames, therefore capturing the changes that cannot be modeled by

the low-rank matrix L but also do not belong to the desired moving foreground,

we propose to add a new constraint to the optimization function. This constraint

requires that the columns of the residue matrix E corresponding to consecutive

frames differ from each other by at least a minimum amount ε. This imposes a

dynamical behavior on the E matrix, forcing it to capture some of the background

∗The value of λ∗1 depends on the value of Π for the current point.
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motion that would otherwise be represented in S, which would cause misclassification

of some background parts. The proposed new constraint is defined as follows

(E− ED)1 � ε, where D =

[
0T 0

I 0

]
, (5.19)

where the m ·n×k unit matrix 1 has all entries equal to 1, and 0 is a k-dimensional

null vector.

We executed again the experiment to check how much of the data matrix A is

captured in the residue matrix E using the same frames as before. The new results

are shown in the third column of Figure 5.1.

By inspecting Figure 5.1 one can clearly see that the newly proposed constraint

makes the residue frames capture much more information from the highly dynamic

background. This information was wrongly cast upon matrices S and L in the

previous proposal, as explained in Section 5.1.2. The newly proposed constraint is

incorporated to the algorithm from this point on.

5.1.4 Proposed Algorithm

Incorporating the new residue matrix constraint, our goal becomes to solve the

following optimization problem:

min
W,E,S

‖W‖1 + λ1‖Π� S‖1 + λ2‖E‖1,

s.t.



A = L + Θ� S + E

LW = L

Wii = 0, ∀i

(E− ED)1 � ε, where D =

[
0T 0

I 0

] ,
(5.20)

where W is the weight matrix bearing the relations between the columns of the low-

rank representation L of the data matrix A, S is the sparse matrix where foreground

objects shall lie, and E is the sparse residue matrix composed of the parts of A not

represented by neither L nor S.

To find a solution for this optimization problem, we, again, employ the ALM

and the ADMM as in [73], which yields the following expanded cost function using
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(a) Original Frame (b) Old Residue (c) New Residue

(d) Original Frame (e) Old Residue (f) New Residue

(g) Original Frame (h) Old Residue (i) New Residue

(j) Original Frame (k) Old Residue (l) New Residue

Figure 5.1: New observation of residues from E matrix. The first column ((a),(d),(g),
and (j)) shows the original frames from data matrix A. The second column
((b),(e),(h), and (k)) shows the residue from the decomposition in residue matrix
E in the original proposal. The third column ((c),(f),(i), and (l)) shows the residue
from the decomposition in residue matrix E with the new constraint. One can ob-
serve that the new residue frames have more information than those in the previous
proposal.

the ALM-ADMM method [70]

Γ(W,E,S,Y1,Y2, µ1, µ2) = ‖W‖1 + λ1‖Π� S‖1 + λ2‖E‖1+

〈LW − L,Y1〉+ 〈E− ED− 1ε,Y2〉+
µ1

2
‖LW − L‖2

F +
µ2

2
‖E− ED− 1ε‖2

F , (5.21)

where Y2 is a Lagrangian term and mu2 is a weighting parameter.

The updates for every matrix in this optimization can be shown, after some
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derivations (presented in Appendix A), to be:

Wk+1 = argminW

[
‖W‖1 + 〈Lk+1W − Lk+1,Y1(k)〉+

µ1(k)

2
‖Lk+1W − Lk‖2

2

]
,

(5.22)

Sk+1 = argminS

[
λ1‖Π� S‖1 + 〈(−Θ� S)Ŵk+1,Y1(k)〉+

µ1(k)

2
‖Lk+1W − Lk‖2

2

]
,

(5.23)

Ek+1 = argminE

[
λ2‖E‖1 + 〈−EŴk+1,Y1(k)〉+ 〈E− ED− 1ε,Y2(k)〉 +

µ1(k)

2
‖Lk+1Wk+1 − Lk+1‖2

2 +
µ2(k)

2
‖E− ED− 1ε‖2

2

]
,

(5.24)

Using a similar development to that presented in Section 5.1.2, the final updates

for the W, S, and E matrices may then be written as:

Wk+1 = τ 1
µ1(k)η1

Wk +
LT
k+1

(
Lk+1 − Lk+1Wk −

Y1(k)

µ1(k)

)
η1

 , (5.25)

Sk+1 = τ λ∗1
µ1(k)η2

Sk +

(
(Θ� Lk+1)Ŵk+1 +

(Θ�Y1(k))

µ1(k)

)
ŴT

k+1

η2

 , (5.26)

Ek+1 = τ λ2
µ2(k)η3

Ek +

µ1(k)

µ2(k)

(
Lk+1Ŵk+1 +

Y1(k)

µ1(k)

)
ŴT

k+1

η3

−

(
Ek − EkD− 1ε+

Y2(k)

µ2(k)

)
(I−DT)

η3

 .
(5.27)

where Ŵk = (I−Wk), and

Lk+1 = A−Θ� Sk+1 − Ek+1, (5.28)

Y1(k+1) = Y1(k) + µ1(k)(Lk+1Wk+1 − Lk+1), (5.29)

Y2(k+1) = Y2(k) + µ2(k)(Ek+1 − Ek+1Dk+1 − 1ε), (5.30)

µ1(k+1) = ρ1µ1(k), (5.31)

µ2(k+1) = ρ2µ2(k). (5.32)

At the end of each iteration we modify the W matrix changing its diagonal

entries to zero, similarly to what was done in the mcRoSuRe-A in Chapter 3.

∗The value of λ∗1 depends on the value of Π for the current point.
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5.2 Proposed Sequential Algorithm

The algorithm proposed in the previous section works by exploring the full potential

of the matrix reconstruction, by using any frame from the low-rank representation

matrix L to represent other frames. As will be shown later, by inspecting the gen-

erated structure matrix W, most of the frames used to perform the reconstruction

come from frames within a small temporal vicinity of the target frame, although

this is not true in all cases. Moreover, in the proposed implementation, very fre-

quently, a causal relation is not respected, meaning that posterior frames are used

to reconstruct a previous frame.

In this section our goal is to obtain a modified version of the proposed algorithm

that works in a sequential and incremental way, being therefore suitable for online

and maybe even real-time applications. Our implementation is inspired on that

of [103], that was later used in [104] to obtain a sequential version of the RoSuRe

algorithm [48].

5.2.1 Proposed Algorithm

To obtain the new algorithm we start from the same optimization problem stated

in Equation 5.20.

min
W,E,S

‖W‖1 + λ1‖Π� S‖1 + λ2‖E‖1,

s.t.



A = L + Θ� S + E

LW = L

Wii = 0, ∀i

(E− ED)1 � ε, where D =

[
0T 0

I 0

] .
(5.33)

At this point, instead of the results presented in Eq. (5.21), we employ a different

new expanded function without the presence of the dual functions. This new ex-

panded function features only the quadratic penalty term from the previously used

ALM expansion. The newly proposed expanded cost function is obtained through

the use of incremental subgradient-proximal methods described in details in [103]

due to its strong convergence guarantees and stability, as explained in the referred

article, since in our sequential implementation we will use few iterations to minimize

the cost function. Therefore we have

Γ(W,E,S, µ1, µ2) = ‖W‖1 + λ1‖Π� S‖1 + λ2‖E‖1+
µ1

2
‖LW − L‖2

F +
µ2

2
‖E− ED− 1ε‖2

F . (5.34)

78



The updates for every matrix in this optimization then becomes

Wk+1 = argminW

[
‖W‖1 +

µ1(k)

2
‖Lk+1W − Lk‖2

2

]
, (5.35)

Sk+1 = argminS

[
λ1‖Π� S‖1 +

µ1(k)

2
‖Lk+1W − Lk‖2

2

]
, (5.36)

Ek+1 = argminE

[
λ2‖E‖1 +

µ1(k)

2
‖Lk+1Wk+1 − Lk+1‖2

2 +
µ2(k)

2
‖E− ED− 1ε‖2

2

]
,

(5.37)

Using a similar development to that presented in Section 5.1.2, the final updates

for the W, S, and E matrices may then be written as:

Wk+1 = τ 1
µ1(k)η1

[
Wk +

LT
k+1(Lk+1 − Lk+1Wk)

η1

]
, (5.38)

Sk+1 = τ λ∗1
µ1(k)η2

[
Sk +

(Θ� Lk+1)Ŵk+1Ŵ
T
k+1

η2

]
, (5.39)

Ek+1 = τ λ2
µ2(k)η3

Ek +

µ1(k)
µ2(k)

(Lk+1Ŵk+1)ŴT
k+1

η3

− (Ek − EkD− 1ε)(I−DT)

η3

 .
(5.40)

where Ŵk = (I−Wk), and

Lk+1 = A−Θ� Sk+1 − Ek+1, (5.41)

µ1(k+1) = ρ1µ1(k), (5.42)

µ2(k+1) = ρ2µ2(k). (5.43)

At the end of each iteration we modify the W matrix changing its diagonal entries

to zero, similarly to what was done in the batch algorithm and in the mcRoSuRe-A

in Chapter 3.

With those updates at hand, one is able to perform few iterations (even a single

one can be used) of the algorithm for every new frame arriving. That is, every time

a new column is added to the data matrix A, we should update matrices W, S, and

E using Eqs. (5.38), (5.39), and (5.40), respectively.

∗The value of λ∗1 depends on the value of Π for the current point.
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5.2.2 Initialization and Multiple Iterations

To analyze how well this sequential version of the method was performing the re-

construction of frames using the previously obtained frames, a small experiment

was performed. In this initial setup, we initialized the A matrix with 20 frames of

the video and executed the algorithm for a total of 75 frames. The W matrix was

initialized with random numbers obtained from a uniform distribution between zero

and one. Figure 5.2 shows the resulting W matrix.

Figure 5.2: Resulting W matrix with random initialization. It is clear from the
image that W matrix is far from being sparse and do not reflect the desired structure.

One can readily see by inspecting Figure 5.2 that the W matrix structure is far

from what one would expect and also not sparse. This happens because with few

iterations it is hard for the algorithm to overcome the initial trend of the matrix

structure. Another way of initializing the W matrix was attempted, this time using

a matrix whose entries were all ones as initialization for this matrix. The resulting

W matrix is displayed in Figure 5.3.

The improvement in the sparsity of W with the initialization procedure shown

in Figure 5.3 is easy to perceive. Also, the structure of the matrix is much closer

to what one could expect with a previous knowledge of PSA algorithms such as the

RoSuRe.

A second experiment was performed to determine the effect on W of the execu-

tion of multiple iterations of the updates from Eqs. (5.38), (5.39),and (5.40) every

time a new column was added to data matrix A. Three setups were tested, first

with 3 iterations per new frame, second with 10 iterations per new frame, and fi-

nally with 100 iterations per new frame. Again we initialized the A matrix with 20

frames of the video and executed the algorithm for a total of 75 frames, and used

the initialization of the W matrix with all-ones entries. The resultant matrices can
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Figure 5.3: Resulting W matrix with initialized with all-one entries. It is clear from
the image that W matrix is much sparser than with the previous initialization.

be seen in Figure 5.4.

Observing Figure 5.4 it is easy to perceive the strong impact that the number

of iterations per frame has on the sparsity and structure of the W matrix. The

resulting matrix after 10 iterations for every frame already resembles that of the

RoSuRe experiments presented in Chapter 2 and in [48], while after 100 iterations

per frame the final W resembles an ideal block-diagonal matrix. An intermediate

number of iterations per frame should be adopted in the algorithm for better results.

5.3 Performance Evaluation

To substantiate the potential of our proposed algorithms, we consider a background-

foreground separation in some challenging scenarios such as those with highly dy-

namic backgrounds, comparing its performance with that of some of the state of the

art methods.

We performed two sets of experiments using different databases described in

Section 4.1. The first set of experiments aims to compare the performance of the

proposed methods in a widely known database and do so by comparing its per-

formance against that of state-of-the-art moving object detection algorithms. The

second aims to observe the potential of the proposed methods when compared with

the SCM-RPCA [60] and other matrix decomposition algorithms in the same con-

ditions presented in the original work that introduced the SCM-RPCA method.

In all experiments we chose the commonly used Precision (Pr), Recall (Re) and

F-Measure (F1) metrics to assess the results. Differently from the experiments in

Chapter 3 where the DIS metric was employed since the F1 was not obtainable due
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(a) 3 iterations per frame

(b) 10 iterations per frame

(c) 100 iterations per frame

Figure 5.4: Resulting W matrices using multiple iterations per frame. In (a) we
used three iterations per frame, in (b) we used 10 iterations per frame, and in (c)
we used 100 iterations per frame. It is possible to see that the number of iterations
has a strong impact in the sparsity of the matrix with (c) being very close to the
ideally pictured W matrix.
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to the dataset characteristics. The definition of those metrics are:

Pr =
TP

TP+FP
, Re =

TP

TP+FN
, F1 = 2× Pr×Re

Pr+Re
, (5.44)

where TP is the number of foreground pixels correctly classified, FP is the number

of background pixels wrongly classified as foreground, and FN is the number of

foreground pixels wrongly classified as background.

The first experiment videos are part of the 2014 Change Detection.NET [63],

dynamic background. Those videos feature occlusions, hard-to-model moving back-

grounds and larger number of frames per videos. Among the two datasets that we

used in our experiments, this is the one with the most total frames, even if the total

number of videos is smaller (6 against the 15 videos from UCSD).

Due to the large number of frames in each video, some modifications were imple-

mented in the proposed batch method. Since our batch method constructs a data

matrix A with all the video frames, with a large number of frames in the videos

(some are almost 8000 frames long) the original data matrix becomes excessively

large, therefore making it impossible for the algorithm to run without exceeding

the memory limitations of the available computers. To be able to cope with this

amount of data we divided the video in 400-frames long sequences and performed

the algorithm using only those frames. At the end, after processing every 400-frame

sequences the W, S, and E matrices were concatenated to form again the data

structures with the same size as the original one.

In this first experiment we compared the outputs of the detection masks gen-

erated by the proposed batch algorithm and that of some state-of-the-art moving

object detection methods discussed in Chapter 4, namely IUTIS-3 [97], PAWCS [98],

AMBER [100], SWCD [101], and CwisarDRP [102].

Figure 5.5 shows some detection examples for the proposed algorithm in the

videos os the Change Detection.net database. It is possible to see, by observing those

frames, that the method presents encouraging results in such complex dataset, being

able to detect the moving objects, while presenting few false positive detections, as

desired.

Table 5.1 shows the average detection results of the proposed batch method, as

well as some other unsupervised state-of-the-art methods on foreground-background

separation, discussed in Section 4.4 for the 2014 Change Detection.net, dynamic

background dataset.

The results shown in Table 5.1 make it clear that the proposed method is not

working well for the Change Detection.net dataset. However, it is possible to see

that the method present a Precision score close to that of some of the other compared

state-of-the-art methods. This is due to the fact that the Precision score is highly
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(a) Original (b) Saliency Map (c) G. Truth (d) Alg. Output

(e) Original (f) Saliency Map (g) G. Truth (h) Alg. Output

(i) Original (j) Saliency Map (k) G. Truth (l) Alg. Output

Figure 5.5: First column ((a),(e),(i)) shows the original images, second column
((b),(f),(j)) the saliency maps used to compute the focus matrices, third column
((c),(g),(k)) shows the ground truths for the background-foreground separation, and
column ((d),(h),(l)) shows the proposed algorithm output. The proposed algorithm
displays few false positive detections in those sample frames from the Change De-
tection.net.

influenceable by the number of false positive detections, which is low in our method

due to the constraining attention matrices. On the other hand, the large number

of false negative detections lowers the Recall and F1 scores resulting in this poor

performance.

We estimate that the excess false negative detections come from the fact that the

saliency detection method employed [86] is not able to focus the algorithm attention

in the right regions for such complex videos. Figure 5.6 shows some cases where the

saliency maps are not able to help the foreground segmentation.

The second set of experiments features a different dataset and other methods of

comparison. This set compares the performance of the proposed methods with other

matrix decomposition methods. The methods chosen in our comparative evaluation

for the second set of experiments are the original solution for the RPCA in [26], the

Lagrangian-Stable PCP (Lag-PCP), originally introduced in [105], Robust Motion-

Assisted Matrix Restauration (RMAMR) presented in [81], the three-term decom-

position model (3TD) proposed in [80], and the more recent SCM-RPCA [60]. In

this set of experiments we chose to use the same saliency detection method as before

to keep the comparison with the SCM-RPCA fair.
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Table 5.1: Performance experiments using the dynamic background portion of the
2014 Change Detection.net [63].

Avg. Re Avg. Pr Avg. F1
IUTIS-3 [97] 0.878 0.924 0.896
PAWCS [98] 0.887 0.903 0.894

AMBER [100] 0.912 0.799 0.834
SWCD [101] 0.869 0.863 0.863

CwisarDRP [102] 0.814 0.850 0.827
Proposed Batch Algorithm 0.323 0.706 0.355

We evaluate the performance of the selected algorithms using the UCSD back-

ground subtraction dataset [78], comprising 18 videos with highly dynamic and

moving background scenes, as described in Section 4.1.

A similar experiment involving these methods and metrics has already been pre-

sented in [60]. For consistency with those experiments, and ease of comparison, we

choose to use the same four videos from the UCSD background subtraction dataset

in our tests. The four videos selected from the UCSD data set for experimentation,

feature a maritime environment with moving water as part of the background.

Table 5.2: Performance experiments using four videos from the UCSD dataset [78].
Birds Surfers Boats Ocean Rank

Re Pr F1 Re Pr F1 Re Pr F1 Re Pr F1 Avg. F1
RPCA 0.842 0.094 0.170 0.754 0.075 0.137 0.814 0.100 0.178 0.748 0.115 0.200 0.171

Lag-SPCP 0.413 0.322 0.362 0.244 0.282 0.261 0.405 0.215 0.281 0.484 0.313 0.380 0.321
RMAMR 0.823 0.229 0.358 0.775 0.248 0.376 0.816 0.230 0.359 0.777 0.175 0.286 0.345

3TD 0.586 0.604 0.595 0.538 0.405 0.462 0.673 0.473 0.556 0.563 0.337 0.442 0.509
SCM-RPCA 0.573 0.638 0.604 0.518 0.565 0.541 0.663 0.550 0.602 0.457 0.544 0.497 0.561

Proposed Sequential Algorithm 0.620 0.463 0.530 0.447 0.466 0.456 0.353 0.499 0.414 0.313 0.484 0.381 0.445
Proposed Batch Algorithm 0.674 0.981 0.799 0.829 0.958 0.889 0.877 0.946 0.910 0.514 0.923 0.660 0.815

Table 5.2 shows the results of an preliminary experiment considering only 4

videos from UCSD background subtraction dataset, whose results for some of the

compared methods are reported in [60]. From these results, one can notice the best

average F1 performance for the proposed batch method, as well as the fact that for

each video individually the proposed batch method had the best F1 results. We can

also observe the performance of the sequential method with 1 iteration per frame in

this experiment. Although the results are not as impressive as those of the batch

method, which was already expected, they are consistently superior to the other

compared methods.

Figure 5.7 shows examples of detection in some frames of the four videos used

in the first experiment, using the UCSD dataset. It is possible to notice that, in

most cases, the detection output by our proposed batch algorithm is very close to

the ground truth with few erroneous detections.

A second, more comprehensive test was performed by applying the best three

methods of the experiment shown in Table 5.2 (the ones proposed here and the
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(a) Original (b) Saliency Map (c) G. Truth

(d) Original (e) Saliency Map (f) G. Truth

(g) Original (h) Saliency Map (i) G. Truth

Figure 5.6: First column ((a),(d),(g)) shows the original images, second column
(b),(e),(h) the saliency maps used to compute the focus matrices, and third col-
umn ((c),(f),(i)) shows the ground truths for the background-foreground separation.
One can see that the saliency maps are misleading in those examples, making the
algorithm have bad results for this database.

SCM-RPCA) to all 15 of the 18 videos in the UCSD dataset that had their ground

truths available. Table 5.3 shows the average results for the three methods using

the same metrics presented before. One can readily notice the superior results of

the proposed batch method, demonstrating the improvement of using the union-

of-subspaces technique in the background-foreground separation. It is important

to notice that the proposed sequential (1 iteration per frame) algorithm also had

a superior result when compared with the SCM-RPCA, although, once again, still

bellow the batch version results.

Table 5.4 shows an efficiency comparative study considering the execution times

of the three algorithms from the last experiment on all videos tested in the last

experiment. These results were obtained using a computer with an Intel i7-7700HQ

CPU @ 2.80 GHz, with 32GB RAM, and running Matlab 2017a. One can notice

that the execution times of the proposed algorithm are from 5 to 6 times larger than
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(a) Original (b) Saliency Map (c) G. Truth (d) SCM-RPCA (e) Batch Alg.
Output

(f) Original (g) Saliency Map (h) G. Truth (i) SCM-RPCA (j) Batch Alg.
Output

(k) Original (l) Saliency Map (m) G. Truth (n) SCM-RPCA (o) Batch Alg.
Output

(p) Original (q) Saliency Map (r) G. Truth (s) SCM-RPCA (t) Batch Alg.
Output

Figure 5.7: The first Column ((a),(f),(k),(p)) shows the original images, the sec-
ond column ((b),(g),(l),(q)) the saliency maps used to compute the focus matri-
ces, the third column ((c),(h),(m),(r)) shows the ground truths for the background-
foreground separation, the fourth column ((d),(i),(n),(s)) shows the output of SCM-
RPCA, and the last column ((e),(j),(o),(t)) shows the proposed batch algorithm
output.
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Table 5.3: Performance experiments using the complete UCSD dataset [78].
Avg. Re Avg. Pr Avg. F1

SCM-RPCA 0.263 0.916 0.371
Proposed Sequential Algorithm 0.495 0.545 0.502

Proposed Batch Algorithm 0.634 0.917 0.735

the ones of the SCM-RPCA. This is so because in the proposed batch algorithm

the optimization was set up with smaller update steps when compared to the one

of SCM-RPCA. We did so on account of the nature of the algorithm that requires

the projection of the data in multiple subspaces. As a consequence, the number of

iterations to reach convergence is higher in the proposed method, leading to longer

processing times. However, the simpler sequential algorithm has a time performance

comparable to that of the SCM-RPCA, due to its small time per iterations and the

fact that the method executes only 1 iteration per frame.

Table 5.4: Average time in seconds taken by each algorithm to run the videos of the
UCSD dataset [78].

SMC-RPCA Proposed Batch Proposed Sequential
Avg. Time per Video 7.86 42.17∗ 7.84

Avg. Time per Iteration 0.28 0.21 0.21
∗In most cases the method reached the 200 iteration limit.

In all our experiments, the output of the proposed algorithm was post processed

by applying a hard threshold and performing a morphological area open opera-

tion [106] to remove small false positive detections. In addition, detections that

lasted less than two frames were removed as outliers. It is important to note that

in the results shown in Table 5.3, the SCM-RPCA algorithm output was subjected

to the same type of post processing. The selected parameter setup for the proposed

methods in the second set of experiments is shown in Table 5.5, and was obtained

experimentally using a grid search in one of the videos os the UCSD dataset. The

setup and implementation of the SCM-RPCA was obtained from the original method

author.

Table 5.5: Parameter setup for the proposed algorithms
λ1 λ2 µ1 µ2 ε

Proposed Sequential Algorithm 103 104 0.5 8.9 0.01
Proposed Batch Algorithm 107 107 107 107 0.01
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5.4 Summary

In this chapter we introduced two novel approaches to solve the challenging

background-foreground separation in the presence of moving backgrounds by using

the restrictions of the attention matrices (shape constraint and confidence map) that

help the updates on the foreground detection matrix around the area surrounding

the region of interest. This, as a result, reduces the false positive rate.

In addition to the use of the focus matrices, the method proposed in this paper

applies a powerful technique capable of more generally capturing the background

part of the video as a union-of-subspaces, in contrast to the single subspace projec-

tion used by most methods.

The proposed method was compared with some of the state-of-the-art matrix

decompositon methods using the test videos from UCSD moving background dataset

and with other moving object detection methods using the dynamic background

videos from the 2014 Change Detection.net, which includes many videos with very

complex highly dynamic backgrounds and moving foregrounds.

The results of the experiments in the Change Detection.net dataset show that

the proposed batch algorithm has few false positive detections, while having a fair

amount of false negative detections, leading to a low precision score. This is most

likely due to the results of the saliency detection method employed in the algorithm

pre-processing.

The results of the experiments in the UCSD dataset show that the proposed

methods exhibit superior performance in terms of correct detection when compared

to other similar methods in the literature. Both batch and sequential algorithms

display superior precision, recall and F1 metric.

Although the results are not homogeneous in all experimented datasets it is

evident that the proposed methods have a strong potential in the field of moving

foreground detection with moving background. The advantages of using a UoS

to project the low-rank representation of the video is evidenced in the performed

experiments and the use of the attention matrices allow the algorithm to avoid false

positive detections, which are a common problem in this type of algorithms.
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Chapter 6

Conclusions and Future work

This chapter presents a discussion on the main results obtained in this thesis, as

well as a summary of the main contributions of the algorithms that were proposed

throughout the previous chapters. It also discusses a few ideas that could be further

explored to follow up the presented results and improve the proposed methods.

6.1 Conclusions

This thesis discusses the use of sparse plus low-rank matrix decomposition to deal

with the problem of moving object and change detection in videos. Throughout the

previous chapters we discussed some of the main open challenges in the literature

and presented new algorithms to solve them.

The foundation of all the algorithms discussed in this thesis was the representa-

tion of a frame of the video by a combination of a low-rank model of other frames

either from a reference videos, that represents the unperturbed state of the en-

vironment, or from the same video. Differently from most sparse plus low-rank

decomposition methods, the proposed algorithms are based on the RoSuRe method,

that projects the original set of frames into a union of subspaces, instead of pro-

jecting them into a single subspace. This allows the proposed algorithm to be able

to cope with more complex scenarios and represent a more wide range of images,

therefore making it possible to employ such algorithms in challenging scenarios such

as videos from moving cameras and videos with moving cluttered background.

The thesis is divided in two main topics, namely moving-camera videos change

detection and moving object detection in the presence of moving background. For

each of those topics, two algorithms were proposed, as part of solution.

For the moving-camera videos change detection the first proposed algorithm is

called mcRoSuRe-TA. This method implements upgrades to the mcRoSuRe method,

allowing it to perform without the need of a previous temporal alignment between

reference and target videos. This modification comes from the observations that the
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structure matrix Wt carries information that may be used to find the correspon-

dences between reference and target frames in the moving camera object detection

framework. In order to obtain such matrix and make the time alignment possible,

an initial step is introduced in the algorithm to find the exact region of the reference

video that corresponds to the target one. After that, a new reference data matrix is

created using only the frames from the reference videos that lay on the region that

corresponds to the target. The second algorithm, namely the mcRoSuRe-A, further

modifies the mcRoSuRe-TA aiming to accelerate the matrix computations and al-

low the algorithm to get closer to real-time performance. To do so, we downsample

the reference data matrix in the first step of the algorithm to reduce the number

of computations needed to obtain the time-aligned data matrix. The use of such

technique allows the algorithm to perform up to 100 times faster than the original

mcRoSuRe algorithm with at least the same detection scores.

Extensive experiments were performed comparing the proposed algorithms with

some of the state-of-the-art methods in moving-camera object detection. The results

from those experiments show that the proposed methods achieve better detection

results in very complex scenarios such as those present in the VDAO dataset.

In the second part, the moving object detection in the presence of moving back-

ground, we proposed two distinct algorithms that perform the moving foreground

detection. The first one, namely the batch algorithm, performs the decomposition of

the data matrix into three different matrices, namely the sparse foreground matrix,

the residue matrix, and the low-rank background representation matrix. To per-

form this decomposition the algorithm uses a pair of matrices called the attention

matrices, which are obtained via a saliency detection method, performing a human

eye fixation prediction in each frame of the original video. The second algorithm,

namely the sequential one, is meant to perform the same task as the previous one,

but instead of using all the frames of the video at once, it computes the decompo-

sition each time a new frame appears, therefore updates the previous results based

on the newly available information. Extensive experiments were performed in two

different datasets to assess the performance of the proposed algorithms. While com-

paring the algorithm with state-of-the-art moving object detection methods using

the CDNET dataset, we observed that it is highly dependent on the performance of

the saliency method employed to obtain the attention matrices, thus it is important

to obtain those with a method that performs well given the video context one wants

to use. In a different set of experiments using the UCSD database, the proposed

algorithm had the best performance among the algorithms that perform the sparse

plus low-rank decomposition, showing results that were twice as better as the pre-

vious state-of-the-art algorithms in this category, indicating the great potential of

such algorithms. The experiments also revealed that the sequential implementa-
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tion of the proposed method is able to obtain results superior to those of similar

algorithms while executing only one iteration per frame.

6.2 Future Work

The line of work developed here is very promising, as the obtained results are of great

quality and matches the achievements of several state-of-the-art methods. In this

section, the main ideas for the continuity of this line of work will be presented. For

the sake of the organization, this section will be separated by the type of contribution

they relate to.

6.2.1 Change Detection with Sparse Representation

Observing the behaviour of the algorithm, some modifications on the form of dealing

with the data can be proposed. Since most of the database that was used to test this

method (VDAO) is composed of videos whose camera movement is predominantly

translational, one can try to use a different data representation to form some kind

of data matrix that does not deal directly with pixels nor frames, but columns of

frames.

In translational moving-camera videos, if the camera jitter and parallax effect are

not to be considered, in a sequence of frames, most of the columns will remain the

same, except those of the border of the frame that will either bear new information

or disappear. This reasoning could lead to the adoption of a structure that uses

these columns as the smaller representation and then tries to build the target video

frames as a combination of the reference video columns, in such scenario. That

could lead to an optimization where only a minimum number of columns has to be

kept to represent the whole video. This reduction on the amount of stored data can

help the algorithm to run faster and more efficiently, as it will have a smaller yet

representative search-space.

6.2.2 Moving Object Detection in Moving Cluttered Back-

grounds

The performed experiments point to the fact that the proposed algorithms yield a

small amount of false positive detections in the results. But they also showed that

depending on how complex are the backgrounds more attention has to be given to

the obtention of the attention matrices, meaning that we should explore the use

of different saliency detection methods to obtain higher quality attention matrices,

and therefore avoid excessive false negative detections.

92



Another interesting point that should also receive some attention is to modify the

proposed sequential algorithm to make its results closer to those obtained with the

batch one. Although its performance is already superior to some of the other sparse

plus low-rank representation methods there is a gap between the performance of the

sequential and batch algorithms, that can, perhaps, be reduced with modifications

in its cost function.
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sinais obtidos em trajetórias fechadas utilizando um conjunto genérico de
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Appendix A

Mathematical Derivation of

Moving Object Detection

Algorithm

In this appendix we will show the derivation of the batch and sequential algorithms

introduced in Chapter 5.

A.1 Batch Algorithm Derivation

For the batch algorithm the goal is to find the updates that allow one to minimize

the following function

min
W,E,S

‖W‖1 + λ1‖Π� S‖1 + λ2‖E‖1,

s.t.



A = L + Θ� S + E

LW = L

Wii = 0, ∀i

(E− ED)1 � ε, where D =

[
0T 0

I 0

] ,

(A.1)

where W is the weight matrix bearing the relations between the columns of the low-

rank representation L of the data matrix A, S is the sparse matrix where foreground

objects shall lie, and E is the sparse residue matrix composed of the parts of A not

represented by neither L nor S. The matrix 1 of dimensions m × n has all entries

equal to 1.

To find a solution for this optimization problem, we will employ the ALM and

the ADMM, as in [73]. This solution is detailed in the sequel. From Eq. (A.1), one
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has that

LW − L = 0, (A.2)

and

L = A−Θ� S− E. (A.3)

Replacing Eq. (A.2) into (A.3), we get

(A−Θ� S− E)W − (A−Θ� S− E) = 0, (A.4)

which yields the following expanded cost function using the ALM-ADMM

method [70]

Γ(W,E,S,Y1,Y2, µ1, µ2) = ‖W‖1 + λ1‖Π� S‖1 + λ2‖E‖1 +

〈LW − L,Y1〉+ 〈E− ED− 1ε,Y2〉 +
µ1

2
‖LW − L‖2

F +
µ2

2
‖E− ED− 1ε‖2

F . (A.5)

To obtain the update function for Wk+1 we need to write the augmented cost

function with the terms that depend on Wk

Wk+1 = argminW

[
‖W‖1 + 〈Lk+1W − Lk+1,Y1(k)〉+

µ1(k)

2
‖Lk+1W − Lk‖2

2

]
,

(A.6)

Linearizing the function around the Wk operation point

Wk+1 = argminW

[
‖W‖1 + 〈(−Θ� S)Ŵk+1,Y1(k)〉 +

µ1(k)

2
‖Lk+1W − Lk+1‖2

2 +
µ1(k)η1

2
‖W −Wk‖2

2

]
(A.7)

with Ŵ = LW−L. We can use the quadratic approximation the function of W as

F (W) ≈ F (Wk) + 〈W −Wk, ∇̄F (Wk)〉 according to [105], with

F (W) = Tr
[
YT

1(k)(Lk+1W − Lk+1)
]

+
µ1(k)

2
‖Lk+1W − Lk+1‖2

2. (A.8)

In this formulation we have

Wk+1 = argminW

[
‖W‖1 +

µ1(k)η1

2

∥∥∥∥W −
(

Wk −
1

µ1(k)η1

∇̄F (Wk)

)∥∥∥∥2

2

]
. (A.9)

We can, therefore, write it as [107]

Wk+1 = τ 1
µ1(k)η1

[
Wk −

∇̄F (Wk)

µ1(k)η2

]
. (A.10)
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Which means that, to find the final update for Wk+1 we only need to find

∇̄F (Wk). To do so we will re-write F (W), so that

F (W) = Tr
[
YT

1(k)(Lk+1W − Lk+1)
]

+
µ1(k)

2
‖Lk+1W − Lk‖2

2 (A.11)

= Tr
[
YT

1(k)Lk+1W −YT
1(k)Lk+1

]
+
µ1(k)

2
〈Lk+1Ŵ,Lk+1Ŵ〉 (A.12)

= Tr
[
WTLT

k+1Y1(k)

]
− Tr

[
YT

1(k)Lk+1

]
+
µ1(k)

2
〈Lk+1Ŵ,Lk+1Ŵ〉, (A.13)

here we can expand the righthand side of the equation fixing one of the W at Wk

and letting the other as it stands. By doing so with both the original W, and since

Ŵ = LW − L, we get

F (W) = Tr
[
WTLT

k+1Y1(k)

]
− Tr

[
YT

1(k)Lk+1

]
+

µ1(k)

2
× 2〈Lk+1Ŵk+1,Lk+1W − Lk+1〉

(A.14)

= Tr
[
WTLT

k+1Y1(k)

]
− Tr

[
YT

1(k)Lk+1

]
+

µ1(k)Tr
[
(Lk+1W − Lk+1)T(Lk+1Ŵk+1)

] (A.15)

= Tr
[
WTLT

k+1Y1(k)

]
− Tr

[
YT

1(k)Lk+1

]
+

µ1(k)Tr
[
WTLT

k+1(Lk+1Ŵk+1)− LT
k+1(Lk+1Ŵk+1)

] (A.16)

= Tr
[
WTLT

k+1Y1(k)

]
− Tr

[
YT

1(k)Lk+1

]
+

µ1(k)Tr
[
WTLT

k+1(Lk+1Ŵk+1)
]
− µ1(k)Tr

[
LT

k+1(Lk+1Ŵk+1)
]
.

(A.17)

Since we are going to take the derivative with respect to W, we can simplify all the

terms of F (W) that do not depend on S, so that

F (W) = Tr
[
WTLT

k+1Y1(k)

]
+ µ1(k)Tr

[
WTLT

k+1(Lk+1Ŵk+1)
]

(A.18)

= 〈LT
k+1Y1(k),W〉+ µ1(k)〈LT

k+1(Lk+1Ŵk+1),W〉. (A.19)

Which leads to

∇̄F (W) = LT
k+1Y1(k) + µ1(k)L

T
k+1(Lk+1Ŵk+1), (A.20)

and

Wk+1 = τ 1
µ1(k)η1

Wk +
LT
k+1

(
Lk+1 − Lk+1Wk −

Y1(k)

µ1(k)

)
η1

 . (A.21)

Now, to obtain the updates for Sk+1 we will take the derivatives of Eq. A.5 with

respect to S. Since the derivatives of all terms that do not depend on S are zero,
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we only need to consider part of the terms of Eq. A.5 to find the update of S.

Sk+1 = argminS

[
λ1‖Π� S‖1 + 〈(−Θ� S)Ŵk+1,Y1(k)〉+

µ1(k)

2
‖Lk+1W − Lk‖2

2

]
,

(A.22)

To find the updates of S matrix we will consider the case where the Π is a

all-ones matrix, therefore leaving us with the following expanded cost function

Sk+1 = argminS

[
λ1‖S‖1 + 〈(−Θ� S)Ŵk+1,Y1(k)〉+

µ1(k)

2
‖Lk+1W − Lk‖2

2

]
.

(A.23)

Linearizing the function around the Sk operation point

Sk+1 = argminS

[
λ1‖S‖1 + 〈(−Θ� S)Ŵk+1,Y1(k)〉 +

µ1(k)

2
‖Lk+1W − Lk+1‖2

2 +
µ1(k)η2

2
‖S− Sk‖2

2

]
. (A.24)

We can now use the quadratic approximation the function of S as F (S) ≈
F (Sk) + 〈S− Sk, ∇̄F (Sk)〉 according to [105], with

F (S) = 〈(−Θ� S)Ŵk+1,Y1(k)〉+
µ1(k)

2
‖Lk+1W − Lk+1‖2

2. (A.25)

In this formulation we have

Sk+1 = argminS

[
λ1‖S‖1 +

µ1(k)η2

2

∥∥∥∥S− (Sk −
1

µ1(k)η2

∇̄F (Sk)

)∥∥∥∥2

2

]
. (A.26)

We can, therefore, write it as [107]

Sk+1 = τ λ1
µ1(k)η2

[
Sk −

∇̄F (Sk)

µ1(k)η2

]
. (A.27)

Which means that, to find the final update for Sk+1 we only need to find ∇̄F (Sk).

To do so we will re-write F (S), so that

F (S) = Tr
[
YT

1(k)(−Θ� S)Ŵk+1

]
+
µ1(k)

2
‖Lk+1W − Lk‖2

2 (A.28)

= Tr
[
−ŴT

k+1(−Θ� S)TY1(k)

]
+

µ1(k)

2
× 2〈Lk+1Ŵk+1, (A−Θ� S− Ek+1)Ŵk+1〉

(A.29)

= Tr
[
−(−Θ� S)TY1(k)Ŵ

T
k+1

]
+

µ1(k)Tr
[
ŴT

k+1(A−Θ� S− Ek+1)TLk+1Ŵk+1

]
.

(A.30)
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Since we are going to take the derivative with respect to S, we can simplify all the

terms of F (S) that do not depend on S, so that

F (S) = Tr
[
−ST(−Θ�Y1(k))Ŵ

T
k+1

]
+ µ1(k)Tr

[
−ŴT

k+1(Θ� S)TLk+1Ŵk+1

]
(A.31)

= 〈−(Θ�Y1(k))Ŵ
T
k+1,S〉+ µ1(k)Tr

[
−ST(Θ� Lk+1)Ŵk+1Ŵ

T
k+1

]
(A.32)

= 〈−(Θ�Y1(k))Ŵ
T
k+1,S〉+ µ1(k)〈−(Θ� Lk+1)Ŵk+1Ŵ

T
k+1,S〉. (A.33)

Which leads to

∇̄F (S) = −(Θ�Y1(k))Ŵ
T
k+1 − µ1(k)(Θ� Lk+1)Ŵk+1Ŵ

T
k+1, (A.34)

and

Sk+1 = τ λ1
µ1(k)η2

Sk +

(
(Θ� Lk+1)Ŵk+1 +

(Θ�Y1(k))

µ1(k)

)
ŴT

k+1

η2

 . (A.35)

In the case where Π is not the identity matrix the update becomes

Sk+1 = τ λ∗1
µ1(k)η2

Sk +

(
(Θ� Lk+1)Ŵk+1 +

(Θ�Y1(k))

µ1(k)

)
ŴT

k+1

η2

 , (A.36)

where the value of λ∗1 depends on the value of Π for the current point.

Finally, to derive the update for Ek+1 we need to write the augmented cost

function with the terms that depend on Ek

Ek+1 = argminE

[
λ2‖E‖1 + 〈−EŴk+1,Y1(k)〉+ 〈E− ED− 1ε,Y2(k)〉 +

µ1

2
‖Lk+1Wk+1 − Lk+1‖2

F +
µ2

2
‖E− ED− 1ε‖2

2

]
. (A.37)

Linearizing the function around the Ek operation point

Ek+1 = argminE

[
λ2‖E‖1 + 〈−EŴk+1,Y1(k)〉+ 〈E− ED− 1ε,Y2(k)〉 +

µ1(k)

2
‖Lk+1Wk+1 − Lk+1‖2

F +
µ2(k)

2
‖E− ED− 1ε‖2

2 +
µ2(k)η3

2
‖E− Ek‖2

2

]
.

(A.38)

We can now use the quadratic approximation of the function of E as F (E) ≈
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F (Ek) + 〈E− Ek, ∇̄F (Ek)〉 according to [105], with

F (E) = 〈−EŴk+1,Y1(k)〉+ 〈E− ED− 1ε,Y2(k)〉 +
µ1(k)

2
‖Lk+1Wk+1 − Lk+1‖2

F +
µ2(k)

2
‖E− ED− 1ε‖2

2 (A.39)

In this formulation we have

Ek+1 = argminE

[
λ2‖E‖1 +

µ2(k)η3

2
‖E− 1

µ2(k)η3

∇̄F (Ek)‖2
2

]
. (A.40)

We can, therefore, write it as [107]

Ek+1 = τ λ2
µ2(k)η3

[
Ek −

∇̄F (Ek)

µ2(k)η3

]
. (A.41)

Which means that, to find the final update for Ek+1, we only need to find

∇̄F (Ek). To do so we will re-write F (E) = F (E(1)) + F (E(2)), with

F (E(1)) = Tr
[
−YT

1(k)EŴk+1

]
+
µ1(k)

2
‖Lk+1Wk+1 − Lk‖2

2, (A.42)

and

F (E(2)) = 〈E− ED− 1ε,Y2(k)〉+
µ2(k)

2
‖E− ED− 1ε‖2

2. (A.43)

Now, we re-write those terms as

F (E(1)) = Tr
[
−YT

1(k)EŴk+1

]
+
µ1(k)

2
‖Lk+1Wk+1 − Lk‖2

2 (A.44)

= Tr
[
−ŴT

k+1E
TY1(k)

]
+
µ1(k)

2
‖(A−Θ� Sk+1 − E)Ŵk+1‖2

2 (A.45)

= Tr
[
−ETY1(k)Ŵ

T
k+1

]
+

µ1(k)

2
〈(A−Θ� Sk+1 − E)Ŵk+1, (A−Θ� Sk+1 − E)Ŵk+1〉

(A.46)

= 〈−Y1(k)Ŵ
T
k+1,E〉 +

µ1(k)

2
× 2〈(A−Θ� Sk+1 − Ek)Ŵk+1, (A−Θ� Sk+1 − E)Ŵk+1〉

(A.47)

= 〈−Y1(k)Ŵ
T
k+1,E〉+ µ1(k)〈LkŴk+1, (A−Θ� Sk+1 − E)Ŵk+1〉 (A.48)

= 〈−Y1(k)Ŵ
T
k+1,E〉+ µ1(k)Tr

[
((A−Θ� Sk+1 − E)Ŵk+1)TLkŴk+1

]
.

(A.49)

Since we are going to take the derivative with respect to E, we can simplify all the
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terms of F (E) that do not depend on E, so that

F (E(1)) = 〈−Y1(k)Ŵ
T
k+1,E〉+ µ1(k)Tr

[
−(EŴk+1)TLkŴk+1

]
(A.50)

= 〈−Y1(k)Ŵ
T
k+1,E〉+ µ1(k)Tr

[
−ŴT

k+1E
TLkŴk+1

]
(A.51)

= 〈−Y1(k)Ŵ
T
k+1,E〉+ µ1(k)Tr

[
−ETLkŴk+1Ŵ

T
k+1

]
(A.52)

= 〈−Y1(k)Ŵ
T
k+1,E〉+ µ1(k)〈−LkŴk+1Ŵ

T
k+1,E〉. (A.53)

Which leads to

∇̄F (E(1)) = −Y1(k)Ŵ
T
k+1 − µ1(k)LkŴk+1Ŵ

T
k+1. (A.54)

Now, for F (E(2)) we have

F (E(2)) = 〈E− ED− 1ε,Y2(k)〉+
µ2(k)

2
‖E− ED− 1ε‖2

2 (A.55)

= Tr
[
YT

2(k)(E− ED− 1ε)
]

+
µ2(k)

2
〈E− ED− 1ε,E− ED− 1ε〉, (A.56)

again, ignoring what does not depend on E and fixing twice one of the E to Ek in

the second part

F (E(2)) = Tr
[
YT

2(k)E(I−D)−YT
2(k)1ε

]
+

µ2(k)

2
× 2× Tr

[
(E− ED)T(Ek − EkD− 1)ε

] (A.57)

= Tr
[
(I−D)TETY2(k)

]
− Tr

[
YT

2(k)1ε
]

+

µ2(k)Tr
[
ET(Ek − EkDk − 1ε)−DTET(Ek − EkD− 1ε)

] (A.58)

= Tr
[
ETY2(k)(I−D)T

]
− Tr

[
YT

2(k)1ε
]

+

µ2(k)〈Ek − EkD− 1ε,E〉+ µ2(k)〈−(Ek − EkD− 1ε)DT,E〉
(A.59)

= 〈Y2(k)(I−DT),ET〉 − Tr
[
YT

2(k)1ε
]

+

µ2(k)〈(Ek − EkD− 1ε)(I−DT),E〉,
(A.60)

which gives us

∇̄F (E(2)) = Y2(k)(I−DT) + µ2(k)(Ek − EkD− 1ε)(I−DT). (A.61)

Putting both parts together we have

∇̄F (E) = −Y1(k)Ŵ
T
k+1 − µ1(k)LkŴk+1Ŵ

T
k+1 + Y2(k)(I−DT) +

µ2(k)(Ek − EkD− 1ε)(I−DT), (A.62)
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which leads us to the final update function

Ek+1 = τ λ2
µ2(k)η3

Ek +

µ1(k)

µ2(k)

(
Lk+1Ŵk+1 +

Y1(k)

µ1(k)

)
ŴT

k+1

η3

−

(
Ek − EkD− 1ε+

Y2(k)

µ2(k)

)
(I−DT)

η3

 . (A.63)

A.2 Sequential Algorithm Derivation

For the sequential algorithm the goal is to find the updates that allow one to mini-

mize the following function

min
W,E,S

‖W‖1 + λ1‖Π� S‖1 + λ2‖E‖1,

s.t.



A = L + Θ� S + E

LW = L

Wii = 0, ∀i

(E− ED)1 � ε, where D =

[
0T 0

I 0

] ,

(A.64)

where W is the weight matrix bearing the relations between the columns of the low-

rank representation L of the data matrix A, S is the sparse matrix where foreground

objects shall lie, and E is the sparse residue matrix composed of the parts of A not

represented by neither L nor S. The matrix 1 of dimensions m × n has all entries

equal to 1. And I is the identity matrix.

To find a solution for this optimization problem, we will employ a similar so-

lution to that used in the previous section, with the exception we are not using

the duals during the convexification step. The expanded function will feature only

the quadratic penalty term from the previously used ALM expansion. The new ex-

panded cost function will be obtained through the use of incremental subgradient-

proximal methods described in details in [103] due to its strong convergence guar-

antees and stability, as explained in the referred article, since in our sequential im-

plementation we will use few iterations to minimize the cost function. This solution

is detailed in the sequel. From Eq. (A.64), one has that

LW − L = 0, (A.65)

and

L = A−Θ� S− E. (A.66)
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Replacing Eq. (A.65) into (A.3), we get

(A−Θ� S− E)W − (A−Θ� S− E) = 0, (A.67)

which yields the following expanded cost function

Γ(W,E,S, µ1, µ2) = ‖W‖1 + λ1‖Π� S‖1 + λ2‖E‖1 +
µ1

2
‖LW − L‖2

F +
µ2

2
‖E− ED− 1ε‖2

F . (A.68)

To obtain the update function for Wk+1 we need to write the augmented cost

function with the terms that depend on Wk

Wk+1 = argminW

[
‖W‖1 +

µ1(k)

2
‖Lk+1W − Lk‖2

2

]
, (A.69)

Linearizing the function around the Wk operation point

Wk+1 = argminW

[
‖W‖1 +

µ1(k)

2
‖Lk+1W − Lk+1‖2

2 +
µ1(k)η1

2
‖W −Wk‖2

2

]
.

(A.70)

We can now use the quadratic approximation the function of W as F (W) ≈
F (Wk) + 〈W −Wk, ∇̄F (Wk)〉 according to [105], with

F (W) =
µ1(k)

2
‖Lk+1W − Lk+1‖2

2 (A.71)

In this formulation we have

Wk+1 = argminW

[
‖W‖1 +

µ1(k)η1

2

∥∥∥∥W −
(

Wk −
1

µ1(k)η1

∇̄F (Wk)

)∥∥∥∥2

2

]
. (A.72)

We can, therefore, write it as [107]

Wk+1 = τ 1
µ1(k)η1

[
Wk −

∇̄F (Wk)

µ1(k)η2

]
. (A.73)

Which means that, to find the final update for Wk+1 we only need to find

∇̄F (Wk). To do so we will re-write F (W), so that

F (W) =
µ1(k)

2
‖Lk+1W − Lk‖2

2 (A.74)

=
µ1(k)

2
〈Lk+1Ŵ,Lk+1Ŵ〉, (A.75)

here we can expand the righthand side of the equation fixing one of the W at Wk

and letting the other as it stands. By doing so with both the original W, and since
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Ŵ = LW − L we get

F (W) =
µ1(k)

2
× 2〈Lk+1Ŵk+1,Lk+1W − Lk+1〉 (A.76)

= µ1(k)Tr
[
(Lk+1W − Lk+1)T(Lk+1Ŵk+1)

]
(A.77)

= µ1(k)Tr
[
WTLT

k+1(Lk+1Ŵk+1)− LT
k+1(Lk+1Ŵk+1)

]
. (A.78)

Since we are going to take the derivative with respect to W, we can simplify all the

terms of F (W) that do not depend on S, so that

F (W) = µ1(k)Tr
[
WTLT

k+1(Lk+1Ŵk+1)
]

(A.79)

= µ1(k)〈LT
k+1(Lk+1Ŵk+1),W〉 (A.80)

Which leads to

∇̄F (W) = µ1(k)L
T
k+1(Lk+1Ŵk+1), (A.81)

and

Wk+1 = τ 1
µ1(k)η1

[
Wk +

LT
k+1(Lk+1 − Lk+1Wk)

η1

]
, (A.82)

Now, to obtain the updates for Sk+1 we will take the derivatives of Eq. A.68 with

respect to S. Since the derivatives of all terms that do not depend on S are zero,

we only need to consider part of the terms of Eq. A.68 to find the update of S.

Sk+1 = argminS

[
λ1‖Π� S‖1 +

µ1(k)

2
‖Lk+1W − Lk‖2

2

]
. (A.83)

To find the updates of S matrix we will consider the case where the Π is the

identity matrix, therefore leaving us with the following expanded cost function

Sk+1 = argminS

[
λ1‖S‖1 +

µ1(k)

2
‖Lk+1W − Lk‖2

2

]
. (A.84)

Linearizing the function around the Sk operation point

Sk+1 = argminS

[
λ1‖S‖1 +

µ1(k)

2
‖Lk+1W − Lk+1‖2

2 +
µ1(k)η2

2
‖S− Sk‖2

2

]
. (A.85)

We can now use the quadratic approximation of the function of S as F (S) ≈
F (Sk) + 〈S− Sk, ∇̄F (Sk)〉 according to [105], with

F (S) =
µ1(k)

2
‖Lk+1W − Lk+1‖2

2. (A.86)
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In this formulation we have

Sk+1 = argminS

[
λ1‖S‖1 +

µ1(k)η2

2

∥∥∥∥S− (Sk −
1

µ1(k)η2

∇̄F (Sk)

)∥∥∥∥2

2

]
. (A.87)

We can, therefore, write it as [107]

Sk+1 = τ λ1
µ1(k)η2

[
Sk −

∇̄F (Sk)

µ1(k)η2

]
. (A.88)

Which means that, to find the final update for Sk+1 we only need to find ∇̄F (Sk).

To do so we will re-write F (S), so that

F (S) =
µ1(k)

2
‖Lk+1W − Lk‖2

2 (A.89)

=
µ1(k)

2
× 2〈Lk+1Ŵk+1, (A−Θ� S− Ek+1)Ŵk+1〉 (A.90)

= µ1(k)Tr
[
ŴT

k+1(A−Θ� S− Ek+1)TLk+1Ŵk+1

]
. (A.91)

Since we are going to take the derivative with respect to S, we can simplify all the

terms of F (S) that do not depend on S, so that

F (S) = µ1(k)Tr
[
−ŴT

k+1(Θ� S)TLk+1Ŵk+1

]
(A.92)

= µ1(k)Tr
[
−ST(Θ� Lk+1)Ŵk+1Ŵ

T
k+1

]
(A.93)

= µ1(k)〈−(Θ� Lk+1)Ŵk+1Ŵ
T
k+1,S〉. (A.94)

Which leads to

∇̄F (S) = −µ1(k)(Θ� Lk+1)Ŵk+1Ŵ
T
k+1, (A.95)

and

Sk+1 = τ λ1
µ1(k)η2

[
Sk +

(Θ� Lk+1)Ŵk+1Ŵ
T
k+1

η2

]
(A.96)

In the case where Π is not the identity matrix the update becomes

Sk+1 = τ λ∗1
µ1(k)η2

[
Sk +

(Θ� Lk+1)Ŵk+1Ŵ
T
k+1

η2

]
, (A.97)

where the value of λ∗1 depends on the value of Π for the current point.

Finally, to derive the update for Ek+1 we need to write the augmented cost

function with the terms that depend on Ek

Ek+1 = argminE

[
λ2‖E‖1 +

µ1

2
‖LW − L‖2

F +
µ2

2
‖E− ED− 1ε‖2

2

]
. (A.98)
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Linearizing the function around the Ek operation point

Ek+1 = argminE

[
λ2‖E‖1 +

µ1(k)

2
‖LW − L‖2

F+

µ2(k)

2
‖E− ED− 1ε‖2

2 +
µ2(k)η3

2
‖E− Ek‖2

2

]
. (A.99)

We can now use the quadratic approximation of the function of E as F (E) ≈
F (Ek) + 〈E− Ek, ∇̄F (Ek)〉 according to [105], with

F (E) =
µ1(k)

2
‖LW − L‖2

F +
µ2(k)

2
‖E − ED − 1ε‖2

2 +
µ2(k)η3

2
‖E − ED − 1ε‖2

2

(A.100)

In this formulation we have

Ek+1 = argminE

[
λ2‖E‖1 +

µ2(k)η3

2
‖E− 1

µ2(k)η3

∇̄F (Ek)‖2
2

]
. (A.101)

We can, therefore, write it as [107]

Ek+1 = τ λ2
µ2(k)η3

[
Ek −

∇̄F (Ek)

µ2(k)η3

]
. (A.102)

Which means that, to find the final update for Ek+1 we only need to find ∇̄F (Ek).

To do so we will re-write F (E) = F (E(1)) + F (E(2)), with

F (E(1)) =
µ1(k)

2
‖Lk+1W − Lk‖2

2, (A.103)

and

F (E(2)) =
µ2(k)

2
‖E− ED− 1ε‖2

2. (A.104)

Now, we re-write those terms as

F (E(1)) =
µ1(k)

2
‖Lk+1Wk+1 − Lk‖2

2 (A.105)

=
µ1(k)

2
‖(A−Θ� Sk+1 − E)Ŵk+1‖2

2 (A.106)

=
µ1(k)

2
〈(A−Θ� Sk+1 − E)Ŵk+1, (A−Θ� Sk+1 − E)Ŵk+1〉 (A.107)

=
µ1(k)

2
× 2〈(A−Θ� Sk+1 − Ek)Ŵk+1, (A−Θ� Sk+1 − E)Ŵk+1〉

(A.108)

= µ1(k)〈LkŴk+1, (A−Θ� Sk+1 − E)Ŵk+1〉 (A.109)

= µ1(k)Tr

[(
(A−Θ� Sk+1 − E)Ŵk+1

)T

LkŴk+1

]
. (A.110)

Since we are going to take the derivative with respect to E, we can simplify all the
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terms of F (E) that do not depend on E, so that

F (E(1)) = µ1(k)Tr
[
−(EŴk+1)TLkŴk+1

]
(A.111)

= µ1(k)Tr
[
−ŴT

k+1E
TLkŴk+1

]
(A.112)

= µ1(k)Tr
[
−ETLkŴk+1Ŵ

T
k+1

]
(A.113)

= µ1(k)〈−LkŴk+1Ŵ
T
k+1,E〉. (A.114)

Which leads to

∇̄F (E(1)) = −µ1(k)LkŴk+1Ŵ
T
k+1. (A.115)

Now, for F (E(2)) we have

F (E(2)) =
µ2(k)

2
‖E− ED− 1ε‖2

2 (A.116)

=
µ2(k)

2
〈E− ED− 1ε,E− ED− 1ε〉, (A.117)

again, ignoring what does not depend on E and fixing twice one of the E to Ek in

the second part

F (E(2)) =
µ2(k)

2
× 2× Tr

[
(E− ED)T(Ek − EkD− 1)ε

]
(A.118)

= µ2(k)Tr
[
ET(Ek − EkDk − 1ε)−DTET(Ek − EkD− 1ε)

]
(A.119)

= µ2(k)〈Ek − EkD− 1ε,E〉+ µ2(k)〈−(Ek − EkD− 1ε)DT,E〉 (A.120)

= µ2(k)〈(Ek − EkD− 1ε)(I−DT),E〉, (A.121)

which gives us

∇̄F (E(2)) = µ2(k)(Ek − EkD− 1ε)(I−DT). (A.122)

Putting both parts together we have

∇̄F (E) = −µ1(k)LkŴk+1Ŵ
T
k+1 + µ2(k)(Ek − EkD− 1ε)(I−DT), (A.123)

which leads us to the final update function

Ek+1 = τ λ2
µ2(k)η3

Ek +

µ1(k)
µ2(k)

(Lk+1Ŵk+1)ŴT
k+1

η3

− (Ek − EkD− 1ε)(I−DT)

η3

 .
(A.124)
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