
A FAST AND ADAPTIVE THREAT DETECTION AND PREVENTION

ARCHITECTURE

Antonio Gonzalez Pastana Lobato

Dissertação de Mestrado apresentada ao

Programa de Pós-graduação em Engenharia

Elétrica, COPPE, da Universidade Federal do

Rio de Janeiro, como parte dos requisitos

necessários à obtenção do t́ıtulo de Mestre em

Engenharia Elétrica.

Orientador: Otto Carlos Muniz Bandeira

Duarte

Rio de Janeiro

Dezembro de 2017

A FAST AND ADAPTIVE THREAT DETECTION AND PREVENTION

ARCHITECTURE

Antonio Gonzalez Pastana Lobato

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO

ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE

ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE

JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A

OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA

ELÉTRICA.

Examinada por:

Prof. Otto Carlos Muniz Bandeira Duarte, Dr.Ing.

Prof. Francisco de Assis Tenorio de Carvalho, Dr.

Prof. Pedro Braconnot Velloso, Dr.

RIO DE JANEIRO, RJ – BRASIL

DEZEMBRO DE 2017

Lobato, Antonio Gonzalez Pastana

A Fast and Adaptive Threat Detection and Prevention

Architecture/Antonio Gonzalez Pastana Lobato. – Rio de

Janeiro: UFRJ/COPPE, 2017.

XVI, 64 p.: il.; 29, 7cm.

Orientador: Otto Carlos Muniz Bandeira Duarte

Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia Elétrica, 2017.

Referências Bibliográficas: p. 59 – 64.

1. Machine Learning. 2. Threat Detection and

Prevention. 3. Stream Processing. I. Duarte, Otto

Carlos Muniz Bandeira. II. Universidade Federal do Rio

de Janeiro, COPPE, Programa de Engenharia Elétrica. III.

T́ıtulo.

iii

À minha famı́lia.

iv

Agradecimentos

Gostaria de agradecer principalmente à minha famı́lia. Sem o apoio dela não

seria posśıvel realizar este trabalho. Um agradecimento especial aos meus pais e

avós por todo o tempo e esforço gastos com a minha formação.

Agradeço à UFRJ e a todos os professores, em especial aos professores do De-

partamento de Eletrônica e do Grupo de Teleinformática e Automação, por toda a

participação em minha formação. Em especial, agradeço ao meu orientador, profes-

sor Otto Carlos Muniz Bandeira Duarte, por todos os conselhos e dedicação durante

a orientação. Uma menção especial de agradecimento ao colega Martin Andreoni

Lopez pela ajuda e discussões neste trabalho. Gostaria de agradecer também a todos

os colegas do GTA/UFRJ pelo ótimo ambiente de trabalho no qual este trabalho foi

desenvolvido.

Esse trabalho foi realizado com apoio do CNPq, CAPES, FAPERJ, and FAPESP

(2015/24514-9, 2015/24485-9, and 2014/50937-1).

v

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

UMA ARQUITETURA PARA DETECÇÃO ADAPTATIVA E RÁPIDA

PREVENÇÃO DE AMEAÇAS

Antonio Gonzalez Pastana Lobato

Dezembro/2017

Orientador: Otto Carlos Muniz Bandeira Duarte

Programa: Engenharia Elétrica

A detecção tardia de ameaças aumenta significativamente o risco de danos ir-

reparáveis, desabilitando qualquer tentativa de defesa. Esse trabalho propõe uma

Arquitetura rápida e adaptativa para Detecção e Prevenção de Ameaças baseada

em processamento de fluxos e algoritmos de aprendizado de máquina. A arquite-

tura proposta combina a adaptabilidade de algoritmos de aprendizado de máquina

treinados em tempo real com a eficiência de métodos treinados em lote. Um con-

junto de dados foi criado através da captura tanto de tráfego leǵıtimo, quanto de

tráfego malicioso. Dois modos de se combinar os pacotes em fluxo são avaliados: um

agregando todos os pacotes em uma janela de tempo; e o outro analisando apenas

os primeiros pacotes de um fluxo. Além do conjunto de dados criado, um conjunto

de dados contendo tráfego de usuários de uma das maiores operadoras do Brasil

também é utilizado. Para avaliar a arquitetura de detecção proposta, cinco algorit-

mos de classificação e dois de anomalia são desenvolvidos. A arquitetura proposta

provê ótima adaptabilidade, detectando novas ameaças em tempo real, e um bom

compromisso entre taxa de detecção de ameaças e de falsos positivos na detecção

por anomalias. Um esquema baseado em Redes Definidas por Software, que auto-

maticamente previne ameaças apenas com informações dos primeiros pacotes de um

fluxo, também é proposto. A proposta eficientemente bloqueia ameaças, é robusta

e escala de acordo com a demanda, mesmo em cenários nos quais os atacantes usam

IP mascarado. Além disso, a escalabilidade é avaliada, ao aumentar o número de

núcleos de processamento de fluxos e alocar mais recursos para elementos sensores.

Os resultados mostram uma alta acurácia, acima de 90% e um tempo de detecção

de ameaças de quatro microsegundos, o que permite o disparo imediato de contra-

medidas.

vi

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

A FAST AND ADAPTIVE THREAT DETECTION AND PREVENTION

ARCHITECTURE

Antonio Gonzalez Pastana Lobato

December/2017

Advisor: Otto Carlos Muniz Bandeira Duarte

Department: Electrical Engineering

The late detection of security threats causes a significant increase in the risk of

irreparable damages, disabling any defense attempt. We propose a fast and adap-

tive Threat Detection and Prevention Architecture based on stream processing and

machine learning algorithms. The proposed architecture combines the adaptability

of online trained machine learning algorithms with the efficiency of batch trained

methods. We create a dataset by capturing both legitimate and malicious traffic

and compare two ways of combining packets into flows, one gathering all packets

in a time window and the other analyzing only the first few packets of each flow.

Besides our created dataset, we also analyze our proposal on real data composed of

fixed-broadband Internet user traffic from one of the major Brazilian network oper-

ators. In order to evaluate our detection architecture, we develop five classification

algorithms and two anomaly detection methods. In fact, the proposed architecture

provides adaptability to new traffic behavior and achieves a high accuracy rate and

a good trade-off between attack detection and false positive rate in anomaly detec-

tion. We further propose an improved scheme, based on Software Defined Networks,

that automatically prevents threats by only analyzing the first few packets of a flow.

The proposal promptly and efficiently blocks threats, is robust, and can scale up,

even on scenarios in which the attacker employs spoofed IP address. Moreover, we

evaluate the scalability, by increasing the number of stream processing cores and

allocating more resources to sensor elements. The results shows an accuracy higher

than 90% and threat detection time of four microseconds, which promptly enables

counter measures.

vii

Contents

List of Figures x

List of Tables xiii

1 Introduction 1

1.1 Contributions and Publications . 5

1.2 Organization . 6

2 Related Work 7

3 The Proposed Threat Detection Architecture 12

3.1 Real-Time Training Architecture . 14

3.2 Lambda Architecture and Historical Training 15

3.3 Stream Processing Performance Evaluation 16

3.4 The Processing Schemes . 18

4 Security Datasets 20

4.1 Network Operator Dataset . 21

4.2 GTA/UFRJ Dataset . 22

4.2.1 GTA/UFRJ Dataset Attack Description 22

5 The Automatic Threat Detection 25

5.1 Historical based Threat Detection . 25

5.1.1 The Decision Tree Algorithm 26

5.1.2 The Artificial Neural Network Algorithm 26

5.1.3 The Support Vector Machine Algorithm 26

5.1.4 The Dataset Parameters Determination 27

5.1.5 Feature Selection and Principal Component Analysis 28

5.1.6 Historical based Threat Classification Results 29

5.2 Adaptive Threat Detection . 31

5.2.1 Stochastic Gradient Descent with Momentum 31

5.2.2 Online Support Vector Machine 34

viii

5.2.3 Threat Classification Summary 36

5.2.4 Anomaly Detection by Normal Distribution 38

5.2.5 Anomaly Detection by Entropy Time Series 40

6 The Intrusion Prevention Architecture 43

6.1 Defense Strategy against Spoofed Source IP Threats 45

6.2 Traffic Monitoring and Threat Block 47

6.3 Providing Elasticity to Sensor Elements 50

6.3.1 Resource Consumption Evaluation 51

6.3.2 Sensor Element Overload . 52

6.3.3 Sensor Element with Idle Resources 53

7 Conclusion 55

7.1 Future Work . 58

Bibliography 59

ix

List of Figures

3.1 The proposed architecture for real-time threat detection is composed

of the following modules: i) the Data Capture Module gathers data;

ii) the Processing Module analyzes incoming data and detects threats;

iii) the Visualization Module displays analytic information results;

and iv) the Prevention Module performs counter measures against

the threats. 13

3.2 The three-layered lambda architecture, which combines stream with

batch processing: stream processing, batch processing, and service

layers. 16

3.3 Throughput results of the platforms in terms of number of messages

processed per minute in function of the task parallelism. 17

3.4 Processing Schemes combining stream processing trained adaptive

algorithms with offline trained batch algorithms to perform real time

detection. 19

5.1 Accuracy of decision tree, SVM, and neural network algorithms for

the two flow combining approaches, all packets in a fixed time window

size and first few packets of a flow. 27

5.2 Eigenvalue for each flow feature. The eigenvalue associated to each

of the transformed features is proportional to the data variance. The

eight highest principal components represent 95% of the total data

variance. 29

5.3 Stochastic Gradient Descend Accuracy for the GTA/UFRJ dataset.

In both cases, the accuracy stays stable even with new attacks and

legitimate usage behavior changes. 33

5.4 Stochastic Gradient Descend Accuracy for the Network Operator

Dataset. Once again, even the accuracy stays stable over time, what

demonstrate great adaptability. 33

5.5 Online Support Vector Machine Accuracy for the GTA/UFRJ

dataset. Again, even with behavior changes, the accuracy stays stable. 35

5.6 Online Support Vector Machine Accuracy for the NetOp dataset. . . 36

x

5.7 False positive and attack detection rates for the GTA/UFRJ dataset

according to the threshold. The lower the threshold, more attacks

are detected, but also higher is the false positive rate. 39

5.8 False positive and attack detection rates for the NetOp dataset ac-

cording to the threshold. 40

5.9 False positive and attack detection rates for the GTA/UFRJ dataset

according to the entropy threshold. The threshold represents the

distance to the range that has the most entropy samples. 41

5.10 False positive and attack detection rates for the NetOp dataset ac-

cording to the entropy threshold. The threshold represents the dis-

tance to the range that has the most entropy samples. 41

6.1 Example of network monitored by the proposed architecture. The

network controller installs the mirroring rules to the capture module

that sends traffic information to the processing module. Through

alerts from the threat detection, the network controller blocks threats. 44

6.2 Experimental network topology used for the five packets scheme and

the malicious traffic block. 47

6.3 Network operation when three machines communicate with the

server. The server receives traffic without being affected by the pro-

posed scheme, while the analysis machine only receives the first pack-

ets of each flow. 48

6.4 Architecture operation under an attack that spoofs the source IP

address. Blocking rules cease to be effective when the IP is spoofed,

however after the identification of the interface through which the

attack enters the network, the attack is effectively blocked. 49

6.5 In the proposed architecture, a physical machine may contain several

sensor elements. The controller connected to the switches can redefine

flows taking into account the resource consumption statistics of the

sensor virtual machines. 50

6.6 CPU usage and lost packets percentage of a sensor element. The CPU

usage achieves its limit, while the sensor loses less than one percent

of the packets. 52

6.7 Overload scenario. The CPU usage of a sensor element gets to 100%,

Figure 6.7a, when the packet rate increases, Figure 6.7b. To ensure

that all flows are analyzed, a new sensor machine is activated and the

packets distributed. 52

xi

6.8 Unload scenario. The CPU usage of a sensor element decreases and

can be allocated to the other active sensor. The controller then re-

distributes the packets and one of the machines is deactivated. 53

xii

List of Tables

4.1 Dataset Features . 21

5.1 Accuracy comparison for the 3 classification methods in the GTA

Dataset. 30

5.2 Accuracy comparison for the 3 classification methods in the NetOp

Dataset. 30

5.3 GTA/UFRJ dataset: First Five Packets of Flow Neural Network Con-

fusion Matrix. 30

5.4 GTA/UFRJ dataset: One Second Time Window SVM Confusion Ma-

trix. 30

5.5 NetOp dataset: First Five Packets of Flow SVM Confusion Matrix. . 31

5.6 NetOp dataset: One Second Time Window SVM Confusion Matrix. . 31

5.7 SGD Confusion Matrix for the First Five Packets of Flow GTA/UFRJ

Dataset. 34

5.8 SGD Confusion Matrix for the One Second Time Window

GTA/UFRJ Dataset. 34

5.9 SGD Confusion Matrix for the First Five Packets of Flow NetOp

Dataset. 34

5.10 SGD Confusion Matrix for the One Second time Window NetOp

Dataset. 34

5.11 SVM Confusion Matrix for the First Five Packets of Flow GTA/UFRJ

Dataset. 36

5.12 SVM Confusion Matrix for the One Second time Window GTA/UFRJ

Dataset. 36

5.13 SVM Confusion Matrix for the First Five Packets of Flow NetOp

Dataset. 36

5.14 SVM Confusion Matrix for the One Second time Window NetOp

Dataset. 36

xiii

5.15 Threat classification summary for all algorithms and datasets. We

show accuracy, precision and recall to evaluate the methods. The 1s

stands for the one second time window approach for combining flows

and the 5p stands for the first five packets in the period. 37

xiv

Acronyms

CPU - Central Processing Unit

DAG - Direct Acyclical Graph

DDoS - Distributed Denial of Service

DoS - Denial of Service

DTW - Dynamic Time Warping

FITS - Future Internet Testbed with Security

FNT - Flexible Neural Trees

GRE - Generic Routing Encapsulation

ICA - Independent Component Analysis

ICMP - Internet Control Message Protocol

IDS - Intrusion Detection System

IoT - Internet of Things

IP - Internet Protocol

IPS - Intrusion Prevention System

KDD - Knowledge-Discovery in Databases

OPF - Optimum-Path Forest

xv

PCA - Principal Component Analysis

R2L - Remote to Local

SDN - Software Defined Networking

SGD - Stochastic Gradient Descent

SIEM - Security Information and Event Management

SOM - Self Organizing Map

SVM - Support Vector Machines

TCP - Transmission Control Protocol

UDP - User Datagram Protocol

xvi

Chapter 1

Introduction

The huge amount of data transferred in current communication networks creates

a challenging scenario for threat detection [1]. Threats and security attacks are

spread and tend to increase significantly in the future with the Internet of Things

(IoT), since more than 80 billion devices are estimated to be interconnected by

2025 [2]. This scenario implies a high monitoring and protection complexity, with

several challenges in security and data privacy. The billions of devices generate a

big amount of data streams, which need to be managed, processed, transferred, and

stored in a secure real-time way, avoiding important information loss. Moreover,

the big data characteristics of velocity, volume, and variety increase the number of

vulnerabilities to be explored by attackers. As a consequence, is mandatory to ensure

data security and privacy as well as the security of services and infrastructures,

especially considering cloud environments [3].

Attackers keep changing their behavior and searching unknown vulnerabilities to

surpass traditional security mechanisms. Therefore, zero-day attacks are increasing

by more than 125% each year, and it is expected to appear one new attack per day

by the year 2021 [4]. This kind of attack is hard to identify, because threat related

information becomes available, on average, 312 days after the attack occurs [5]. In

this sense, honeypots complement traditional security mechanisms by performing

two main tasks, to confuse attackers in order to protect the infrastructure, and

to collect information about attacker behavior and attack patterns [6]. Thereby,

honeypots are able to spot zero-day attacks and give insights on attacker actions

and behavior.

The threat detection time is of the essence to maintain security in cloud com-

puting systems. If detection takes too long, irreparable damages will occur. The

effective threat detection demands monitoring, processing, and management of data,

in order to extract useful information from network traffic [7]. Current security sys-

tems, such as Security Information and Event Management (SIEM), designed to

gather and analyze data in a single point, are not effective, since 85% of network in-

1

trusions are detected weeks after they had happened [2]. Therefore, the long threat

detection time makes any kind of defense unfeasible. We claim that analytic tech-

niques with real-time stream processing enable the immediate analysis of different

kinds of data and, consequently, they empower threat detection.

Threat detection alone is not enough to guarantee security. After the detection,

the attacker network traffic, even when attackers spoof their IP addresses, must

be effectively blocked, without compromising legitimate users. Threat Prevention

Systems have two modes of operation, the on-path and the off-path modes. In the

first one, the system analyzes the traffic before forwarding it to the destination.

The greatest advantage of this mode is that the system can act directly to block

the traffic. However, this approach presents downsides, since it introduces latency

and cannot correlate traffic from other sources. On the other hand, the second

approach, in which the traffic is duplicate from multiple sources and forwarded

to the Threat Prevention System, does not present these downsides, but needs an

additional scheme to act on network traffic. Both modes still need to adapt to

high rates of incoming traffic, to be able to inspect all packets without missing any

threat. The Threat Prevention System should avoid idle resources, scaling up when

necessary, and releasing the resources when the traffic rate decreases.

We propose and implement a fast and adaptive Threat Detection and Preven-

tion Architecture. Our Threat Detection Architecture combines several open source

platforms. The integrated architecture allows big data analysis in a stream pro-

cessing manner. Our architecture considers traffic from two sources, the legitimate

users, collected by the sensors spread in the network and the honeypots, to gather a

real-time feed of new threat data, enabling the architecture to automatically adapt

itself to new attacker behavior without any manual intervention. The processing

cluster receives the collected traffic data through tunnels that connect the dis-

tributed sensors and honeypots to the buffer. The buffer, implemented with the

publish/subscribe paradigm, adapts different incoming and processing data rates.

The detection core is a stream processor, in which we implement the proposed threat

detection algorithms. The stream processor analyzes the traffic data in real time,

considering the data as a unbounded stream, processing the data as it arrives. Since

our detection architecture aims to detect threats as fast as possible, we analyze the

performance of three main open-source stream processing platforms to choose the

most suited for the detection based on the processing throughput. The analyzed

data is then stored in a database to enable historical analysis using batch process-

ing. This offline analysis can be further used to adapt parameters of the real-time

detection, enhancing even more the adaptability of the proposed architecture.

The proposed architecture combines conventional batch processing over a his-

torical database with real-time stream processing analysis. We use both historical

2

data to train offline classification algorithms and real-time traffic data coming from

honeypots to train both online threat classification and anomaly detection methods.

Batch processing classification methods tend to be more accurate in scenarios where

the threats are known and there is no significant change in user behavior, because of

the analysis of the whole dataset at once, therefore being able to relate all the data

features to the classes. However, these methods do not detect zero-day attacks and

have to be trained once again to adapt to new usage patterns. Therefore, we propose

a real-time threat detection platform that integrates the use of distributed stream

processing with the collected data from honeypots to train online machine-learning

algorithms and the use of a historical database to further improve threat detection.

We consider all honeypot traffic as malicious, since there are no useful services at

the honeypots [8], and use this information to update the online threat detection

models. The methods that are trained online have greater capability to adapt to the

incoming data streams. We propose the use of both classification and anomaly de-

tection algorithms with real-time training. The classification algorithms are able to

detect more accurately the new threats that are performed against the honeypots,

whereas the anomaly detection algorithms complement the defense by comparing

the user behavior with normal network usage, therefore, detecting anomalous threat

behavior in other machines, rather than only the honeypots. Consequently, our plat-

form adapts itself to attacker and legitimate behavior changes and learns zero-day

attacks. Our proposed architecture features both online supervised threat classifi-

cation and unsupervised anomaly detection. Furthermore, we create a dataset with

labeled classes for the architecture evaluation, containing normal network usage and

several attacks, collecting the data through packet captures. Not only we evaluate

our architecture with the created dataset, we also use another dataset with real

broadband user data from one of the most important network operator in Brazil.

We propose and analyze two ways of combining the packets into flows to extract

features for the threat detection. The first one gathering all packets in a time win-

dow and the second, only the first packets of each flow, considering a flow as a

sequence of packets from the same source IP to the same destination IP within a

time window. Therefore, the first few packets of each flow are periodically analyzed.

We implement seven detection methods, five supervised classification methods, two

with real-time training and three with batch processing over a historical database,

to detect known threats and two real-time unsupervised anomaly detection methods

to detect zero-day attacks and unknown threats. The results show a high accuracy

for known threats, higher than 90% as traffic streams arrive. The implemented

anomaly detection methods present an exceptional trade-off between false positive

and detection rates, proving that the architecture can model well legitimate user

behavior, even when it changes over time.

3

Our proposed architecture scales up with the increase in network usage and

release idle resource to avoid additional costs. With the increase in network usage in

the past few years [2] and the usage pattern that tend to vary over time, considering

higher usage during some periods of the day, one of the architecture features is to

adapt itself to this inconstant traffic rate. We analyze the behavior of the network

sensor, to guarantee that they are able to extract the features of network flows. We

measure the processing required as the traffic grows. We implement these sensors

in virtual machines, therefore we dynamically create new machines and mirror part

of the incoming traffic when an overload is detected. Due to the flexibility provided

by the virtualization, we can also shutdown sensor machines, redirecting its traffic

to another virtual sensor machine with idle resources. Therefore, we allocate only

necessary resources to the sensor elements, reducing costs and optimizing physical

resource usage. Regarding the stream processing core of the architecture, responsible

to run the proposed methods on the data sent by the sensor methods, we can scale

up and down by changing the parallelism of our threat detection application. This

is achieved, thanks to the distributed stream processor of our architecture. We

achieved a threat detection time of four microseconds when scaling up the parallelism

of the threat detection. Thus, our architecture as a whole has an elastic behavior,

adapting to different traffic and processing rates.

We further propose a scheme based on Software Defined Networks [9] and the

analysis of the first few packets of a flow to implement Threat Prevention, with

a strategy to block threats with spoofed IP addresses. The scheme mirrors only

five packets to the sensor elements per period and effectively blocks threats as near

as possible to its origin based on the source IP. This scheme is robust and easily

scalable, since it protects the sensor elements against flood attacks, by sending only

few packets to be analyzed. However, a vulnerability would be the use of spoofed

IP addresses by the attackers that would overload the controller, with the huge

amount of rules to be created. To address this issue, we propose a strategy against

spoofed IP threats, based on the time between alerts. When two alerts arrive within

a short time, it indicates that the attacker changed its IP and surpassed the blocking

rule. Therefore, we monitor the flows to discover through which switch and port the

attacker sends the attack and when a third alert arrives, the controller knows exactly

from where the attack comes and can perform a counter-measure. The controller

only monitors the flows in the case of spoof IP threat is detected and leaves this

mode after the monitoring period to avoid the waste of resources. Hence, our scheme

is robust, since it protects both the sensors against flood attacks and the controller

against spoofed IP threats.

4

1.1 Contributions and Publications

The proposed Threat Detection and Prevention Architecture as a whole presents

several advantages, such as:

1. Effective and adaptive threat detection for both known and unknown threats.

In the proposed architecture, we train adaptive algorithms in real time, learn-

ing zero-day threats, together with batch-trained algorithms.

2. Fast counter measure against threats, since it relies on stream processing and

the rapid analysis of the first packets of a flow, without having to wait to the

end of the flow.

3. Robustness against flood attacks and with a high potential for scalability, since

the analysis machine only receives few packets per flow.

4. Elastic behavior since it scales up and down both the number of processing

cores and dynamically allocate sensor elements according to the demand.

5. Effective in the threat traffic block, since, with the use of Software Defined

Networks, the architecture blocks the malicious traffic as near of its source as

possible, even on scenarios with spoofed source IP addresses.

As a direct result from the contributions of this work, the following papers were

elaborated:

• “Uma Arquitetura Elástica para Prevenção de Intrusão em Redes Virtuais

usando Redes Definidas por Software”, published in XXXII Simpósio Brasileiro

de Redes de Computadores e Sistemas Distribúıdos - SBRC’2014 [10]

• “Um Sistema Acurado de Detecção de Ameaças em Tempo Real por Proces-

samento de Fluxos”, published in XXXIV Simpósio Brasileiro de Redes de

Computadores e Sistemas Distribúıdos - SBRC’2016 [11]

• “Um Sistema Adaptativo de Detecção e Reação a Ameaças”, published in

XVII Simpósio Brasileiro em Segurança da Informação e de Sistemas Com-

putacionais - SBSeg’17 [12]

• “An Adaptive Real-Time Architecture for Zero-Day Threat Detection”, to

appear in IEEE International Conference on Communications - ICC’2018 [13]

• “A Fast and Accurate Threat Detection and Prevention Architecture using

Stream Processing”, to be submitted to Computer Communications [14]

5

Moreover, as a co-author and indirect result, this work collaborated to the elab-

oration of the following papers:

• “A Performance Comparison of Open-Source Stream Processing Plat-

forms”, published in IEEE Global Communications Conference - GLOBE-

COM’2016 [15]

• “Um Algoritmo Não Supervisionado e Rápido para Seleção de Caracteŕısticas

em Classificação de Tráfego”, published in XXXV Simpósio Brasileiro de Redes

de Computadores e Sistemas Distribúıdos - SBRC’2017 [16]

• “Collecting and Characterizing a Real Broadband Access Network Traf-

fic Dataset”, published in 1st Cyber Security in Networking Conference -

CSNet’17 [17]

1.2 Organization

The rest of the work is organized as follows. Chapter 2 discuss related work. The

proposed Threat Detection Architecture is presented in Chapter 3. Both datasets

to evaluate the architecture are presented in Chapter 4. In Chapter 5 the dataset

parameters determination, the threat detection methods and results are discussed.

Chapter 6 presents the proposed scheme for threat prevention. Finally, Chapter 7

concludes the work.

6

Chapter 2

Related Work

Machine learning techniques have been successfully applied to detect threats in

computer networks. These techniques can be either supervised or unsupervised,

depending on whether the dataset is labeled or not, respectively. The supervised

analysis classifies attacks. Among the most well-known classification techniques are

neural networks, decision trees, and Support Vector Machines (SVM) [18]. Li et

al. combine a pattern matching technique, Dynamic Time Warping (DTW), and

SVM to generate intrusion detection rules [19]. The method is evaluated with the

traditional KDD dataset, to classify between Denial of Service (DoS), Probe, and

Remote to Local (R2L) attacks. However, their method can only deal with known

attacks. In the unsupervised analysis, there is no information regarding the class to

which each sample belongs. Pattern detection applies this kind of analysis. Lakhina

et al. propose the use of sample entropy for anomaly detection and they show that

this metric combined for source and destination IPs and ports, together with vol-

ume analysis can detect multiple sources of anomalies [20]. Common methods to

detect outliers apply the Principal Component Analysis (PCA) and Independent

Component Analysis (ICA), when data is assumed to follow a non-gaussian distri-

bution. Fernandes et al. use PCA combined with Ant Colony Optimization for

clustering, in order to perform profile-based for anomaly detection [21]. Palmieri

et al. use Independent Component Analysis (ICA) to separate the network traffic

from their different sources [22]. Then, decision trees are applied as to perform a

binary classification. However, PCA and ICA are both sensitive to noise when used

in anomaly detection [23]. An improved approach using Tsallis entropy in order to

detect anomalous traffic is proposed by Amaral et. al [24]. This technique is applied

to real and simulated traffic, but it only considers six features for the anomaly de-

tection. In our proposal, we improve the sample entropy metric by employing a time

series that takes into account 26 features of the traffic. Moreover, we implement six

other algorithms for threat detection to complement this method.

Bostani and Sheikan propose an unsupervised anomaly detection algorithm us-

7

ing MapReduce [25]. The work uses Optimum-Path Forest (OPF) algorithm to

project clustering models and detect anomalous behaviors. Nevertheless, the paper

only focuses on two specific attacks, sinkhole and selective-forwarding, disregarding

unknown threats or zero-day attacks. A similar platform is proposed by Singh et.

al.. The authors use MapReduce most popular implementation, Hadoop, to perform

big data analytics. In this case, big data analytics are used to detect Peer-to-Peer

botnets [26]. A limitation of this approach is that the entire analysis is executed

offline. Rathore et al. [27] proposed a Hadoop based real-time Intrusion Detection

System (IDS) for detecting threats in high-speed networks. Unlike our proposal that

also trains the model and classifies threats in real-time, they use the term real-time

referring to stream processing classification with offline training. Moreover, Rathore

et al. proposal and many others conventional traffic classification research are based

on artificial and outdated datasets, such as the KDD99 [28] dataset. In this paper,

we use two real traffic datasets, with packet captures from our lab and one of the

major network operators in Brazil.

The growing number of applications and users in the Internet motivated the de-

velopment and deployment of honeypots [29]. Honeypots are used to discover and

gather data about new threats. In honeypots, applications are deployed without any

useful data to trick attackers. Owerzarski et al. [30] proposes an unsupervised clus-

tering algorithm for anomaly characterization of honeypot traffic. Their approach

assumes that all honeypot traffic is malicious and classifies it into different anoma-

lies. In contrast, our work performs both supervised and unsupervised detection,

detecting threats among legitimate network traffic. Our work is able to use honeypot

data to train classification methods, therefore adapting itself to new threats.

Bernaille et al. [31] propose the use of the first packets of each flow to determine

the application of the analyzed traffic. They claim that applications presents a well-

defined behavior at the beginning and, therefore, the analysis of the first packets is

enough to classify applications. The work proposes a scheme to classify applications

that is heavily based on the packet size feature. The authors state that their work

is vulnerable to attackers who can adjust this parameter to trick the system. Our

work analyzes 26 features of each flow, therefore making it unfeasible for attackers

to adjust all parameters to trick the system. Peng et al. also utilize the first

packets applied to eleven supervised machine learning algorithms to identify Internet

traffic [32]. The first few packets for traffic identification approach is also applied

by Chen et al. [33]. Flexible Neural Trees (FNT) are applied to classify network

applications. However, the work focuses on traffic characterization, not detecting

threats, and process data offline. Donato et al. propose an open source platform

for application traffic identification [34]. Our proposed platform uses six machine

learning algorithms and achieve a good traffic identification.

8

Another important aspect approached by researches is the creation of datasets

to analyze, evaluate, and compare different threat detection systems. Sperotto et

al. [35] created a dataset with over 14 million of labeled flows. A number of other

works also create their own dataset to evaluate their proposals [36, 37]. Sangkatsanee

et al. classify attacks using different algorithms, while Morteza Amini et al. detect

anomaly in real-time with unsupervised neural networks. These works, however, do

not evaluate their proposals in scenarios with a large amount of traffic. Johnson and

Lazos [38] propose anomaly detection by aggregating IP flows. The results, however,

are not analyzed for real-time scenarios. Du et al. [39] employ a stream processing

platform to detect anomalies. Nevertheless, they only analyze incoming packet rates

and therefore only detect peaks that not necessarily correspond to anomalies, as in

the case of flash-crowds, obtaining possibly a high false positive rate. Zhao et al. [40]

also use a stream processing platform to detect network threats, but their results

are preliminary.

Snort and Bro are the most popular open source real-time intrusion detection

tools [41]. Snort only uses signature based intrusion detection, failing to detect

attack variations and requiring frequents updates in its signature database. Bro, on

the other hand, is a framework for anomaly detection, in which the user must create

its own applications. In contrast with our work, these traditional IDS do not adapt

to new threats, since Snort needs rules related to the new attack and Bro, used as

threat detection platform, needs to be programmed to detect this new threat. In

our work, we use Bro framework to extract flow features. The threat detection is

performed using stream processing and real-time machine learning algorithms that

can adapt to unknown threats.

The programmability of Software Defined Networking (SDN) enables the devel-

opment of security frameworks. Shin et al. propose Fresco [42], a modular high level

language to develop security applications. The language Pyretic [43] uses SDN and

its global view to define states in the network and is used to define which applica-

tion to run in each state. These frameworks show the potential of SDN to perform

security actions, such as mirror, block and deviate the traffic. In our work, we use

SDN to mirror the traffic to sensor elements and effectively block threats as near as

possible to its source, even in spoofed IP scenarios, due to SDN global view.

Several proposals also use SDN to develop security applications. In previous

work, we proposed a combination of Bro IDS and OpenFlow Pox controller [44]. We

implemented an algorithm to block a Denial of Service (DoS) attack in Bro that sends

messages to the controller in order to automatically mitigate the attack. However,

the implemented countermeasure blocks all traffic generated by the identified source

IP. Therefore, the system is ineffective under IP address spoofing. Lin et al. extend

the SDN architecture for traffic classification and Intrusion Prevention [45]. The

9

work detects DoS attacks and HTTP malicious request. Nevertheless, SDN features

are mainly used for load balancing and automatic attack detection is not addressed.

Bragaet al. propose a method to detect Distributed Denial of Service (DDoS) using

features collected by a NOX-OpenFlow application [46]. The features are collected

from switch flow tables and are used in a Self Organizing Map (SOM) detection

method. However, since the controller is responsible for the training of the detection

method, it can cause delays and overload in the controller.

Unlike the previously cited papers, we propose a specific architecture that allows

real-time stream processing analysis based on the support of a historical database

and incoming honeypot data. Hence, our architecture learns and adapts to new

attacks captured by the honeypots and monitors legitimate user behavior to detect

anomalies. Moreover, we implement our detection methods using stream process-

ing, to detect threats in real-time and to scale using distributed processing. Our

architecture prevents threats in a fast and scalable way by providing real-time accu-

rate detection of known and zero-day attacks through automatized classification and

anomaly detection methods. In this work, we implement five classification meth-

ods, two of them with real-time training, adapting without manual intervention to

new threats. In addition to these methods, we also propose two anomaly detection

algorithms that are also trained in real-time. Therefore, our work presents a solid

threat detect, since it handles known attacks, learns new attacks through honeypot

data, and also monitors normal usage behavior to detect anomalies that are poten-

tial threats. Moreover, to efficiently protect the network, our innovative proposal

benefits from the fast stream processing, the rapid machine-learning analysis of the

first few packets of each flow, and, due to the software defined network features, the

prompt threat block even when the attackers changes its IP. We use SDN to mirror

the traffic to the sensor elements, therefore avoiding any delay in legitimate user

communication. Our threat detection architecture sends alerts to the controller,

which is able to block the source IP in all network switches. If the attacker changes

its IP, this rule is ineffective. Therefore, we propose a scheme to protect the net-

work against these attacks, based on the time between the alerts. The intuition

behind this method is that, when two alerts arrive in short period, it represents the

possibility of a spoofed IP threat.

Besides scaling the processing capability of the stream processing core of our

threat detection architecture, we also evaluate the resources necessary for the sensor

elements to extract flow features. We instantiate new sensors when a overload is

detected and also disable sensors, when idle resources are detected. Using SDN we

mirror the traffic to the sensor elements and when a new sensor is instantiated, we

divide the flows between the sensors. On the other scenario, when a sensor is disabled

to spare resources, we first deviate the traffic from this sensor to another with idle

10

resources to ensure security during the whole process. To the best of our knowledge,

our work is the only one that combines a wide range of known and unknown threat

detection methods, adapting to zero-days threats, with threat prevention techniques,

and evaluates the performance of the architecture, scaling according the demand,

with an elastic behavior.

11

Chapter 3

The Proposed Threat Detection

Architecture

Analysis of massive statistical data usually employs batch processing. However,

this technique produces high latency, with responses in the order of tens of seconds,

while a great number of critical applications require real-time processing, with re-

sponses within a second [47]. Unlike batch processing, stream processing techniques

analyze massive unbounded data that are continuously generated. We propose an

architecture that detects threats using stream processing. We implement both online

trained and batch trained algorithms to achieve threat detection. Threat detection

is a critical application and requires real time responses to enable threat prevention

and avoid irreparable damages. In our proposal, we use honeypot data, along with

network traffic, to train online methods and detect network threats in real-time.

Along with this scheme, we also implement batch methods trained offline based on

the lambda architecture that enables big data analysis in a real-time manner [48].

The algorithms are trained offline and the parameters are loaded to the classifiers

implemented using stream processing. Therefore, our architecture achieves accurate

threat classification for known threats using batch trained algorithms and adaptive

detection with the online trained methods that are able to learn new threats based

on honeypot data.

The proposed platform architecture uses batch and stream process paradigm, but

introduces a new feature in the real-time stream processing to accept and process

the data from the Honeypots. The attacks obtained by the Honeypots are promptly

used to train online algorithms to detect zero-day attacks, as shown the Figure 3.1.

Our architecture allows real-time management and analysis of massive amounts of

information, it is divided in four modules: the data capture module, the processing

module, the visualization module, and the prevention module. The processing mod-

ule deals with the incoming data in real-time, training both online and batch trained

algorithms and detecting threats. The visualization module analyzes a huge amount

12

Figure 3.1: The proposed architecture for real-time threat detection is composed of
the following modules: i) the Data Capture Module gathers data; ii) the Processing
Module analyzes incoming data and detects threats; iii) the Visualization Mod-
ule displays analytic information results; and iv) the Prevention Module performs
counter measures against the threats.

of stored data in a distributed way through techniques such as MapReduce. In our

case, the offline processing improves the classification mathematical models. The

visualization module combines the obtained information of the previous modules to

provide an output composed by analytic data to the user. Finally, the prevention

module receives the alerts and performs counter measures against the attacks. The

Prevention Architecture is based on Software Defined Networks (SDN) and further

explained in Chapter 6.

The data capture module input is heterogeneous, coming from several traffic

analyzers and distributed honeypots. In order to capture data from different sources,

we deploy the traffic sensors at different network locations using Bro framework.

Bro is a real-time traffic analysis framework that provides its own network oriented

programming language, making flow abstraction easier to handle. Therefore, Bro

characterizes the network flows, synthesizing the packets information and grouping

then in time windows. The second type of data source comes from several honeypots.

In this work, we use the low-interaction open-source honeypot Dionaea to emulate

decoy services and log its interaction with the attacker.

The Information is received and abstracted into logs that are transported for

further analysis. We detect threats in traffic analyzer data and use honeypot data

to adapt our detection schemes in real-time. Apache Flume tool acts as a tunnel

connecting the data sources to the platform processing core. To avoid data overload,

we place a buffer, implemented using Apache Kafka, that adapts different genera-

13

tion and processing rates and uses the publish/subscribe model. Kafka is a message

broker that works as a publish/subscribe service and therefore adapts different pro-

duction and consumption rates, acting as a buffer. Producers then write their data

into topics from which the consumers can access the information.

Apache Storm is the stream processor of the threat detection architecture. We

choose this platform based on a performance evaluation, presented in Section 3.3,

against two other streaming platforms. Storm offers a distributed fault tolerant

stream processing framework. In addition, Storm processes data in memory, en-

suring low latency in real-time. The streams are processed in a topology, that is,

a Direct Acyclical Graph (DAG) composed of input elements, called Spouts, and

processing elements, called Bolts. The application can define the parallelism of the

Spouts and Bolts in a way that multiple stream samples can be processed simulta-

neously.

Once the architecture extracts analytic data from the streams, the results are

stored in a dynamic database to a posterior analysis. We use a distributed database

to achieve better resilience. The proposed architecture database is the Apache HBase

that stores massive amounts of spread data and provides real-time access. The stored

data contains the information gathered during the threat detection and can be pro-

cessed offline to calculate parameters to be used in the real-time model. In order to

make the architecture more accurate, there is a feedback, since the parameters, cal-

culated offline with historical data, adjust the processing model for real-time threat

detection. The architecture has an adaptive characteristic, because the parameters

are periodically updated, adapting to new network use patterns.

The Processing Module combines both real-time stream processing with histori-

cal data batch processing. The output of this module is then sent to the visualization

module, where statistical data about the detected threats are shown. The detec-

tion schemes implemented in the processing module operate both based in historical

data, similarly to the lambda architecture, or adapting the methods in real time

based on the incoming traffic source.

3.1 Real-Time Training Architecture

In our architecture we propose the use of online trained algorithms to adapt to

changes in real time. New attacks are detected by the honeypots and sent to the

online stream processor. Nevertheless, online classification methods requires labeled

data to be updated. We propose to label all data coming from honeypots as threats,

since there are not any real service in them and all access are meant to exploit a

vulnerability intentionally installed in the honeypots. Therefore, all flows that arrive

in the honeypots are labeled as threat and will be used by the algorithms to update

14

the parameters. This real-time data feed ensures an adaptive behavior to the threat

detection platform. Consequently, whenever an attacker performs a new attack or

changes his behavior, the classification models update.

The architecture considers as normal data the incoming flows from the traffic

analyzers in the network during the setup time, which is a period that the network

usage is monitored to guarantee that all the flows are legitimate. After this time,

when a flow coming from the network analyzer is classified as threat, the platform

sends an alert to the prevention module and does not update the parameters. If the

flow is considered normal, the platform updates the algorithm parameters, adapt-

ing to network behavior changes. This proposed data collection scheme ensures

adaptability for both legitimate and malicious behavior. The platform adapts to

acceptable changes in the network usage and learns new attacks that are performed

against the network honeypots. Zero-day attacks would pass unnoticed by signa-

ture based Intrusion Detection Systems or offline classification schemes, however,

the proposed data collection scheme is capable to learn these attacks and detect the

threat.

3.2 Lambda Architecture and Historical Training

Our proposed architecture is an evolution of the lambda architecture [48], shown

in Figure 3.2, to perform real-time threat detection with models trained using batch

processing. The lambda architecture allows real-time manipulation and analysis of

massive amounts of information and has three layers: the stream processing layer,

the batch-processing layer, and the service layer. The stream processing layer deals

with the incoming data in real-time. The batch-processing layer analyzes a huge

amount of stored data in a distributed way through techniques such as map-reduce.

Finally, the service layer combines the obtained information of the two previous

layers to provide an output composed by analytic data to the user. Therefore,

the lambda architecture goal is to analyze streaming data accurately, even with its

ever-changing incoming rate to obtain real-time results based on historical data.

In the lambda architecture the data analysis is divided in three steps: capture,

normalization and processing. First, the architecture captures data. Then, every

acquired information is sent to the normalization process, in which the features are

extracted at high processing rates with external parameters, such as flow window

size, number of packets to be analyzed and so on. Hence, the information about the

traffic are of higher quality, since the abstraction into flows allows the gathering of

more useful information.

The algorithms are trained in the batch processing layer based only in historical

data. The algorithms parameters are determined during this training phase and

15

Figure 3.2: The three-layered lambda architecture, which combines stream with
batch processing: stream processing, batch processing, and service layers.

then loaded on the stream processing layer. This approach achieves better real time

throughput, since there is no additional overload to train the algorithms online [11].

However, it needs to be retrained to learn new threats or adapt to different legitimate

behavior. The lambda architecture owns a feedback to periodically update batch

processing algorithms, based on stored traffic.

3.3 Stream Processing Performance Evaluation

One of our main concerns is to detect threats as fast as possible. If the detection

takes too much time, no reaction can neutralize the threat. For this reason, we

evaluate three open-source streaming platforms with our threat detection applica-

tion to choose the most suited one. We compare [15] two native distributed real

time stream processing systems, the Apache Storm and the Apache Flink, and one

micro-batch processing system, the Apache Spark Streaming. The native stream

processing approach processes each sample as they arrive, whereas the micro-batch

gathers the samples and groups then in micro-batches to be processed in a model

similar to map reduce. We have evaluated the opensource platforms [15] and the

results show that native stream processing systems presents a better throughput,

while micro-batch systems are able to recover from failure without any losses. When

processing each sample at a time, tracking whether each sample was processed or not

is very costly. Therefore, these systems present lower fault tolerance when compared

to the micro-batch approach. The sample grouping overhead added in the micro-

batch systems affects performance, however it enables to do batch acknowledgement,

therefore guarantying that each sample is processed exactly once.

16

As presented in the previous section, we choose Storm to be the processing core

of the proposed Threat Detection Architecture based on the processing throughput.

We compared Storm against Spark Streaming and Flink. We use our threat detec-

tion application as a benchmark to measure the stream processors performance. The

detection methods in our application are further presented in Section 5. The experi-

ment evaluates the performance of the platforms in terms of processing throughput.

The dataset is injected into the platforms in its totality and replicated as many

times as necessary. We measure the consumption of messages and processing rate of

each platform. We also vary the parallelism parameter, which represents the total

number of cores available for the cluster to process samples in parallel. Figure 3.3a

shows the performance results of this experiment for threat detection. Storm shows

a much higher throughput than the others do. Figure 3.3a also shows that Storm is

able to process 15 million samples per minute with our Threat Detection application,

which gives about four microseconds of detection time, allowing defense strategies

and significantly decreasing the risks.

2 4 6 8
0

0.5

1

1.5

2
x 10

7

Parallelism

M
e
s
s
a
g
e
s
 p

e
r

M
in

u
te

Storm

Spark

Flink

(a) Evaluation of the threat
detection performance.

2 4 6 8
0

5

10

15

x 10
6

Parallelism

M
e
s
s
a
g
e
s
 p

e
r

M
in

u
te

Flink

Storm

Spark Streaming

(b) Evaluation of the
wordcount performance.

Figure 3.3: Throughput results of the platforms in terms of number of messages
processed per minute in function of the task parallelism.

In addition to this experiment, we also use another benchmark, that counts the

number of times each word appears in a text, using a dataset that contains more

than 5 Million tweets [49]. All three platforms offer the word count application

as example. Therefore, we show this result to get an unbiased comparison that is

not affected by our implementation. Figure 3.3b shows the performance behavior

of the three system under a word count program. Once again Storm has a better

performance and, therefore, is the most adequate platform for our Threat Detection

Architecture.

17

3.4 The Processing Schemes

The proposed threat detection architecture combines multiple data sources and

performs real time threat detection based both on lambda architecture and on real

time adaptive training. Figure 3.4 shows the processing schemes that enable threat

detection combining real-time stream processing with offline batch processing. Sev-

eral sensors are spread across the network and monitors the traffic. The network

traffic features are extracted and are sent to both historical based and adaptive

threat detection methods, implemented in the stream processing core of the plat-

form. Moreover, the architecture stores this information to enable reprocessing of

the batch training to update the historical based threat detection algorithms pa-

rameters. Another important factor is the historical visualization that enables a

performance evaluation of the detection methods. It is crucial to see metrics such as

accuracy, threat detection rate, false positive rates, among others, to evaluate the

detection models. Based on this visualization, algorithms parameters are tuned and

the most suited models are chosen.

Online trained threat detection methods adapts in real time to legitimate be-

havior changes and are able to learn new attacks as they are performed. When

using offline batch processing training, the algorithms are only able to adapt when

they are retrained, while adaptive methods incrementally adjust their parameters.

To perform this incremental training, several honeypots send their gathered data

to perform stream processing training. The data is labeled as threat and is com-

bined with legitimate user traffic labeled by the adaptive threat detection after the

setup time, where the training is closely monitored to initialize the detection pa-

rameters. Having both legitimate and threat classes labeled in the income stream,

the online training updates the classification models incrementally as each sample

arrives. Moreover, the adaptive threat detection also performs anomaly detection

based only on legitimate traffic. The proposed anomaly detection algorithms model

user behavior and mark as an anomaly behaviors that are not within an acceptable

threshold.

Both detection approaches send alerts to the prevention schema that immedi-

ately triggers counter measures. The historical based detection focuses on detecting

known attacks, similar to signature based traditional detection approaches. How-

ever, there is a major difference since the machine learning methods requires less

human intervention and are easily updated by retraining the methods while signa-

ture based methods require that new rules are created and constant maintenance.

The online trained detection focus on detecting zero days threats that are the most

difficult to be detected, since there are no available information about the attacks

and how to discover them. The architecture address this problem using two ap-

18

Figure 3.4: Processing Schemes combining stream processing trained adaptive algo-
rithms with offline trained batch algorithms to perform real time detection.

proaches, the first by using a real time feed of honeypot data to train classification

methods and the second by using network traffic to model legitimate user behavior

and detect anomalies.

19

Chapter 4

Security Datasets

Only a few network security datasets are available to evaluate defense mecha-

nisms. The main reason to make security data unavailable is due to privacy concerns,

since traffic data may contain confidential information. The two best known avail-

able datasets are DARPA [50] and KDD 99 [28]. TCP/IP traffic and operating

system data collected from a simulated computer network compose the DARPA

dataset. While collecting the data, attacks were also simulated and labeled in the

dataset. The KDD 99 consists of a selection and grouping of DARPA features.

However, these datasets present several limitations [51]. The most important is that

the traffic does not correspond to a real network scenario, since it was simulated.

Besides that, there is redundant data, which affects the algorithms results. Another

issue is that these datasets are over 15 years old and do not represent current at-

tack scenario [52]. In our work, we evaluate our threat detection methods based

on two datasets, one composed with normal traffic from one of the major network

operators in Brazil combined with botnets attacks and the other created in our lab

GTA/UFRJ. For both datasets, we gather packets into flows. A flow is defined as

a sequence of packets from the same IP source to the same IP destination during a

time window.

In this work, we evaluate our threat detection proposal using two different

datasets, both containing real traffic. One dataset contains real traffic from a Brazil-

ian Network Operator and the other contains real traffic from our lab. The use of

two different datasets show that the proposed architecture and its detection meth-

ods works well even when considering distinct scenarios. Moreover, we compare two

modes of combining the packets into flows, both of them considering a flow as a

sequence of packets from the same IP source to the same IP destination during a

time window. In the former, we gather all packets in a fixed length time window.

We determine the length of this window further in the paper, based on the accuracy

of the classification algorithms. Each flow has 26 features, shown in Table 4.1, gen-

erated by the TCP/IP header data. The main features are: TCP, UDP, and ICMP

20

Table 4.1: Dataset Features

Number Feature
1 Number of TCP packets
2 Number of source ports
3 Number of destination ports
4 Number of FIN flags
5 Number of SYN flags
6 Number of PSH flags
7 Number of ACK flags
8 Number of URG flags
9 Number of UDP packets
10 Number of ICMP packets
11 Number of IP packets
12 Number of IP types of service
13 Average TTL
14 Average header length
15 Average packet length
16 Number of Do Not Frag flags
17 Number of More Frag flags
18 Average fragment offset
19 Number of RST flags
20 Number of ECE flags
21 Number of CWR flags
22 Average offset
23 Number of ICMP types
24 Number of ICMP codes
25 Mean inter packet arrival time
26 Variance of inter packet arrival time

packet rates; number of source and destination ports; number of each TCP flag; av-

erage and variance of inter-packet arriving time; average and variance of flow packet

length; among others. The second approach to define flows consists in extract the

features from the first few packets of each flow, being periodically analyzed since the

flow is defined also by a time window. The intuition behind this approach is that

for most applications, the initial behavior is well defined, which leads to a good flow

classification. Once again, we determine the number of packets to be considered

based on the accuracy of the classification methods.

4.1 Network Operator Dataset

The Network Operator (NetOp) dataset is composed by real-access information

from 373 residential broadband users from the city of Rio de Janeiro for a period of

one week [17]. Network traffic is anonymized due to privacy concerns. An Intrusion

21

Detection System (IDS) filtered the traffic. We analyzed the logs from this IDS and

the proportion of attacks filtered out was around 15%. Since we obtained the data

filtered by an IDS, we added real botnet malicious traffic captured in the work of

Garćıa et. al [53] so that we can detect these threats in order to evaluate our threat

detection platform. In the combined dataset, we keep 15% threat traffic proportion.

The botnet data has 13 different scenarios of malware infection. These attacks are

real and were not performed by the authors, since they infected the machines with

actual malwares.

4.2 GTA/UFRJ Dataset

A contribution of this work is the creation of a dataset with real network traffic

to evaluate the proposal1. The dataset has around 95 GByte of packet capture

raw data in computers from our lab, GTA at Federal University of Rio de Janeiro.

We added to the dataset both normal traffic and real network threats, which are

composed by seven types of DoS and nine types of probe. The analysis of packet

header information is able to detect two threat classes: Denial of Service (DoS)

attacks and probe. Therefore, we elaborate the dataset with several attacks from

both these classes. The DoS attacks are ICMP flood, land, nestea, smurf, SYN flood,

teardrop, and UDP flood. The different types of probe in the dataset are TCP SYN

scan, TCP connect scan, SCTP INIT scan, Null scan, FIN scan, Xmas scan, TCP

ACK scan, TCP Window scan, and TCP Maimon scan. We perform the threats

using tools from the Kali Linux distribution, which aims to test computer system

security. These attacks were labeled in the dataset by origin and destination IP

filters, separating the traffic belonging to the attack machines from the normal lab

network usage. The whole dataset has around 95 GByte of packet capture raw data.

4.2.1 GTA/UFRJ Dataset Attack Description

In the Local Area Network Denial of Service (LAND) attack, the attacker sends a

TCP packet with a fake IP address SYN tag, containing the victim address and port

as the origin and destination. Thus, the system responds with a SYN-ACK packet

for itself, creating an empty connection that remains open until the timer ends.

Therefore, the system enters into a loop sending responses to itself until eventually

collapses. Nestea is an attack that affects Linux servers and the attack teardrop is a

similar version for Windows servers. The attack consists of exploiting a vulnerability

in the TCP/IP protocol when sending fragmented packets to the victim. When the

displacement sum and size of a fragmented packet differ from the next fragmented

1The dataset can be obtained by emailing the authors.

22

packet, packets overlap and the victim attempts to mount the packet entering into

a denial of service.

Flooding attacks send an abnormal amount of packets without waiting for re-

sponses. Therefore, when attempting to process all packets, the victim is unable

to respond to all requests on time and causes denial of service. In the proposed

data set, there are SYN flood, ICMP flood, and UDP flood threats. In SYN flood,

multiple packets with fake source addresses are sent to maintain open connections

and thus burst the victim resources. In the ICMP flood, multiple ICMP packets

are also sent without waiting for the victim to respond. UDP flood has a different

philosophy than previous ones, since UDP is not oriented towards connection. In

this attack, packets are sent with the same address, but with different ports, in

order to saturate the bandwidth. The Smurf attack, similar to ICMP flood, uses an

Echo Request (ICMP) packet with the network broadcast address as the destination

address, and victim address as source. The responses to these packets are for the

victim, so all the stations of the network respond to the victim. Smurf is considered

a distributed denial-of-service attack.

Port scanning consists of verifying which services are active on a server, that is,

if there is a TCP port listening to requests and a running process to handle the

requests arriving at that port. However, port scanning is considered a threat since

most attacks are preceded by a port scan to identify system vulnerabilities that can

be exploited. In port scanning, the attacker generates packets and monitors the

responses to determine whether a service is vulnerable or not. The SYN scan is

best known for simplicity and speed, and is also known as half-open scanning, since

it never opens a complete connection. A SYN-packet is sent, and if the system is

listening for TCP connections on the port to which the packet is sent, the host will

respond with a SYN-ACK packet and then the attacker will send an RST, Clos-

ing the connection before the handshake is established. If the service is not open,

the victim will respond with an RST packet. If there is no response, after several

attempts, the gate is marked as closed, i.e., there is a firewall that prevents com-

munication between the attacker and the victim in such port. The TCP connection

scan, also known as full-open scanning, behaves similarly to the previous one, but

in this case the communication is complete if the port is open, that is, the attacker

sends the SYN, wait for the SYN-ACK, and finally sends the ACK to establish the

connection. If the door is closed, the attacker receives an RST/ACK packet.

The TCP FIN, XMAS, ACK, NULL and Maimon attacks are similar, since the

absence of response means that the victim port is open or that there is a firewall in

the path between the attacker and the victim. In FIN, it sends a TCP packet with

the FIN flag active. Depending on the operating system of the victim, if the victim

door is open, it will not have the response and, if it is closed, the victim will respond

23

with an RST/ACK packet. TCP XMAS simulates the normal behavior of a client,

since it sends TCP packets with the URG, PUSH and FIN flags active in the packet.

Again, if the door is open, there will be no response and, if it is closed, you will have

an RST/ACK packet response. In NULL scan, unlike FIN scan, a packet with no

active flag is sent, and it receives no response when the port is open and a RST/ACK

flag when it is closed. The TCP Maimon scan, name received after its creator, sends

a TCP packet with active FIN and ACK flags. TCP Window Scan uses different

window sizes to an RST response. Depending on the operating system, the open

ports use a positive window size while the closed ports have a window of size zero.

As an alternative to conventional TCP, UDP and ICMP transport protocols, the

SCTP INIT scan was created. This technique has a behavior similar to TCP SYN

scanning, which creates a ”half” connections. The attacker sends an INIT chunk.

An INIT-ACK chunk indicates that the door is open, while an ABORT chunk is an

indicative of a closed port. If no response is received after a few retransmissions,

the port is marked as closed.

24

Chapter 5

The Automatic Threat Detection

Our proposed real-time architecture relies on machine learning algorithms and

performs automatic threat classification. The automation is an important charac-

teristic, because it reduces the necessity of security expert intervention to classify

threats and configure the system. Human intervention is a major source of errors

and an important factor that slows down threat detection. Thus, the algorithms

are responsible to discover the characteristics from each class of attack, instead of

requiring manual signature configuration as in current security systems.

We implemented two classes of threat detection: one based on historical data;

and the other with online training using a live feed of honeypot captured data and

network traffic. Batch historical training tend to be more accurate, but does not deal

well with unknown threats. To handle this problem, we implemented a feedback of

flow data to the offline processing that enables dynamic updates for the architecture.

This mitigates the problem, but still has a great delay in learning new attacks. On

the other hand, online trained adaptive methods learn new threats in real time and

profiles normal user behavior to detect anomalies.

5.1 Historical based Threat Detection

In Sections 5.1.1, 5.1.2, and 5.1.3, we present the batch classification algorithms

implemented to evaluate the architecture. We selected these algorithms because

they are among the most used for network security [18]. In all methods, the training

is performed with 70% of the dataset and the test with the remaining 30%. During

the training phase, we perform tenfold cross validation to avoid overfit. In cross

validation, the dataset is divided and a certain number of parts are not used for

parameter estimation. These parts are further used to check whether the model

is general enough to adapt to new data, avoiding parameter overfit to the training

data.

25

5.1.1 The Decision Tree Algorithm

In decision tree, leaves represent the final class and branches represent conditions

based on the value of one of the input features. During the training part, the C4.5

algorithm determines a tree-like classification structure, based on the information

gain of each feature. The real-time implementation of the decision tree consists in

if-then-else rules that generate the tree-like structure previously calculated. The

results are presented in the Section 5.1.6, along with the other algorithms results.

5.1.2 The Artificial Neural Network Algorithm

The artificial neural networks are based on the human brain, in which each

neuron performs a small part of the processing, transferring the output to the next

neuron, achieving complex results from the combination of these small tasks. In

artificial neural networks for classification, the final output represents a degree of

membership for each class and the output class is determined by highest membership

degree. The weight vectors Θ are calculated during the training. These vectors

determine the weight of each neuron connection. In the training, the input vectors

are mapped onto a predicted output vector that is compared to the real output. The

prediction errors are then minimized by the Back-Propagation algorithm, taking into

account the error induced by each parameter.

After the training in completed, in order to determine to which class a sample

belongs, each neural network layer computes the following equations:

z(i+1) = Θ(i)a(i) (5.1) a(i+1) = g(z(i+1)) (5.2) g(z) =
1

1 + e−z
(5.3)

where a(i) is the vector that determines the output of layer i, Θ(i) is the weight vector

that leads layer i to layer i+ 1, and a(i+1) is the output of layer i+ 1. The function

g(z) is the Sigmoid function that plays an important role in the classification. For

high values of z, g(z) returns one and for low values g(z) returns zero. Therefore,

the output layer gives the degree of membership of each class, between zero and one,

classifying the sample as the highest degree.

5.1.3 The Support Vector Machine Algorithm

The Support Vector Machine (SVM) is a binary classifier, based on the concept

of a decision plane that defines the decision thresholds. Basically, SVM classifies

through the construction of a hyper-plane in a multidimensional space that split

different classes. An iterative algorithm minimizes an error function, finding the

best hyper-plane separation. A kernel function defines this hyper-plane. This way,

26

SVM finds the hyper-plane of maximum margin, that is, the hyper-plane with the

biggest distance possible to both classes.

The real-time detection is performed by the classification to each one of the

classes: normal and non-normal; DoS and non-DoS; and probe and non-probe. Once

SVM calculates the output, the chosen class is the one with the highest score. The

classifier score of a sample x is the distance from x to the decision boundaries, that

goes from −∞ to +∞. The classifier score is given by:

f(x) =
n∑
j=1

αjyjG(xj, x) + b, (5.4)

where (α1, ..., αn.b) are the estimated parameters of SVM, and G(xj, x) is the used

kernel. In this work, the kernel is linear, that is, G(xj, x) = x
′
jx, which presents a

good performance with the minimum quantity of input parameters.

5.1.4 The Dataset Parameters Determination

Window Size (Seconds)

0.5 1 1.5 2 2.5 3

A
c
c
u

ra
c
y
 (

%
)

60

70

80

90

100

Decision Tree

SVM

Neural Network

(a) Accuracy for different flow
time window size.

Number of First Packets

2 3 4 5 6

A
c
c
u

ra
c
y
 (

%
)

60

70

80

90

100

Decision Tree

SVM

Neural Network

(b) Accuracy for different number of first packets
analyzed per flow.

Figure 5.1: Accuracy of decision tree, SVM, and neural network algorithms for the
two flow combining approaches, all packets in a fixed time window size and first few
packets of a flow.

We have to determine two important parameter for our threat detection archi-

tecture: the flow window-time size and the number of first packets that is used to

characterize a flow. Short window-time sizes provide a faster threat detection but

can compromise the accuracy. Similarly, the less is the number of first packets re-

quired to classify a flow, the faster the detection is. Figure 5.1 shows that both a 0.5

second window size and only two packets result in a low accuracy, around 70% that

correspond to the most frequent class of the dataset. This accuracy result, however,

improves as the architecture gathers more information about the flows. We use

GTA/UFRJ dataset and the classification algorithms implemented to choose the

27

parameters. Figure 5.1a shows the accuracy result for the approach with all pack-

ets gathered in different time windows. Both neural network and SVM achieved a

good detection starting from a window size of one second, while decision tree only

achieved similar performance with a two second window size. We then choose the

one second window size, because flow composition gathers enough information to

correctly classify the samples with shortest possible time. Figure 5.1b shows the

accuracy for all three algorithms using the approach that analyzes the first few

packets. Usually the behavior of applications and threats is well defined in its very

start and, as the result shows, five packets are enough to obtain a high accuracy,

near 99%. Therefore, we choose five packets as the most suited number of analyzed

packets. Besides presenting a higher accuracy than the approach that analyzes all

packets in a one second window, the approach with the five first packets shows other

advantages, such as: shorter time to extract the features of a flow; greater robust-

ness; and more potential for scalability, since this way there is no need to process a

large number packets for each flow, which can be critic in flood threats.

5.1.5 Feature Selection and Principal Component Analysis

We perform dimensionality reduction, to improve the efficiency of the proposed

architecture in real-time threat detection. The aim is to improve the throughput,

eliminating irrelevant features of the threat detection procedure. Another important

aspect is a possible correlation between two or more features, which can be combined

into only one feature, reducing the processing time [16].

We achieve dimensionality reduction through the Principal Component Analysis

(PCA), which transform a group of possibly correlated variables into a group of lin-

ear uncorrelated variables that lie in orthogonal planes. This transformation takes

into account the eigenvalues in a way that the component associated to the highest

eigenvalue represents greater data variance. The other components of the result-

ing matrix are also sorted in represented data variance order. Then, we keep the

components associated to the highest eigenvalues, because they have more relevant

information and we withdraw the components associated to the lowest eigenvalues,

reducing data dimensionality and improving the processing time. It is important

to remark that PCA does not consider the class label in the dataset and, therefore,

can be used in both supervised and unsupervised learning.

For both ways of combining packets into flows, the sum of the higher eight

eigenvalues represents more than 95% of the total sum, as shown in Figure 5.2. In

other words, the first eight features from the components calculated by the PCA

linear transformation represent 95% of the total variance. Therefore, these eight

components are selected and the others, that represents less than 5% of the total

28

Component

Figure 5.2: Eigenvalue for each flow feature. The eigenvalue associated to each of
the transformed features is proportional to the data variance. The eight highest
principal components represent 95% of the total data variance.

data variance, are discarded, improving the processing time, which is critical in

real-time applications.

5.1.6 Historical based Threat Classification Results

Tables 5.1 and 5.2 show the accuracy comparison for the first five packets of

each flow and the one second time window approaches for both the GTA/UFRJ and

NetOp datasets. The results show that the first five-packet approach has a higher

accuracy than the one-second time window for SVM and Neural Network classifi-

cation methods. The accuracy improvement is due to the behavior of applications

and threats that is better defined in beginning, usually when the negotiation phase

of applications happens. Both SVM and Neural Network perform well in all scenar-

ios. SVM is a very robust classifier, since it maximizes the margin to the decision

threshold, obtaining good classification results. Neural Network can adapt to com-

plex underlying functions, because of the combination of the each neuron calculation

that produces high order classification functions. As shown in Tables 5.1 and 5.2,

the accuracy for both these algorithms is higher than 95% for all scenarios, ensuring

the efficiency of the proposed architecture to detect known threats. The five first

packets of each flow approach has better results than the one second time window,

for these two algorithms, because it is harder to hide the malicious behavior with

only a few packets being analyzed. We check periodically the first packets of each

flow, since we consider a flow as a sequence of packets from the same source IP to

the same destination IP in a specific time window. In order to avoid being tricked

by attackers, our architecture randomizes this period and, therefore, the attackers

cannot simulate a legitimate use and then engage an attack.

We further show the confusion matrix of SVM and Neural Network algorithms

29

Table 5.1: Accuracy comparison for the 3 classification methods in the GTA Dataset.

First Packets of Flow One Second Flow Window
Decision Tree 99.9% 80.6%

Neural Network 99.0% 96.0%
SVM 98.6% 96.3%

Table 5.2: Accuracy comparison for the 3 classification methods in the NetOp
Dataset.

First Packets of Flow One Second Flow Window
Decision Tree 86.3% 92.8%

Neural Network 95.3% 95.1%
SVM 96.1% 95.8%

with higher accuracy for each approach. The confusion matrix clearly specifies the

false positive rate, attack detection rate, and other metrics of each class in the test

dataset. This matrix is in the format real class versus predicted class. The lines

represent the elements that belong to the real class and the columns the elements

that were predicted to belong to the class. Therefore, diagonal elements of this

matrix represent the number of elements that are correctly classified, since they

belong to the predicted class. From this metric, other metrics like false positive rate

and true positive rate can be derived.

Table 5.3: GTA/UFRJ dataset: First Five Packets of Flow Neural Network Confu-
sion Matrix.

XXXXXXXXXXXXReal
Predicted

Normal DoS Probe

Normal 27899 17 32
DoS 0 5095 0

Probe 396 1 10030

Table 5.4: GTA/UFRJ dataset: One Second Time Window SVM Confusion Matrix.

XXXXXXXXXXXXReal
Predicted

Normal DoS Probe

Normal 38965 474 1
DoS 119 12338 0

Probe 1776 0 10587

Tables 5.3 and 5.4 show the confusion matrix for both approaches to combine

flows for the GTA/UFRJ dataset. Both approaches present a very low false posi-

tive rates, lower than 2%. Tables 5.5 and 5.6 show the confusion matrix for both

approaches in the NetOp dataset. For this dataset, we classify the flows only as

30

malware threat and legitimate usage. For both datasets, the threat detection rate

is above 87%.

Table 5.5: NetOp dataset: First Five Packets of Flow SVM Confusion Matrix.

XXXXXXXXXXXXReal
Predicted

Normal Threat

Normal 1257069 51151
Threat 5285 133570

Table 5.6: NetOp dataset: One Second Time Window SVM Confusion Matrix.

XXXXXXXXXXXXReal
Predicted

Normal Threat

Normal 1424926 51681
Threat 15363 104317

5.2 Adaptive Threat Detection

We propose the use of a live feed of threat information from honeypots and

the use of online trained machine learning algorithms to achieve an adaptive threat

detection. Attackers keep changing their behavior and also keep looking for new

vulnerabilities to mislead security systems. Zero-day threats are a challenge to

current security systems since there is no information available to create signatures

and update intrusion detection system databases. Our architecture address this

challenge by training the models in real time as new threats arrive to the honeypot.

Moreover, we also propose the use of online trained anomaly detection algorithms

to detect zero-day attacks in case they are performed against the users instead of

the honeypots. The proposed anomaly detection algorithms profile legitimate user

behavior and detect threats by analyzing the deviation from the standard legitimate

behavior. When a sample differs more than an accepted threshold from legitimate

behavior, it may represent an unknown threat and triggers an alert.

5.2.1 Stochastic Gradient Descent with Momentum

The Stochastic Gradient Descent (SGD) algorithm is a stochastic approximation

of Gradient Descent, in which the gradient is approximated by a single sample. In

our application, we consider two classes, normal and threat. Therefore, we use the

Sigmoid Function 5.5 to perform logistic regression. In the Sigmoid function, low

product values of the parameters θᵀ times the sample feature vector x return zero,

whereas high values return one.

31

hθ(x) =
1

1 + e−θᵀx
(5.5)

When a new sample x(i) arrives, the platform evaluates the Sigmoid function and

returns one for hθ(x(i)) greater than 0.5 and zero otherwise. This decision presents

an associated cost, based on the real class of the sample y(i). The cost function is

defined in Equation 5.6. This function is convex and the goal of SGD algorithm is

to find its minimum, expressed by

J(i)(θ) = y(i)log(hθ(x(i))) + (1− y(i))log(1− hθ(x(i))). (5.6)

When a new sample arrives, the algorithm takes a step toward the cost function

minimum based on the gradient of the cost function.

input : Incoming flow features x, Class y
output: Predicted Class predict, training parameters θ

Initialize θ, ∆θ, α, β;
for i← 1 to m do

hθ(x(i)) = 1

1+e
−θᵀx(i)

;

predict = round(hθ(x(i)));
if predict == 1 and y(i) == 0 then

Send Alert ;
else

θ = θ − α∇J(i)(θ) + β∆θ;
∆θ = α∇J(i)(θ);

end

end
Algorithm 1: Stochastic Gradient Descend with Momentum.

Algorithm 1 shows the implemented SGD algorithm. At each incoming sample

vector x(i), the platform determines the class y(i) based on the type of source. If

it comes from a honeypot, the label is 1, while if it comes from a traffic analyzer

the label is 0. If the sample comes from a traffic analyzer and SGD predicts it as

a threat, it sends an alert. Otherwise, it updates the parameters based on the cost

function gradient. The term ∆θ is the momentum and has the value of the previous

parameter update. In physics, the term momentum indicates the difficulty to change

the movement of a rotating object. In SGD context, this term considers the past

move when updating the parameters θ. The parameters α and β are periodically

updated in an offline manner based on the historical cost for each sample. This is

possible due to the feedback from the batch processing layer to the stream processing

layer shown in Figure 3.1.

Figure 5.3 and 5.4 show the accuracy behavior over time for each incoming

sample, and Tables 5.7, 5.8, 5.9, and 5.10 show the final confusion matrix for both

32

Analyzed Flows×10
4

0 5 10 15

A
c
c
u
ra

c
y
 (

%
)

85

90

95

100

92.3%

Overall Accuracy

(a) First Five Packets of Flow.

Analyzed Flows×10
4

0 5 10 15

A
c
c
u
ra

c
y
 (

%
)

85

90

95

100

90.81%

Overall Accuracy

(b) One Second Time Window.

Figure 5.3: Stochastic Gradient Descend Accuracy for the GTA/UFRJ dataset. In
both cases, the accuracy stays stable even with new attacks and legitimate usage
behavior changes.

Analyzed Flows×10
6

0 2 4

A
c
c
u
ra

c
y
 (

%
)

85

90

95

100
93.6%

Overall Accuracy

(a) First Five Packets of Flow.

Analyzed Flows×10
6

0 2 4

A
c
c
u
ra

c
y
 (

%
)

85

90

95

100

95.07%

Overall Accuracy

(b) One Second Time Window.

Figure 5.4: Stochastic Gradient Descend Accuracy for the Network Operator
Dataset. Once again, even the accuracy stays stable over time, what demonstrate
great adaptability.

datasets and both approaches for extracting flow features. At the very beginning of

the analysis, during the setup time, overfitting occurs because the algorithm has few

samples and adapts specifically to them, resulting in very high accuracy. However,

as samples arrive, the SGD stabilizes and acquires great capability to generalize and

adapt to new traffic samples, since the accuracy does not present great variations,

ending with accuracies of 92.3% and 90.81% for the GTA/UFRJ dataset with the one

second flow window size and the first five packets of each flow respectively. For the

NetOp dataset the accuracy results are 93.6% and 95.07% for the same approaches

of extracting features. Despite threat detection rates of 79.5% and 76.19% for the

GTA/UFRJ dataset and 54.3% and 65.66% for the NetOp dataset, respectively for

the first five packets of each flow and one second time window, this algorithm has

33

very low false positive rates of 1,2% and 2.74% for the GTA/UFRJ dataset 0.51%

and 0.53% for the NetOp dataset. The low false positive rate is a well-desired

characteristic, since it ensures confidence in the platform security alerts.

Table 5.7: SGD Confusion Matrix
for the First Five Packets of Flow
GTA/UFRJ Dataset.

Normal Threat
Normal 94927 1147
Threat 10010 38817

Table 5.8: SGD Confusion Matrix
for the One Second Time Window
GTA/UFRJ Dataset.

Normal Threat
Normal 104028 2927
Threat 11245 35987

Table 5.9: SGD Confusion Matrix for
the First Five Packets of Flow NetOp
Dataset.

Normal Threat
Normal 4172989 21431
Threat 287441 341722

Table 5.10: SGD Confusion Matrix for
the One Second time Window NetOp
Dataset.

Normal Threat
Normal 4603972 24627
Threat 237739 454617

5.2.2 Online Support Vector Machine

The Support Vector Machine (SVM) is a binary classifier, based on the concept

of a decision plane that defines the decision boundaries. A hyperplane constructed

in a multidimensional space splits the data into classes. The online SVM algorithm

uses a soft margin approximation with the convex hinge-loss function, given by

max {0, 1− yθᵀx}. (5.7)

The objective of this algorithm is to minimize the loss function. Just like the

previous algorithm, the platform determines the class y(i) based on the source. If

it comes from a honeypot the label is 1, while if it comes from a traffic analyzer

the label is −1. Again, when a traffic from a network sensor is classified as threat,

the platform sends an alert and does not update the model. Algorithm 2 shows the

implementation of online SVM. The parameters α, λ are periodically updated based

on the evaluation of the hinge-loss function over the samples.

Figures 5.5 and 5.6 show the accuracy changes over time at each incoming sam-

ple, and Tables 5.11, 5.12, 5.13, and 5.14 show the final confusion matrix for both

datasets and both feature extraction approaches. The overall accuracy is better than

the SGD algorithm, because the SVM is a robust classifier that maximizes the mar-

gin to the hyperplane decision boundaries. Figures 5.5 and 5.6 also show that the

algorithm adapts really well to usage changes and new attacks, maintaining the high

34

input : Incoming flow features x, Class y
output: Predicted Class predict, training parameters θ

Initialize θ, α, λ;
for i← 1 to m do

predict = sign(θᵀx(i));
if predict == 1 and y(i) == −1 then

Send Alert ;
else

if y(i)θ
ᵀx(i) > 1 then

∇(i) = θ;
else
∇(i) = −λy(i)x(i);

end
θ = θ − α∇(i)

end

end
Algorithm 2: Online Support Vector Machine.

accuracy. The overall accuracies are 94.1% and 92.09% for the GTA dataset and

95.6% and 97.22% for the NetOp, considering the first five packets and one second

time window approach. As the confusion matrices show, the attack detection rate

is higher than SGD, with values of 90,1% and 87.51% for the GTA/UFRJ dataset

and 81.5% and 82.06% for the NetOp dataset, respectively to the first packets of

each flow approach and the time window approaches. In addition, SVM also gets a

good false positive rate, with values of 3.9% and 5.89% for the GTA/UFRJ dataset

and 2.26% and 0.50% for the NetOp dataset.

Analyzed Flows×10
4

0 5 10 15

A
c
c
u
ra

c
y
 (

%
)

85

90

95

100
94.1%

Overall Accuracy

(a) First Five Packets of Flow.

Analyzed Flows×10
4

0 5 10 15

A
c
c
u
ra

c
y
 (

%
)

85

90

95

100
92.09%

Overall Accuracy

(b) One Second Time Window.

Figure 5.5: Online Support Vector Machine Accuracy for the GTA/UFRJ dataset.
Again, even with behavior changes, the accuracy stays stable.

The Online SVM presents an overall accuracy and attack detection rate higher

than the Stochastic Gradient Descent with Momentum. Due to the maximization

35

Analyzed Flows×10
6

0 2 4

A
c
c
u
ra

c
y
 (

%
)

85

90

95

100

95.6%

Overall Accuracy

(a) First Five Packets of Flow.

Analyzed Flows×10
6

0 2 4

A
c
c
u
ra

c
y
 (

%
)

85

90

95

100

97.22%

Overall Accuracy

(b) One Second Time Window.

Figure 5.6: Online Support Vector Machine Accuracy for the NetOp dataset.

Table 5.11: SVM Confusion Matrix
for the First Five Packets of Flow
GTA/UFRJ Dataset.

Normal Threat
Normal 92359 3715
Threat 4834 43993

Table 5.12: SVM Confusion Matrix
for the One Second time Window
GTA/UFRJ Dataset.

Normal Threat
Normal 100658 6297
Threat 5900 41332

Table 5.13: SVM Confusion Matrix for
the First Five Packets of Flow NetOp
Dataset.

Normal Threat
Normal 4099766 94654
Threat 117051 512112

Table 5.14: SVM Confusion Matrix for
the One Second time Window NetOp
Dataset.

Normal Threat
Normal 4605272 23327
Threat 124430 567926

of the separation hyperplane margin, SVM achieves a greater ability to classify the

threats that presents fewer samples in both datasets. However, SGD has a lower

false positive rate. Thus, when considering the security constraints, SVM would

be recommended when the network requires a higher threat detection and SGD for

networks that have lower security constraints and privilege user experience, therefore

not allowing many false positive alerts.

5.2.3 Threat Classification Summary

Table 5.15 shows accuracy for all proposed threat classification methods. More-

over, this Table details precision and recall for both legitimate and malicious traffic.

Precision and recall are common metrics for evaluating the results for a specific class.

Since the main goal of our threat detection architecture is to detect threats and trig-

ger counter measures, we show these metrics for the threat and normal classes, to

show the number of true and false alerts that would trigger counter measures.

36

Table 5.15: Threat classification summary for all algorithms and datasets. We show
accuracy, precision and recall to evaluate the methods. The 1s stands for the one
second time window approach for combining flows and the 5p stands for the first
five packets in the period.

Normal Threat
Algorithm Dataset Accuracy

Precision Recall Precision Recall
GTA 1s 80.6% 80.7% 94.6% 80.1% 48.8%
GTA 5p 99.9% 99.9% 99.9% 99.9% 99.9%

NetOp 1s 92.8% 97.3% 94.8% 51.5% 67.9%
Decision

Tree
NetOP 5p 86.3% 99.1% 85.6% 40.6% 92.9%
GTA 1s 96.0% 94.8% 98.8% 97.9% 91.5%
GTA 5p 99.0% 98.6% 99.8% 99.7% 97.4%

NetOp 1s 95.1% 97.5% 97.2% 66.7% 69.2%
Neural

Network
NetOp 5p 95.3% 98.2% 96.6% 72.2% 83.1%
GTA 1s 96.3% 95.4% 98.8% 98.0% 92.4%
GTA 5p 98.6% 98.0% 99.7% 99.5% 96.4%

NetOp 1s 95.8% 96.5% 98.9% 66.9% 87.2%
SVM

NetOp 5p 96.1% 99.6% 96.1% 72.3% 96.2%
GTA 1s 90.8% 90.2% 97.3% 92.5% 76.2%
GTA 5p 92.3% 90.5% 98.8% 97.1% 79.5%

NetOp 1s 95.1% 95.1% 99.5% 94.9% 65.7%
SGD

NetOp 5p 93.6% 93.6% 99.5% 94.1% 54.3%
GTA 1s 92.1% 94.5% 94.1% 86.8% 87.5%
GTA 5p 94.1% 95.0% 96.1% 92.2% 90.1%

NetOp 1s 97.2% 97.4% 99.5% 96.1% 82.0%
Online
SVM

NetOp 5p 95.6% 97.2% 97.7% 84.4% 81.4%

37

For any given class, the precision is the fraction of correctly classified samples

over all samples predicted to belong to such class, while the recall is the fraction

of correctly classified samples over all samples that really belong to that class. As

Table 5.15 shows, we achieve good results, usually above 90%, on both precision and

recall for the normal class. Consequently, this ensures a low level of false alerts that

would result in legitimate traffic block. Regarding the threat class, for the NetOp

dataset, the precision results are lower, because the dataset has 85% of legitimate

samples. Therefore, when evaluating absolute number of normal samples classified

as threat, they have a negative impact on the precision. However, as shown in the

results for the normal class, they do not result in many false alerts. Taking this

into consideration, the most interesting measure to evaluate for the threat class is

the recall that measures the threat detection rate, that is, the number of correctly

classified threats among all real threats in the datasets. The results show that the

batch trained algorithms have better recall when detecting threats. Batch training

can consider all samples at a time when adjusting the parameters, therefore achieving

a better result. A downside of this approach, however, is the detection of zero day

attacks, because they have to be retrained to learn and correctly classify the new

threats, while the online trained algorithms can adapt in real time.

For both batch and online trained algorithms, SVM presents the most constant

behavior, maintaining high accuracy, precision, and recall results. SVM is well

known for its robustness. Although there are difference between the online and

batch implementations, both SVM approaches try to maximize the margin between

the hyperplane and the samples that belong to each class. As Table 5.15 shows, in

all scenarios the batch SVM achieve above 87% in the recall for the threat class,

representing good threat detection capabilities, while maintaining low false alert

generation. The same behavior is observed in the online SVM with threat recall

above 81% and low false alert generation. Moreover, the online SVM is also able to

detect new threats as the data arrives from the honeypots.

5.2.4 Anomaly Detection by Normal Distribution

We argue that protection against unknown attacks is essential to have a higher

level of security in computer networks. Nevertheless, zero-day attacks are hard to

detect, since there are not yet any previous information about the attack. Anomaly

detection is capable to discover new attacks. We propose anomaly detection by

the sample feature distance from a normal distribution. Therefore, anomalies are

detected through the mean and variance from each feature of the normal samples

of the training dataset. This way, anomalies are identified when the distance from

the sample feature to the mean is greater than a threshold times the variance in at

38

least one of the features. We analyze the eight PCA transformed features.

The real-time implementation requires the anomaly detection as the streaming

data is arriving. The anomaly is detected if at least one of the following conditions

is true for at least one feature j, taking into account the means µj and the variances

σ2
j calculated in training:

Xj > µj + threshold ∗ σ2
j (5.8) Xj < µj − threshold ∗ σ2

j (5.9)

The proposed architecture allows real-time anomaly training. Consequently, the

algorithm becomes adaptive, which is fundamental for anomaly detection, since the

network behavior may change in time. Therefore, when a new sample arrives and it

is not detected as an anomaly by conditions (5.8) and (5.9), the parameters µj and

σ2
j of each feature are updated, considering this new sample. The parameters of a

normal distribution are expressed by:

µj =
1

N

N∑
i=1

Xj (5.10) σ2
j =

1

N

N∑
i=1

(Xj − µj)2 (5.11)

Therefore, current values of the sum and the total of samples N are stored and

incremented when a new sample arrives, considering each feature Xj. Consequently,

the normal distribution parameters are always updated by samples considered legit-

imate, ensuring adaptability.

Threshold

0 2 4 6 8 10

D
e
te

c
ti
o
n
/F

P

R
a
te

0

20

40

60

80

100

7.9% False

Positive Rate

88.6%

Detection Rate

(a) First Five Packets of Flow.

Threshold

0 2 4 6 8 10

D
e
te

c
ti
o
n
/F

P

R
a
te

0

20

40

60

80

100

96.4%

Detection Rate

5.6% False

Positive Rate

(b) One Second Time Window.

Figure 5.7: False positive and attack detection rates for the GTA/UFRJ dataset
according to the threshold. The lower the threshold, more attacks are detected, but
also higher is the false positive rate.

Figure 5.7 shows the results for the GTA/UFRJ dataset, considering different

threshold values. We obtain the false positive rate using the normal test dataset

and the threat detection rate using all the threats in the dataset. When choosing a

low threshold value, almost all threats are detected, however at the cost of a high

false positive rate. On the other hand, a high threshold value results in less false

39

Threshold

0 2 4 6 8 10

D
e
te

c
ti
o
n
/F

P

R
a
te

0

20

40

60

80

100
2.1

0.7% False

Positive Rate

87.7%

Detection Rate

(a) First Five Packets of Flow.

Threshold

0 2 4 6 8 10

D
e
te

c
ti
o
n
/F

P

R
a
te

0

20

40

60

80

100

88%

Detection Rate

6.7% False

Positive Rate

(b) One Second Time Window.

Figure 5.8: False positive and attack detection rates for the NetOp dataset according
to the threshold.

positives, but also in a lower threat detection rate. With a threshold value of two,

the false positive rate is 5.6% and the detection rate 96.4% for the one second time

window approach. With a threshold of 2.7, these rates are 7.9% and 88.6% for the

first five packets of each flow approach. The threshold parameter must be chosen

depending on the application and considering a trade-off between the false positive

and attack detection rates.

Figure 5.8 shows the normal distribution anomaly detection and false positive

rates for the NetOp dataset. For the first packets of each flow approach, with a

threshold value of 2.1, we achieve a remarkably low false positive rate of 0.7%,

maintaining a good threat detection rate of 87.7%. For the one second window

approach, considering a threshold of 3, we obtain 6.7% and 88% false positive and

threat detection rates, respectively.

5.2.5 Anomaly Detection by Entropy Time Series

We implement another anomaly detection method, by analyzing the entropy

value of a sliding window of flows. The sample entropy indicates the degree of

concentration or dispersion of a feature. It is calculated as follows:

H(X) = −
N∑
i=1

(
ni
S

) log2(
ni
S

) (5.12)

where S is the total number of observations and ni is the number of observations

within the range i of values and N is the number of ranges. When all values are

concentrated in one range, H(X) is equal to zero and when each value is in a different

range i, the value of H(X) is log2(N). Therefore, given a series of observations X,

the sample entropy summarizes the level of concentration in one single value.

40

To detect anomalies using the sample entropy value, we define a sliding window

of 40 flows and calculate the value of H(X) for each of these windows, generating

the time series. In the training phase, we calculate the histogram of all normal

samples of the training dataset and determine 30 ranges of entropy values, equally

distributed. Another parameter determined in the training phase is the range with

the most samples. We observed that the normal traffic entropy values tend to be

concentrated together and that usually the most frequent value is in the middle of

this concentration. Thus, we propose the detection by defining a threshold that

limits the accepted distance of the entropy H(X) to the most frequent range. The

architecture can update the most frequent value online, adapting to different net-

works behaviors.

Threshold

0 2 4

D
e
te

c
ti
o
n
/F

P

R
a
te

0

20

40

60

80

100
92.1%

Detection Rate

7% False

Positive Rate

(a) First Five Packets of Flow.

Threshold

0 2 4

D
e
te

c
ti
o
n
/F

P

R
a
te

0

20

40

60

80

100

2.8% False

Positive Rate

86.8%

Detection Rate

(b) One Second Time Window.

Figure 5.9: False positive and attack detection rates for the GTA/UFRJ dataset
according to the entropy threshold. The threshold represents the distance to the
range that has the most entropy samples.

Threshold

0 2 4

D
e
te

c
ti
o
n
/F

P

R
a
te

0

20

40

60

80

100
3.4

1.5% False

Positive Rate

91.8%

Detection Rate

(a) First Five Packets of Flow.

Threshold

0 2 4

D
e
te

c
ti
o
n
/F

P

R
a
te

0

20

40

60

80

100

4.7% False

Positive Rate

97.1%

Detection Rate

(b) One Second Time Window.

Figure 5.10: False positive and attack detection rates for the NetOp dataset accord-
ing to the entropy threshold. The threshold represents the distance to the range
that has the most entropy samples.

41

Figure 5.9 shows the results for different threshold values considering the

GTA/UFRJ dataset. For the first five packets of each flow approach, with a thresh-

old of 0.8, the threat detection rate is 92.1% and the false positive rate is 7%. For

the one-second window and the threshold of 1.3, these values are 86.8% and 2.8%.

Once again, we can determine this threshold considering the trade-off between threat

detection and false positive rates. Figure 5.10 shows the entropy anomaly detection

results for the NetOp dataset. For the first packets of each flow approach, the threat

detection rate is very high, 91.8% and the false positive rate is very low, 1.5%. The

result for the one second time window is as good as the other approach, with false

positive and detection rates of, respectively, 4.7% and 97.1% with a threshold of 3.

The results for this method shows a very good trade-off in all scenarios.

42

Chapter 6

The Intrusion Prevention

Architecture

Intrusion prevention systems are deployed in two modes, on-path and off-path.

In the on-path mode, the analysis is performed in the network traffic route from the

source to its destination. In the off-path mode, the packets are mirrored and sent

to an analysis that will determine whether the packet is part of a threat. The great

advantage of the on-path mode is the ability to perform traffic block, since the traffic

is analyzed and then forwarded to its destination. However, this approach introduces

latency problems, considering that the analysis is introduced before the forwarding

procedure. On the other hand, the off-path mode allows gathering information from

other sources, thus, the system can correlate important data to improve detection

accuracy. However, the off-path mode needs an additional infrastructure to carry

both the traffic mirroring and threat blocking. In our proposal, we choose the off-

path detection mode and we propose an entire scheme to efficiently mirror and block

threat traffic using the programmability of Software Defined Networking (SDN).

We perform the attack detection based on information from the first five packets

of each flow, since the performance results of the flow defining approach that analyzes

the first few packets are better than the other approach. Whenever an undefined

flow arrives in a SDN switch, a message is forwarded to the controller, which then

installs a rule with two actions, the first one forwarding the flow to its destination

and the second one replicating the flow to an analysis machine. Meanwhile, the

analysis machine keeps track of the number of packets for each flow that is under

analysis and when that number reaches five packets, this machine sends the flow

information to the processing module and also a message warning the controller

that the analysis of the packets from that particular flow has been completed. A

flow is defined as all packets from the same IP source and IP destination during a

time window and the analysis machine extracts 26 flow features and publishes it in

the kafka message broker so that the processing core of the Detection Architecture

43

Figure 6.1: Example of network monitored by the proposed architecture. The net-
work controller installs the mirroring rules to the capture module that sends traffic
information to the processing module. Through alerts from the threat detection,
the network controller blocks threats.

can consume the information and determines whether it is a threat.

Once the controller receives the message indicating the flow analysis completion,

it lists all flows with the source and destination IP of the specified flow and removes

the mirroring rule. The controller keeps the routing action to the flow destination,

which preserves network operation. Thus, after analysis, the flow is no longer for-

warded to analysis machine, making the detection and prevention process robust,

because the analysis machine is protected against flood attacks and has a greater

ability to analyze flows when compared with the all packets analyzing approach.

It is important to remark that when the controller removes the mirroring action,

the action will again be installed after the flow timeout set in the controller, which

makes the flows to be periodically checked, increasing network security. This time-

out is randomly chosen within a range of values, to avoid that an attacker tricks the

architecture, by setting legitimate flows during the beginning of the analysis.

Figure 6.1 shows an example network analyzed and protected by the proposed

Threat Detection and Prevention Architecture [12]. All SDN switches have an in-

terface to which traffic is duplicated and sent to a analysis machine. The controller

is responsible for installing the mirroring rule and for removing it when the machine

has received the five required packets. The data capture module, composed by the

analysis machines, then forwards the flows features to the detection application,

which utilizes batch and online trained machine learning algorithms in conjunction

with stream processing in real time to do its analysis. If a threat is detected, the de-

tection architecture sends an alert to the controller, which then blocks the attacker

source IP in all switches.

44

6.1 Defense Strategy against Spoofed Source IP

Threats

The source IP blocking rule is ineffective against attacks that falsify the source

IP address of their packets to deceive defense systems. Attacks with spoofed source

IP are even more critical in Software Defined Networks, since, besides the attack

damage, they overload the controller to set new flows every time the source IP

changes, generating also a large number of entries in the switches flow table.

To solve this problem, we propose a strategy against spoofed IP attacks based

on a sequence of alerts and marking the path of flows. The intuition behind this

concept is as follows: if the controller installed a blocking rule against an attack, and

even so, an alert arrived soon after, it may indicate that the blocking rule was not

effective. Therefore, the controller keeps track of time between the alerts reception

and notices when two alerts arrive in a very short time. When this happens, the

controller begins to suspect that the packet belonging to the attack has a spoofed

IP. Due to this suspicion, the controller starts to map the path of all the flows of

the network for a certain period of time. This is possible due to the network global

view of the controller, which knows the entire network topology. Then, if a third

alert reaches the controller, in addition to the traditional source IP blocking rule,

the controller also finds out in which switch port the attacker traffic enters to the

network and block this port. Thus, besides the IP blocking rule, it also instantiates a

blocking rule of the traffic from the attacker port. Here we block the traffic from the

port considering that the intruder is in the SDN network. However, other actions

are applicable, such as transfer the traffic to a honeypot or traffic filter, and limit

the bandwidth.

Therefore, if an attacker spoofs its source IP, after three alerts, the attack traffic

is blocked. The additional processing by the controller to monitor the path of

all flows only starts when two alerts arrive in a short period. After a period of

time without receiving any new alert, the process is undone, avoiding the waste of

resources. Another important aspect is to maintain IP blocking rule for the attacker,

because it cannot be an attack with spoofed IP, but a distributed attack. Against

a distributed attack, it is essential to block all sources and when preventing traffic

from both inbound interface on the network and the source IP, the blocking rule

will be effective.

Algorithm 3 summarizes the defense strategy against spoofed IP addresses. The

controller has two states: normal, when there is no suspicion that an attack with

spoofed IP is occurring; and monitoring, when there is such suspicion and the con-

troller maps the source port of every incoming flow, using its global network view.

The controller changes the status based on the time difference between two consecu-

45

input : Incoming Alerts from the Detection Methods
output: Blocked source IP or incoming port

Initialize threshold, status;
while True do

wait(alert);
block(alert.sourceIP);
switch status do

case normal do
if alert.time− lastAlert.time < threshold then

mapSourcePort(start);
status = monitoring;

end

end
case monitoring do

if alert.time− lastAlert.time > threshold then
mapSourcePort(stop);
status = normal;

else
block(sourcePort(alert.sourceIP));

end

end

end
lastAlert = alert;

end
Algorithm 3: Defense strategy against attacks with spoofed source IP

46

tive alerts. When this difference is above a threshold, the controller either keeps the

monitoring status or goes back to the normal status. A similar behavior occurs when

this difference is below the threshold, however, the controller changes to or keeps

the monitoring status. An important aspect of the proposed strategy is that we

only map the flows under spoofed IP suspicion and we return to the normal status

to avoid the waste of resources. The first step of the algorithm once an alert arrives

is to block its source, therefore, preventing the network against distributed threats

by blocking each one of them. Here, we implemented the action of blocking the

source port when detected a threat that probably is spoofing its IP. However, other

counter measures are applicable, such as reducing the bandwidth or forwarding to

a honeypot or network filter.

6.2 Traffic Monitoring and Threat Block

In this section, we show the operation of the traffic analysis and the threat block

scheme. For this purpose, we developed a prototype, in a real network environment,

a virtual test network on a platform for experimenting future network proposals, the

Future Internet Testbed with Security - (FITS) platform [54]. We implemented this

prototype to evaluate the proposed architecture, including the monitoring scheme

of the five packets of each flow, and traffic blocking using SDN, even in scenarios

with spoofed IP addresses.

Figure 6.2: Experimental network topology used for the five packets scheme and the
malicious traffic block.

In this experimentation platform, we use Xen hypervisor for virtualization and

OpenFlow for traffic forwarding. Figure 6.2 shows the constructed topology for the

experiments, which consists of three client machines and a server machine. The

packet forwarding is accomplished by OpenvSwitch switches that are controlled

by an application programmed in the POX controller. Furthermore, an analysis

machine extract flow characteristics using Bro. The connection between switches

and the analysis machine requires a Generic Routing Encapsulation - (GRE) tunnel,

47

which encapsulates the packets and sets the address of the analysis machine as

destination. The analysis machine decapsulates the packets and then analyzes it,

extracting the flow characteristics to send them to the detection architecture. We

perform the experiments on an Intel Xeon X5690 server with 24 processing cores,

each of them with a frequency of 3.47 GHz clock and with 48 GB of RAM.

The results of the first experiment, shown in Figure 6.3, aim to display the

operation of the traffic deviation rule and the subsequent end of this rule after the

analysis of the first five packets. In this experiment, the three clients send traffic

at a constant rate to the server machine. Figure 6.3a shows the traffic received by

the server machine. We can observe in the figure that the proposed scheme does

not affect communication. Furthermore, Figure 6.3b shows the packet rate received

by the analysis machine, which sends a message to the network controller after the

capture of the five packets needed to characterize a flow. Even though the sending

rate is much higher, the analysis machine receives few packets. The reason the

analysis machine receives a little more than five packets is time required to inform

the controller to undo the deviation rule. In addition, this figure shows that flows

are analyzed periodically, accordingly to the flow timeout set in the controller. In

this experiment, the flow timeout was set within 60 seconds, and, therefore, the

analysis machine receives the packets of each client at every minute.

0 50 100 150
0

50

100

150

Time(s)

R
a
te

 (
P

a
c
k
e
ts

/s
)

Client1

Client2

Client3

(a) Packet rate received by the
server machine.

0 50 100 150
0

2

4

6

8

10

12

Time (s)

R
a
te

 (
P

a
c
k
e
ts

/s
)

Client1

Client2

Client3

New
Analysis

New
Analysis

Timeout Timeout

(b) Packet rate received by the
analysis machine.

Figure 6.3: Network operation when three machines communicate with the server.
The server receives traffic without being affected by the proposed scheme, while the
analysis machine only receives the first packets of each flow.

Two important aspects of this proposal are the time required to characterize

the flow and the ability to increase the number of flows to be analyzed. Since the

machine only needs five packets to characterize flows, there is no need to wait until

the end of the flow or connection to send the information to the Threat Detection

48

Architecture, which results in a shorter detection time and, thus, a faster threat

block. Furthermore, the analysis machine is immune to flooding attacks because

not all packets of a flow are deviated, and for this reason, the analysis machine

can receive a much larger number of flows, ensuring robustness and potential for

scalability.

0 20 40
0

2

4

6

8

10

12

Time (s)

R
a
te

 (
P

a
c
k
e
ts

/s
)

Blocked
Flow

IP
Spoofed

IP
Spoofed

IP
Spoofed

(a) Packets rate of attacker received
by the server machine.

0 20 40
0

2

4

6

8

10

12

Time (s)

R
a
te

 (
P

a
c
k
e
ts

/s
)

Effective
Block

IP
Spoofed

IP
Spoofed

IP
Spoofed

(b) Packet rate of the attacker received
by the analysis machine.

Figure 6.4: Architecture operation under an attack that spoofs the source IP ad-
dress. Blocking rules cease to be effective when the IP is spoofed, however after
the identification of the interface through which the attack enters the network, the
attack is effectively blocked.

The second experiment shows one of the client machines attacking the server.

The attacker machine performs a threat that also spoofs the source IP to avoid

detection. Similar to the first experiment, Figure 6.4 shows the traffic received

by the server and the analysis machine. After the attack started and the analysis

machine sends the information to the Detection Module, a rule blocking the source

IP is immediately installed on all switches, which makes the traffic received by the

server, shown in Figure 6.4a, remain zero after the detection time. However, when

the attacker changes the IP for the first time, the flow is once again analyzed and

blocked as shown in Figure 6.4b. Nevertheless, this time, when the controller receives

the alert, it starts to mark the path of all flows, so it can map in which port each

flow enters the network. Once again, around 28 seconds, the attacker changes the

source IP and, after the analysis, a new alert is generated. This time though, when

the controller receives this alert, it blocks both the source IP and the source port in

which this flow enters the network. Here we choose to block the traffic from the port

in which the attacker enters the network. However, other policies are applicable,

such as redirect the traffic to a filter out the malicious flow. From this point on,

when the attacker changes the source IP, the traffic is not even analyzed again, since

it is blocked as near to its origin as possible.

49

6.3 Providing Elasticity to Sensor Elements

We propose an elastic architecture for threat detection in virtual networks, with

dynamic allocation of virtual sensor elements according to the demand [10]. In ad-

dition to the sensor element creation and destruction, the architecture also provides

a mechanism for redefining flows to balance targeted traffic between machines that

perform traffic analysis. The proposed intrusion detection architecture consists of

three main interconnected modules to control the network: the traffic character-

izer module, the flow management module, and the resource management module.

Figure 6.5 shows an example of a network with the proposed elastic architecture.

Network traffic is mirrored at the switches for sensor element virtual machines.

There is a communication between the controller and the physical machines to send

statistics regarding the resource consumption and the number of analyzed packets,

to allow the mirroring rule to be disabled.

Figure 6.5: In the proposed architecture, a physical machine may contain several
sensor elements. The controller connected to the switches can redefine flows taking
into account the resource consumption statistics of the sensor virtual machines.

The traffic characterizer module is composed by virtual machines that extract

flow features and send them to the Kafka publish/subscribe platform. These features

are then consumed by the real-time stream processing threat detection application

that sends alerts to the controller. In the proposed architecture, Bro is responsible

for analyzing the traffic. Each virtual machine contains a Bro sensor and uses one

processing core. The traffic characterizer module adapts itself to the demand. The

50

number of Bro virtual machines vary accordingly to the number of flows, being

dynamically allocated. Therefore, the architecture has elastic behavior.

The flow management module is responsible for the flow distribution among

the sensor elements and for executing counter measures against the attacks once

the detection application sends an alert. This module is composed by a controller

application that communicates with both the traffic characterizer module and the

resource management module. A GRE (Generic Routing Encapsulation) tunnel

mirrors the traffic to the sensor elements and the feature extraction is performed

after the packet decapsulation to guarantee that the packets are not modified. Using

a GRE tunnel also allows the sensor elements to be in a different network than the

production one.

When the traffic characterizer module has more than one virtual machine, the

flow distribution takes into account two aspects: the amount of resources available

in each sensor element and the packet source. A flow from a new source is allocated

to the machine with more processing resources available at the time. On the other

hand, flows from the same source have priority to be analyzed by the same sensor,

to avoid that an attack passes unnoticed.

Finally, the resource management module is present in the privileged domain

of all physical machines in our proposed architecture. This module monitors the

resource consumption of these machines. This module collects processing, memory,

and network consumption metrics from Xen using Libvirt that is an open source

API for managing virtualization platforms [55]. Each machine runs a deamon that

collects physical and virtual machine statistics that are grouped in the controller.

This way, the controller knows the number of sensor virtual machines available and

the resource consumption from each one of them.

The architecture analyzes data from sensor elements to avoid both overload and

idle resources. When an overload is detected, the resource management module

analyzes the available resources among the physical machines and decides where

to instantiate a new sensor element. Similarly, this module monitors the sensor

elements to detect when a flow redistribution may allow shutting down one of the

sensor virtual machine.

6.3.1 Resource Consumption Evaluation

Sensor elements captures packets mirrored from the network, group them into

flows, and extracts features in real time. This application consumes physical ma-

chine resources and, therefore, is subjected to resource availability. We evaluate the

resource consumption of this task, in terms of processing throughput and network

bandwidth that are the most critic resources in the scenario where a sensor analyzes

51

many flows. In this experiment, we increase both the packet rate and the number

of flows to evaluate the CPU usage and the percentage of lost packets. Therefore,

we evaluate which resource is most relevant to sensor elements. Figure 6.6 shows

the results. The sensor element uses all its CPU resources, delaying the feature

extraction. However, less than one percent of incoming packets are lost, showing

that processing throughput is the most relevant resource for this task.

Packet Rate (Packet/s)

0 1k 2k 3k

C
P

U
 U

s
a
g
e
 (

%
)

0

20

40

60

80

100
Saturation

(a) CPU usage from a sensor element.

Packet Rate (Packet/s)

0 2k 4k 6k

L
o

s
t

P
a

c
k
e

ts
 (

%
)

0

0.2

0.4

0.6

0.8

Below 1%

(b) Lost packets percentage.

Figure 6.6: CPU usage and lost packets percentage of a sensor element. The CPU
usage achieves its limit, while the sensor loses less than one percent of the packets.

6.3.2 Sensor Element Overload

Time (s)

0 20 40

C
P

U
 U

s
a

g
e

 (
%

)

20

40

60

80

100
Machine 1

Machine 2

Overload

Detection

CPU

Balancing

(a) CPU usage of sensor virtual machines
while analyzing packets.

Time (s)

0 10 20 30 40 50

P
a

c
k
e

t
R

a
te

 (
P

a
c
k
e

t/
s
)

0

2k

4k
Machine 1

Machine 2

Rate Increase

Redistribution

(b) Incoming packet rate at sensor virtual ma-
chines.

Figure 6.7: Overload scenario. The CPU usage of a sensor element gets to 100%,
Figure 6.7a, when the packet rate increases, Figure 6.7b. To ensure that all flows
are analyzed, a new sensor machine is activated and the packets distributed.

We evaluate the behavior of the proposed architecture in a traffic characterizer

module overload scenario, which occurs when a high packet rate arrives at the sen-

52

sors to be grouped into flows and analyzed. In this experiment, we generate flows

with constant packet rate that are analyzed by the only active sensor, due to low

demand. Then we increase the packet rate, resulting in an overload of the active

sensor virtual machine. When the physical machine detects this processing over-

load, it sends a message to the controller to inform the overload scenario. When

the controller receives this message, it runs the balancing algorithm to determine

in which physical machine a new sensor element should be instantiated. After the

new sensor element is running, the flows are distributed, considering their source

and the available resources in each machine. The results are shown in Figure 6.7.

Once we increase the packet rate, an overload occurs, because the active sensor runs

using the entire available processing throughput. Then, the overload is detected,

and after the up time for a new sensor element, the packets are redistributed and

both sensor virtual machines can processes the incoming packets.

6.3.3 Sensor Element with Idle Resources

Time (s)

0 20 40

C
P

U
 U

s
a

g
e

 (
%

)

20

40

60

80

100 Machine 1

Machine 2

CPU

BalancingUnload

Detection

(a) CPU usage of sensor virtual machines
while analyzing packets.

Time (s)

0 10 20 30 40

P
a

c
k
e

t
R

a
te

 (
P

a
c
k
e

t/
s
)

0

2k

4k

6k

Machine 1

Machine 2

Redistribution

Rate Decrease

(b) Incoming packet rate at sensor virtual ma-
chines.

Figure 6.8: Unload scenario. The CPU usage of a sensor element decreases and can
be allocated to the other active sensor. The controller then redistributes the packets
and one of the machines is deactivated.

To ensure elasticity, sensor elements must be deactivated when there are idle

resources. In some scenarios, a packet distribution can leave a sensor machine with-

out any packets to analyze, hence, allowing its deactivation and avoiding the waste

of resources. We monitor constantly the resource consumption and inform resource

consumption statistics to the controller that can detect when a redistribution may

release one of the virtual machines. The experiment starts with two active sensor

elements extracting flow characteristics, as shown in Figure 6.8. After some time,

the packet rate decreases and the CPU usage of one of the sensors decreases in a

way that the other sensor can analyze the remaining flows. The controller detects

53

this decrease and redistributes the remaining analyzed packets from this machine

to the other active sensor. Once one of the virtual machines does not analyze any

packet, it is deactivated, avoiding idle resources.

54

Chapter 7

Conclusion

This work proposes a fast and efficient Threat Detection and Prevention Ar-

chitecture. The threat detection is performed using machine learning algorithms

combined with stream processing, while the threat prevention is based on a Soft-

ware Defined Networking schema. Threat detection and prevention time is of the

essence, since if the attacker passes unnoticed or no action is performed against the

threat in viable time, irreparable damages will occur. This work addresses this prob-

lem by using accurate detection methods in real time, based on stream processing

technology. We achieve accurate threat detection promptly after it occurs. After

threat detection, a counter measure is immediately triggered by sending an alert

to the controller that immediately blocks the threat source even in scenarios with

spoofed IP addresses.

Another important issue to address is availability, adapting to different demand

rates. In our architecture, the parallelism of the stream processor, core of the threat

detection, can be increased to adapt to the demand. We can allocate more processing

cores to achieve higher processing rates up to 15 Million samples per minute. More-

over, we also consider the use of multiple sensor elements to extract flow features.

We monitor the resource consumption to detect overload and unload scenarios, in

order to activate or deactivate sensor elements considering the demand. Therefore,

we consider resource allocation in the two most critical parts of threat detection,

feature extraction and machine learning detection. These applications need more

resources when the network usage is increased, in order to keep threat detection run-

ning, analyzing all incoming traffic. Hence, our architecture has high availability,

ensuring that traffic is analyzed and that no threat passes unnoticed.

We created a security dataset, containing real network traffic along with network

threats, to evaluate the detection methods. Moreover, we also use another dataset

with real data collected from broadband users of one of the most important network

operators in Brazil. Both datasets contain real traffic data, instead of simulation

results. The use of two distinct datasets proves that the proposed detection meth-

55

ods work well even in distinct scenarios. In addition, we compare two methods of

combining incoming packets into flows. In the first one, we gather all packets in a

fixed length time window, whereas in the second, we periodically analyze only few

packets of each flow. The advantage of the second approach is that the extracted

features can be analyzed before the end of the time window, therefore speeding up

the threat detection.

The proposed Threat Detection Architecture combines adaptive online trained

methods with offline accurate batch trained methods. Offline batch trained algo-

rithms tend to be more accurate, when considering known threats, because it has

all available data at once and can optimize parameters considering all data items.

However, this methods has an important downside, it does not detect unknown

threats, because it cannot adapt in real time to behavior changes. We implemented

a feedback by periodically retraining those algorithms, but since batch training re-

quires time, it is impossible to retrain in real time. To solve this problem and detect

unknown threats in real time we propose the use of a live feed of honeypot col-

lected data to train online classification algorithms. In online training, the classifier

parameters are updated considering each incoming sample, therefore adapting it-

self to detect zero-day attacks performed against honeypots and to legitimate usage

changes. Moreover, we monitor and model legitimate usage behavior to perform

anomaly detection. These methods protect the network in case a zero-day attack

is performed against the network first, instead of against a honeypot. In those al-

gorithms, we model user behavior and detect threats when a sample deviates more

than an acceptable threshold from the expected behavior.

We implement seven algorithms to detect known and unknown attacks. Three

of them are trained offline and are able to detect threats in real time thanks to the

lambda architecture. These algorithms are Decision Tree, Neural Network and SVM.

The results show a very high accuracy, above 95% for most cases and that when

using the first few packets, with periodically analysis, we achieve greater accuracy.

The other four algorithms represent the adaptive threat detection, that considers the

online trained classification algorithms, based on honeypot data, and the anomaly

detection, based on legitimate user behavior. We implemented two algorithms for

each of these classes. The online classification algorithms also achieve high accuracy,

always above 90%. As results show, over time, their accuracies stay stable, therefore

adapting to changes in incoming traffic. We implemented the Stochastic Gradient

Descent with Momentum and the Online Support Vector Machine based on honeypot

data. We propose two anomaly detection methods, also online trained: one based

on the Normal Distribution; and the other based on the Entropy Time Series. The

results show an excellent tradeoff between attack detection and false positive rate.

This trade off can be adjusted considering the security constraints of the analyzed

56

network. If the network requires a strict security level, a lower threshold can be

set and will detect most of the threats, at a cost of a higher false positive rate.

The opposite is also valid, if the network has a higher user quality constraint, a

higher threshold can be set resulting in lower false positive rate at a cost of a also

lower threat detection rate. Moreover, we measure the processing throughput of the

proposed Threat Detection Architecture, obtaining a threat detection time of about

four microseconds per sample, enabling prompt counter measure against attackers

and showing the potential to scale threat detection. This short threat detection

time is achieved thanks to the stream processing technology combined with machine

learning algorithms.

Regarding the Threat Prevention, we propose an architecture based on Software

Defined Networking and the periodic analysis of the first five packets of each flow.

The architecture ensures a fast detection, since it does not have to wait until the

end of a flow to characterize it. The Threat Prevention Architecture mirrors the

traffic to sensors spread around the network. Therefore, the architecture does not

add any additional delay to the user communication. Moreover, the architecture

performs an effective threat block, even in scenarios in which the attacker uses

spoofed IP addresses. The controller receives alerts from the Threat Detection

application and installs rules to block the attacker source IP. However, when an

attacker changes its IP, the architecture detects it, based on the time difference

between the alerts and maps the source of the attack to effectively block the threat.

The proposed architecture is robust, because both the controller and the analysis

machine are protected against flood attacks, since not all packets are mirrored to

the analysis machine and there is a defense against spoofed IP that would flood the

controller. Furthermore, the architecture has a great potential to scale, since it has

a short threat detection time, due to the stream processing core that improves its

throughput when the parallelism increases and since the architecture that analyzes

only few packets of each flow prevents attacker to flood sensor elements.

Moreover, we propose an elastic mechanism to instantiate sensor elements ac-

cording to the demand in our architecture. The controller installs rules to mirror the

traffic to the sensor elements that combines the packets into flows and extract flow

features to send to the Threat Detection application. We evaluate that the most

critical resource for a sensor element is the processing throughput. We monitor the

processing resource consumption of each sensor and detect overload scenarios, that

is, when a sensor has almost 100% of CPU usage. Then the controller evaluates in

which physical machine a new sensor can be instantiated and distributes the flows,

according to their sources, to avoid overload in a sensor. This way, our architecture

ensure that there is no loss while extracting flow features. Another possible sce-

nario is when the traffic decreases and a sensor virtual machine can be deactivated,

57

to avoid wasting resources. When the controller detects an unload, it manages the

mirroring rules, resulting in a machine without any flow to analyze. In this case, this

machine can be deactivated, releasing the resources. Therefore, the sensor elements

acquire an elastic behavior, since the number of sensor is adjusted to the network

usage.

7.1 Future Work

The use of the proposed threat detection architecture to detect application

threats is a future work. New detection methods can be implemented to process

application logs and payload data to detect application threats, such as web appli-

cation attacks, in real time with the proposed architecture. Moreover, the study

and implementation of more online trained threat detection techniques, such as the

ones based in game theory, is also a future work. The implementation of the threat

prevention scheme as a virtualized network function will also be considered as a

sequence to this work.

58

Bibliography

[1] SUTHAHARAN, S. “Big data classification: Problems and challenges in net-

work intrusion prediction with machine learning”, ACM SIGMETRICS

Performance Evaluation Review, v. 41, n. 4, pp. 70–73, 2014.

[2] CLAY, P. “A modern threat response framework”, Network Security, , n. 4,

pp. 5–10, 2015.

[3] IQBAL, S., KIAH, M. L. M., DHAGHIGHI, B., et al. “On cloud security attacks:

A taxonomy and intrusion detection and prevention as a service”, Journal

of Network and Computer Applications, v. 74, pp. 98–120, 2016.

[4] SYMANTEC. Internet Security Threat Report. Relatório Técnico 04, Symantec

Co., 2016. accessed 12/04/17.

[5] BILGE, L., DUMITRAS, T. “Before we knew it”. In: ACM Conference on

Computer and Communications Security - CCS ’12. ACM, 2012. doi:

10.1145/2382196.2382284.

[6] NAWROCKI, M., WÄHLISCH, M., SCHMIDT, T. C., et al. “A Survey on

Honeypot Software and Data Analysis”, arXiv preprint arXiv:1608.06249,

2016.

[7] HU, P., LI, H., FU, H., et al. “Dynamic defense strategy against advanced

persistent threat with insiders”. In: IEEE Conference on Computer Com-

munications (INFOCOM), pp. 747–755, 2015.

[8] SONG, J., TAKAKURA, H., OKABE, Y., et al. “Statistical analysis of hon-

eypot data and building of Kyoto 2006+ dataset for NIDS evaluation”.

In: Proceedings of the First Workshop on Building Analysis Datasets and

Gathering Experience Returns for Security, pp. 29–36. ACM, 2011.

[9] MCKEOWN, N., ANDERSON, T., BALAKRISHNAN, H., et al. “OpenFlow:

enabling innovation in campus networks”, SIGCOMM Comput. Commun.

Rev., 2008, 2008.

59

[10] LOBATO, A. G. P., DA ROCHA FIGUEIREDO, U., ANDREONI LOPEZ,

M., et al. “Uma Arquitetura Elástica para Prevenção de Intrusão em

Redes Virtuais usando Redes Definidas por Software”, Anais do XXXII

SBRC 2014, pp. 427–440, maio 2014.

[11] LOBATO, A. G. P., LOPEZ, M., DUARTE, O. C. M. B. “Um Sistema Acurado

de Detecção de Ameaças em Tempo Real por Processamento de Fluxos”,

XXXIV SBRC, Salvador, Bahia, Brasil, 2016.

[12] LOBATO, A. G. P., LOPEZ, M. A., REBELLO, G., et al. “Um Sistema Adap-

tativo de Detecção e Reação a Ameaças”, XVII Simpósio Brasileiro em

Segurança da Informação e de Sistemas Computacionais - SBSeg, 2017.

[13] LOBATO, A. G. P., LOPEZ, M. A., SANZ, I., et al. “An Adaptive Real-

Time Architecture for Zero-Day Threat Detection”, to appear in IEEE

International Conference on Communications - ICC, 2018.

[14] LOBATO, A. G. P., LOPEZ, M. A., DUARTE, O. C. M. B. “A Fast and Ac-

curate Threat Detection and Prevention Architecture using Stream Pro-

cessing”, to be submitted to Computer Communications, 2018.

[15] LOPEZ, M. A., LOBATO, A. G. P., DUARTE, O. C. M. B. “A performance

comparison of Open-Source stream processing platforms”. In: Global

Communications Conference (GLOBECOM), 2016 IEEE, pp. 1–6. IEEE,

2016.

[16] LOPEZ, M. A., LOBATO, A. G. P., MATTOS, D., et al. “Um Algoritmo Não

Supervisionado e Rápido para Seleção de Caracteŕısticas em Classificação

de Tráfego”, SBRC’2017, Belém- Pará, PA, Brasil, 2017.

[17] LOPEZ, M. A., SILVA, R., ALVARENGA, I., et al. “Collecting and Char-

acterizing a Real Broadband Access Network Traffic Dataset”, 1st Cyber

Security in Networking Conference, 2017.

[18] BUCZAK, A., GUVEN, E. “A Survey of Data Mining and Machine Learning

Methods for Cyber Security Intrusion Detection”, IEEE Communications

Surveys Tutorials, , n. 99, pp. 1–26, 2015.

[19] JI, S.-Y., JEONG, B.-K., CHOI, S., et al. “A multi-level intrusion detection

method for abnormal network behaviors”, Journal of Network and Com-

puter Applications, v. 62, pp. 9–17, 2016.

60

[20] LAKHINA, A., CROVELLA, M., DIOT, C. “Mining anomalies using traffic

feature distributions”. In: ACM SIGCOMM Computer Communication

Review, v. 35, pp. 217–228. ACM, 2005.

[21] FERNANDES, G., CARVALHO, L. F., RODRIGUES, J. J., et al. “Network

anomaly detection using IP flows with Principal Component Analysis and

Ant Colony Optimization”, Journal of Network and Computer Applica-

tions, v. 64, pp. 1–11, 2016.

[22] PALMIERI, F., FIORE, U., CASTIGLIONE, A. “A distributed approach to

network anomaly detection based on independent component analysis”,

Concurrency and Computation: Practice and Experience, v. 26, n. 5,

pp. 1113–1129, 2014.

[23] RINGBERG, H., SOULE, A., REXFORD, J., et al. “Sensitivity of PCA for

Traffic Anomaly Detection”. In: ACM SIGMETRICS, pp. 109–120, 2007.

[24] AMARAL, A. A., DE SOUZA MENDES, L., ZARPELÃO, B. B., et al. “Deep

IP flow inspection to detect beyond network anomalies”, Computer Com-

munications, v. 98, pp. 80–96, 2017.

[25] BOSTANI, H., SHEIKHAN, M. “Hybrid of anomaly-based and specification-

based IDS for Internet of Things using unsupervised OPF based on

MapReduce approach”, Computer Communications, v. 98, pp. 52–71,

2017.

[26] SINGH, K., GUNTUKU, S. C., THAKUR, A., et al. “Big Data Analytics

framework for Peer-to-Peer Botnet detection using Random Forests”, In-

formation Sciences, v. 278, pp. 488–497, 2014.

[27] RATHORE, M. M., PAUL, A., AHMAD, A., et al. “Hadoop Based Real-Time

Intrusion Detection for High-Speed Networks”. In: IEEE GLOBECOM,

Washington, USA, 2016.

[28] LEE, W., STOLFO, S. J., MOK, K. W. “Mining in a data-flow environment:

Experience in network intrusion detection”. In: Proceedings of the fifth

ACM SIGKDD international conference on Knowledge discovery and data

mining, pp. 114–124. ACM, 1999.

[29] BRINGER, M. L., CHELMECKI, C. A., FUJINOKI, H. “A survey: Recent

advances and future trends in honeypot research”, International Journal

of Computer Network and Information Security, v. 4, n. 10, pp. 63, 2012.

61

[30] OWEZARSKI, P. “A near real-time algorithm for autonomous identification

and characterization of honeypot attacks”. In: ACM Symp. on Informa-

tion, Computer and Communications Security, pp. 531–542. ACM, 2015.

[31] BERNAILLE, L., TEIXEIRA, R., AKODKENOU, I., et al. “Traffic classifi-

cation on the fly”, ACM SIGCOMM Computer Communication Review,

v. 36, n. 2, pp. 23–26, 2006.

[32] PENG, L., YANG, B., CHEN, Y. “Effective packet number for early stage

internet traffic identification”, Neurocomputing, v. 156, pp. 252 – 267,

2015.

[33] CHEN, Z., PENG, L., GAO, C., et al. “Flexible neural trees based early stage

identification for IP traffic”, Soft Computing, v. 21, n. 8, pp. 2035–2046,

2017. ISSN: 1433-7479. doi: 10.1007/s00500-015-1902-3.

[34] DONATO, W. D., PESCAPE, A., DAINOTTI, A. “Traffic identification en-

gine: an open platform for traffic classification”, IEEE Network, v. 28,

n. 2, pp. 56–64, March 2014.

[35] SPEROTTO, A., SADRE, R., VAN VLIET, F., et al. “A labeled data set

for flow-based intrusion detection”. In: IP Operations and Management,

Springer, pp. 39–50, 2009.

[36] AMINI, M., JALILI, R., SHAHRIARI, H. R. “RT-UNNID: A practical solution

to real-time network-based intrusion detection using unsupervised neural

networks”, Computers & Security, v. 25, n. 6, 2006.

[37] SANGKATSANEE, P., WATTANAPONGSAKORN, N., CHARNSRIPINYO,

C. “Practical real-time intrusion detection using machine learning ap-

proaches”, Computer Communications, v. 34, n. 18, pp. 2227 – 2235,

2011.

[38] JOHNSON, T., LAZOS, L. “Network anomaly detection using autonomous sys-

tem flow aggregates”. In: Global Communications Conference (GLOBE-

COM), 2014 IEEE, pp. 544–550. IEEE, 2014.

[39] DU, Y., LIU, J., LIU, F., et al. “A real-time anomalies detection system based

on streaming technology”. In: Sixth International Conference on Intelli-

gent Human-Machine Systems and Cybernetics (IHMSC), v. 2, pp. 275–

279. IEEE, 2014.

[40] ZHAO, S., CHANDRASHEKAR, M., LEE, Y., et al. “Real-time network

anomaly detection system using machine learning”. In: 11th International

62

Conference on the Design of Reliable Communication Networks (DRCN),

pp. 267–270. IEEE, 2015.

[41] RAI, K., DEVI, M. S. “Intrusion Detection Systems: A Review”, Journal of

Network and Information Security, v. 1, n. 2, 2013.

[42] SHIN, S., PORRAS, P., YEGNESWARAN, V., et al. “FRESCO: Modular com-

posable security services for software-defined networks”. In: Proceedings

of Network and Distributed Security Symposium, 2013.

[43] KIM, H., GUPTA, A., SHAHBAZ, M., et al. Simpler Network Configuration

with State-Based Network Policies. Relatório técnico, Georgia Institute

of Technology, 2013.

[44] ANDREONI LOPEZ, M., DA ROCHA FIGUEIREDO, U., LOBATO, A. G. P.,

et al. “BroFlow: Um Sistema Eficiente de Detecção e Prevenção de In-

trusão em Redes Definidas por Software”, WPerformance’2014 (XXXIV

Congresso da Sociedade Brasileira de Computação - CSBC 2014), pp.

1919–1932, 2014.

[45] LIN, Y.-D., LIN, P.-C., YEH, C.-H., et al. “An Extended SDN Architecture

for Network Function Virtualization with a Case Study on Intrusion Pre-

vention”, IEEE Network, v. 29, n. 3, pp. 48–53, 2015.

[46] BRAGA, R., MOTA, E., PASSITO, A. “Lightweight DDoS flooding attack

detection using NOX/OpenFlow”. In: IEEE 35th Conference on Local

Computer Networks, pp. 408–415, 2010.

[47] RYCHLY, M., KODA, P., SMRZ, P. “Scheduling Decisions in Stream Process-

ing on Heterogeneous Clusters”. In: Eighth International Conference on

Complex, Intelligent and Software Intensive Systems (CISIS), pp. 614–

619, 2014.

[48] MARZ, N., WARREN, J. Big Data: Principles and Best Practices of Scalable

Realtime Data Systems. 1st ed. Greenwich, CT, USA, Manning Publica-

tions Co., 2013.

[49] CHENG, Z., CAVERLEE, J., LEE, K. “You Are Where You Tweet: A Content-

based Approach to Geo-locating Twitter Users”. In: Proceedings of the

19th ACM International Conference on Information and Knowledge Man-

agement, CIKM’10, pp. 759–768. ACM, 2010. ISBN: 978-1-4503-0099-5.

63

[50] LIPPMANN, R. P., FRIED, D. J., GRAF, I., et al. “Evaluating intrusion

detection systems: The 1998 DARPA off-line intrusion detection evalu-

ation”. In: Proceedings of DARPA Information Survivability Conference

and Exposition. DISCEX’00., v. 2. IEEE, 2000.

[51] TAVALLAEE, M., BAGHERI, E., LU, W., et al. “A detailed analysis of the

KDD CUP 99 data set”. In: Proceedings of the Second IEEE Sympo-

sium on Computational Intelligence for Security and Defence Applica-

tions. IEEE, 2009.

[52] SOMMER, R., PAXSON, V. “Outside the closed world: On using machine

learning for network intrusion detection”. In: IEEE Symposium on Secu-

rity and Privacy (SP), pp. 305–316. IEEE, 2010.

[53] GARCIA, S., GRILL, M., STIBOREK, J., et al. “An empirical comparison

of botnet detection methods”, Computers & Security, v. 45, pp. 100–123,

2014.

[54] MORAES, I. M., MATTOS, D. M., FERRAZ, L. H. G., et al. “FITS:

A flexible virtual network testbed architecture”, Computer Networks,

v. 63, n. 0, pp. 221 – 237, 2014. ISSN: 1389-1286. doi:

http://dx.doi.org/10.1016/j.bjp.2014.01.002. Special issue on Future In-

ternet Testbeds Part {II}.

[55] BEZERRA, G. M. G., MATTOS, D. M. F., FERRAZ, L. H. G., et al. “Sis-

tema automatizado de gerência de recursos para ambientes virtualizados”,

publicado em XXXII Simpósio Brasileiro de Redes de Computadores e Sis-

temas Distribuıdos-SBRC, 2014.

64

