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Esta tese aborda o problema da detecção de objetos abandonados em um ambi-

ente desordenado usando uma câmera montada sobre uma plataforma robótica que

executa um movimento de translação de ida e volta ao longo de um trilho retilí-

neo. Neste cenário, o sistema desenvolvido compara as imagens captadas com um

vídeo de referência, exigindo, portanto, adequados alinhamento temporal e registro

geométrico entre os dois sinais. Uma restrição de tempo real é imposta ao sistema

para permitir que este seja capaz de executar tarefas de vigilância e�cazmente em

situações práticas. Neste estudo, nos propomos a lidar com a detecção simultânea de

objetos de diferentes tamanhos usando uma abordagem multirresolução, juntamente

com correlação cruzada normalizada e uma etapa de votação. A �m de desenvolver

e avaliar adequadamente o método proposto nós projetamos, gravamos e marcamos

uma base de dados produzida em um cenário de vigilância real, que consiste em um

galpão industrial contendo um grande número de tubos e máquinas rotativas. Além

disso, desenvolvemos uma rotina de ajuste de parâmetros sistemática que permite

que o sistema seja adaptado para diferentes cenários. Nós a validamos empregando a

base de dados produzida. Os resultados obtidos são bastante efetivos, apresentando

detecção de objetos abandonados robusta no ambiente industrial proposto.
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This thesis addresses the problem of abandoned object detection in a cluttered

environment using a camera mounted on a robot platform that performs a transla-

tional back-and-forth movement along a horizontal straight track. In this scenario,

the developed system compares captured images to a reference video, thus requir-

ing proper temporal alignment and geometric registration between the two signals.

A real-time constraint is imposed onto the system to allow an e�ective surveillance

capability in practical situations. In this study, we propose to deal with the simulta-

neous detection of objects of di�erent sizes using a multiresolution approach together

with normalized cross-correlation and a voting step. In order to develop and prop-

erly assess the proposed method we designed, recorded and annotated a database

produced in a real surveillance scenario, consisting of an industrial plant containing

a large number of pipes and rotating machines. Also, we have devised a systematic

parameter tuning routine that allows the system to be adapted to di�erent scenarios.

We have validated it using the designed database. The obtained results are quite

e�ective, achieving robust abandoned object detection in the proposed industrial

plant scenario.
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Chapter 1

Introduction

Nowadays, technology can provide us with large amounts of di�erent kinds of data,

that we can employ in many di�erent ways.

Considering only the image domain, for example, we have still images, videos ob-

tained from static cameras, videos obtained from moving cameras, images or videos

obtained with multiple cameras, multidimensional data obtained from medical scan-

ners, and so on.

In this context, Computer Vision techniques allow one to extract reliable in-

formation from a video signal, providing a reasonably good understanding of the

recorded environments or processes. By exploring this capability, automatic video-

based monitoring systems can be deployed, enabling signi�cant saving of resources,

minimizing labor risks in hazardous environments and increasing system e�ciency,

particularly when dealing with repetitive or tedious tasks.

In this monitoring application, the automatic detection of abandoned objects in

a given scenario constitutes an interesting feature of a surveillance or remote in-

spection system. When using static cameras for this purpose, for instance, simple

background and behavior subtractions, employing statistical approaches, allow one

to detect or even track objects in the acquired videos [1�6]. Using moving cameras

in this context, however, increases the surveillance range [7], but requires more elab-

orate techniques to compensate for the camera movement, which may also include

a signi�cant amount of vibration [8�13]. In addition, if the environments to be

monitored are cluttered, the process of sorting out the useful information from the

background becomes even more di�cult, reducing the overall detection robustness.

1.1 Proposed Scenario

An example of cluttered environment that could greatly bene�t from the use of

Computer Vision techniques are industrial plants. In such hazardous places, remote

1



inspection tasks, for example, would not only improve their economic operation, but

would also help minimize labor risks, as stated before.

Concerning the issue of increasing the surveillance range, we envisioned that mov-

ing cameras would be an even greater help to the performance of remote inspection

tasks in such places. Also, considering the fact that there are people performing in-

spection tasks in shifts in such environments, we believe that a camera being moved

by a robot, performing the path of the inspector around the environment could not

only reduce his workload, but also allow him to perform this task from a safe place,

reducing the need of his presence in the hazardous environment.

Regarding the cost issue, industrial plants such as oil platforms could use cameras

capable of detecting hydrocarbon gases in order to try to �nd gas leakage. As this

kind of camera can cost 200 thousand dollars, increasing the surveillance range of

such a camera, attaching it to a moving platform, for example, could lead to the

saving of resources.

Considering the automatic detection of abandoned objects concept presented in

this thesis, with further research, it could be extended to the automatic detection

of other kinds of anomalies, such as �re, smoke, liquid or gas leakage (as in the

example above), etc. Such anomalies, being present in a certain number of frames,

at roughly the same position in the monitored environment, could be regarded as an

abandoned object at that same position. The automatic detection of such anomalies

would be extremely helpful, not only because their fast detection would allow a faster

solution to the problem, helping save resources and preventing economic losses, even

diminishing the harmful impact to the environment in some cases, but also because

it could help prevent that people would be subject to dangerous situations.

With this industrial plant scenario in mind, we proposed a surveillance system

and produced a database recorded in a real-world industrial (cluttered) environment,

to help us develop and test the system.

1.2 Surveillance System

In this work, we describe a complete surveillance system for detecting the presence

of abandoned objects in a cluttered environment. Our system employs a camera

attached to a robotic platform mounted over a horizontal straight track performing

a translational back-and-forth movement. The monitoring system uses a reference

video with no unexpected object, as certi�ed by a system operator in an initial cal-

ibration stage. The detection of anomalous objects is carried out by comparing the

target video, acquired in subsequent performances of the robotic platform trajec-

tory, with the initial reference video. As our system must perform a monitoring task

in an environment such as an industrial plant, it must be able to send alarms as a
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human inspector performing the same task would. Throughout this thesis, this will

be our de�nition of real time. Our system, then, cannot take more than a couple

of minutes to send an alarm if an abandoned object is detected in the region being

monitored at the time. Such real-time constraint requires quite speci�c and de-

manding signal-processing solutions and makes the system suitable for a wide scope

of practical situations. This way, this desirable feature should be attainable after

the optimization of the programing code developed during the research presented in

this thesis.

During the development of our object-detecting method, we employed a database

(described in Chapter 4) composed by reference and target videos that presented

only small degrees of changes in illumination among them. Some of these di�erences

were caused by the the changes that occur during di�erent times of the day (morning

and afternoon), while others were generated by the use of a spotlight. Thus, greater

variations in illumination are not a part of our premises.

A relevant issue in such surveillance systems is the temporal alignment of the

reference and target videos. Solutions to this problem usually include external trig-

ger signals to determine the camera position, such as a GPS device [8] or the robot's

odometry [14, 15]. This work dispenses with external signals for temporal align-

ment, the camera position being determined using a maximum-likelihood model for

the camera movement derived directly from the acquired reference and target videos.

A multiscale approach is proposed to compare the synchronized and registered

frames from the reference and target videos. In this framework, larger abandoned

objects are searched in lower video resolutions and smaller objects are searched

in higher resolutions, leading to an increased detection robustness at a reasonable

computational cost.

Video comparison includes the computation of the normalized cross-correlation

(NCC) [8] between two video frames within the proposed multiresolution approach.

After an NCC threshold operation, a binary detection mask is determined. Sub-

sequent nonlinear operations, which include a temporal �ltering, voting step, and

morphological operations, remove most false positive and false negative situations,

increasing the overall system accuracy.

A complete strategy is presented for setting the system parameters in order

to maximize its detection rate. In such description, the impact of each system

variable on the resulting performance is thoroughly evaluated. System performance

is assessed using validation on part of a large database, recorded in a real industrial

plant, comprising more than 8 hours of annotated video and several types (di�erent

colors, sizes, positions etc.) of abandoned objects, as detailed in [16].

To describe the proposed surveillance techniques, this document is organized as

follows: Chapter 2 brie�y addresses related problems and their proposed solutions.
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Chapter 3 presents the deployed system, including the video-comparison strategy

in a step-by-step procedure. Chapter 4 brie�y describes the database employed to

adjust and evaluate the proposed detection scheme. Chapter 5 details all speci�c

solutions developed in the context of this work to optimize the system's performance

in terms of computational complexity and detection robustness. Chapter 6 describes

the con�guration of all system variables of interest, discussing their individual e�ects

on the resulting detection process. In Chapter 7, detection results are presented

characterizing the system's performance in both quantitative and qualitative ways.

Finally, Chapter 8 concludes this work emphasizing its main technical contributions.
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Chapter 2

Studied Techniques

In this chapter we will present some of the techniques we studied having in mind

our application of remote monitoring of industrial plants.

2.1 Static Cameras

The easiest way to monitor a desired environment is to employ a static camera. To

perform automatic surveillance tasks with images obtained from such cameras, one

can use, for example, environment modeling and motion segmentation [17�20].

Motion segmentation, that is, the separation of a moving object in an image from

a static background, can be performed through three main approaches: temporal

di�erentiation [21], background subtraction [18, 19, 22�24], and optical �ow [17].

Temporal di�erentiation uses the pixel di�erence between 2 to 3 consecutive frames

to extract the motion regions [25]. This method is fast and adaptive to dynamic

environments, but often cannot extract all the relevant pixels [17, 22].

In background subtraction, the pixel to pixel di�erence between the current im-

age and the reference image is calculated. This method is very sensitive to changes,

such as variations in illumination. Statistical methods present robustness to noise,

shadows, lighting changes, etc [17, 22].

Optical �ow is the pattern of apparent motion of objects, surfaces and edges in

a scene caused by the relative motion between an observer and the scene. It can be

calculated based on gradients, phase correlation, block-based or di�erential-based

methods. In general, the use of optical �ow requires special hardware for real-time

applications. It is computationally expensive and sensitive to noise [17, 22].

In the case of motion segmentation, speci�cally, several algorithms are proposed

for its implementation, employing, for example, adaptive mixed Gaussian models

[17, 20, 22, 24�30], in which each pixel of the background is modeled as a weighted

mixture of Gaussian distributions. When a new image is acquired, its pixels are

compared to their corresponding models. Based on the mean and variance of each
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Gaussian in its model, it is decided if the new pixel belongs to the background or

not.

Other techniques to statistically model pixels employ Bayesian modeling;

Kalman �lters [31]; statistical models representing pixels with three values (max-

imum, minimum, and maximum di�erence in intensity between the pixel and its

corresponding one in the previous frame); models that classify pixels as belonging

to the background, the foreground, or as shadows [19, 24, 32, 33]; or combinations

of the models presented.

If one considers the most complex problems to be addressed, such as analy-

sis and understanding of behavior and activities, further di�erent techniques are

needed. Behaviour subtraction [5] intends to deal with issues caused by small vari-

ations in the background, produced by jitter, small camera trepidations, and so on.

Here, anomalous events are detected by subtracting the behaviour model of a scene,

produced by capturing the scene dynamics at speci�c areas in the images within

determined time windows, from the one of a given frame of interest.

Other techniques to deal with analysing and understanding behaviour and ac-

tivities include neural networks, hidden Markov models [30], vector quantization,

Markov random �elds, dynamic time warping, support vector machines [30], among

others [34].

As they were developed considering static cameras, all the techniques presented

above deal with stationary backgrounds. If one intends to monitor a large area,

and it is not possible to employ multiple static cameras to cover it (due to cost

restrictions, for example), moving cameras must be used.

2.2 Moving Cameras

With moving cameras, the image background is not stationary. This way, di�erent

techniques must be used to deal with this issue.

2.2.1 PTZ Cameras

Pan-Tilt-Zoom (PTZ) cameras generally allow a pan of 360◦, a tilt of 90◦, and some

optical zoom.

In [10], background compensation with a PTZ camera is studied. It approximates

the relationship between consecutive images through similarity transformations. The

outlier removal is done using Hough transformation together with RANSAC [35].

In [36], a technique for Motion Tracking with PTZ cameras is described. It

employs image mapping to align the images and allow the use of techniques employed

with static cameras. Morphological �ltering is used to desensitize the detection
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algorithm to small issues with the background compensation. The method presented

needs the angle information (pan and tilt) in order to work, and the camera can

move a maximum of 3 degrees between each frame.

A method to track objects and also estimate the camera movement is described

in [37]. In this study, the camera can be either a PTZ one, or a camera that

moves along a path. The studied topics are formulated as a Bayesian motion-based

partitioning problem in the spatiotemporal domain of the image sequence. The

coupling of the object tracking and motion estimation problems is explored through

a greedy method for movement parameters estimation.

In [38], real-time object detection and tracking is performed with a moving cam-

era. Spherical coordinates are centered in the camera, and the original image coordi-

nate is transformed to a spherical coordinate. No background subtraction technique

is employed. The multiple target tracking with the PTZ camera is formalized in

a probabilistic fashion. Hidden Markov Models (HMM) are used to represent the

dependencies between the targets and the camera at the spherical coordinates (the

transition between states is modeled as a Markov process). Recursive Bayesian

�ltering is also used.

Considering the tracking issue, sequential importance sampling (SIS) and sam-

pling importance re-sampling (SIR) particle �lters are used in order to deal with

the interactions between near targets. Considering the detection issue, the Kanade-

Lucas-Tomasi (KLT) feature tracker is used to obtain the optical �ow in the image

sequences. This, together with HMM, is employed to obtain moving feature points

with a non zero optical �ow at the spherical coordinates. Color histogram and con-

tour matching is used in order to �nish the detection process. The camera movement

is measured from its motor encoder.

2.2.2 Cameras Mounted on Moving Platforms

Besides PTZ cameras, one can also monitor larger areas with a single camera by

mounting it over moving platforms.

In [39], a camera mounted on top of a mobile robot is used in order to detect

moving objects and estimate their movements. In this study, background subtraction

is performed employing Gaussian mixture models (GMM). Dense motion analysis

is used to estimate and compensate the camera movement. Maximum a posteriori

probability (MAP) framework is used to detect the moving objects and to estimate

their movement �eld.

In [40], once again, a camera mounted on a moving robot is employed to perform

moving object detection. Here, a recursive Bayes �lter is used to detect the move-

ment (a �rst-order Markov process is assumed). The robot's odometry is employed

7



for image alignment. It must be correctly synchronized with its corresponding frame.

Kanade-Lucas-Tomasi (KLT) is used to track features in an image pair. The Bayes

�lter determines if these features are stationary or dynamic. The object movement

considered is degenerate, that is, it must be parallel to the camera movement in

order for the proposed method to work. Only grayscale information is used in this

method.

In [14], the study initiated in [40] is continued. Visual Simultaneous Localization

and Mapping (SLAM) is employed to estimate the camera movement. Once again, a

recursive Bayes �lter is used to calculate if the feature probabilities that will be used

in the SLAM model are static or dynamic. The SLAM framework and RANSAC are

employed to estimate the initial epipolar geometry. The method was able to detect

a maximum of three objects moving independently in each frame.

In [41], real-time object tracking is performed using a hybrid approach between

movement segmentation and searching for known features. A single estimation step

is used to �lter the background global movement before applying a background

�ltering algorithm to perform the detection of a moving object. As real-time per-

formance is a goal in this study, the background �ltering algorithm must be robust

to inadequacies in the motion estimation and compensation steps. After the said

motion estimation and compensation steps, object and background segmentation is

performed. Then, adaptive noise �ltering is employed, and �nally the moving object

is detected. To track the detected object, the Condensation algorithm is used. It

provides a statistical framework for projecting forward the parameters of any model

and adjusting the method's previsions based in the actual content of each new frame.

A monochromatic camera attached to a car is employed in [42]. It is assumed

that no rotations will occur. The proposed method consists in detecting Points

of Interest, calculating the optical �ow with the Lucas-Kanade algorithm, robustly

estimating the focus of expansion (FOE), computing the residual FOE map, and

segmenting it, in order to detect the object movement.

The study described in [43] deals with the detection of moving targets. It uses

SIFT [44�46] to extract Points of Interest, and RANSAC to estimate a�ne transfor-

mations. Background subtraction between the actual frame and a transformed one

is employed to perform the object detection. The detection result is used to update

the background.

The problem described in [8] presents a similar idea: a camera attached to a car

is used in order to �nd abandoned objects at roads. The car moves at 30 km/h.

Initially, a predetermined path is recorded, with no abandoned object present in

the video (the reference video). Then, new videos are generated (the target videos),

recorded in the same path, now with abandoned objects in them. A technique is

employed in order to identify the horizon line, as abandoned objects will be searched
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only below this line.

The initial video alignment is done via GPS. After that, the frames in the ref-

erence and target videos are registered, with the aid of SIFT to extract the Points

of Interest, and RANSAC do select them, in order to calculate the homographies

between the frames. After this step, the registered frames are compared through the

computation of normalized cross correlation (NCC), producing an NCC image that

is binarized with an experimental threshold. The results produced here presents

possible abandoned object candidates.

To help reduce the occurrence of false positives, a method for removing false

alarms on high objects is performed. It is quite similar to the one previously de-

scribed. However, this time, the registered and compared frames are all from the

reference video.

To remove false alarms on the dominant plane, once again, a similar process

is used. This time, once again the frames from the reference video are registered

and aligned among themselves, but now the same process also happens with the

frames from the target video. This time, however, instead of using NCC, the reg-

istered frames of both video sequences are compared by calculating the di�erence

of grayscale pixel values (in this step, once again, the reference frames are com-

pared with reference frames, and now, also, target frames are compared with target

frames). Finally, after all these techniques are performed, a �nal temporal �ltering

step is done to con�rm the existence of a suspicious abandoned object in the target

video frame sequence.

Considering our scope of automatic abandoned object detection in a cluttered

environment, some works [47�49] have been done employing our database [16].

In [47], a system is proposed in order to estimate the trajectory of a moving

camera employing a structure from motion algorithm adapted to use images ob-

tained from a camera performing a horizontal linear movement. With the obtained

trajectory, a panoramic image is produced. The idea is to compare panoramic im-

ages obtained in the same way from the same environment in order to try to �nd

abandoned objects in it.

Based on the concepts presented in [50] and [51], in [48] a framework is proposed

in order to detect which frames from a given video might contain abandoned objects

in them. Optimized operators that produce Gaussian outputs when the reference

video is applied to them are generated from it. When the target video is applied

to them, if there is an anomaly present in a given frame sequence, a non-Gaussian

output is produced. This method is robust to rotations and translations between

the frames and does not require synchronization between the reference and target

frames.

In [49], Robust Subspace Recovery [52] is used to produce a low-rank representa-

9



tion of a reference video signal. Using it to represent a target video signal containing

abandoned objects in some of its frames, an error signal, representing the abandoned

objects and some high-frequency data, is produced. As this high-frequency data is

common between the reference and target videos, this error signal can be decom-

posed, and the abandoned object information can be retrieved from it. This method

also does not require synchronization between the reference and target frames.

None of the techniques outlined in this chapter address the problem of detecting

abandoned objects in a cluttered environment (speci�cally, an industrial plant) in

real time using a moving camera, as exposed in Section 1.2. This way, Chapter 3

will present the framework proposed in this thesis in order to deal with the outlined

problem. Also, Chapter 4 will present the database that had to be planned, recorded

and annotated so that we could properly develop our algorithms.
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Chapter 3

General System Description

The proposed surveillance system consists of a high-de�nition (HD) 24 frame/second

camera mounted on a robotic Roomba R© platform [53] performing a back-and-forth

movement on a horizontal track, as illustrated in Fig. 3.1. The moving robot takes

about 3 minutes to cover the entire 6 m track, which oversees an industrial plant

with a cluttered background.

Figure 3.1: Real camera-robot system with a glimpse of the cluttered environment
of interest on the background.

The following framework was employed for the real-time system operation: a

reference video is obtained from an initial performance of the robot back-and-forth

trajectory and is validated by some operator, indicating the absence of any strange

object. The videos from all subsequent performances of the robot trajectory are

11



then compared to that reference video in search of any newly observed object. If

necessary, the system operator may change the reference video using a simple update

procedure, and after this the monitoring system goes back to normal operation.

For a proper object detection within a given video sequence, the developed system

includes the following processing steps:

(i) Reference and target video synchronization, both for the initial alignment and

for correcting subsequent deviations due to small variations on the robot's

speed;

(ii) Identi�cation of points of interest (PoI), usually salient points, in the corre-

sponding reference and target frames to allow simpli�ed real-time processing;

(iii) Geometric registration between the corresponding reference and target frames

to reduce vibration e�ects on the robot movement along the cable trail;

(iv) Numerically e�cient (for real-time purposes) and robust frame comparison, us-

ing a multiresolution scheme, to identify signi�cant frame discrepancies which

can be associated to an abandoned object;

(v) A pixel-level voting strategy along consecutive detection masks to identify

consistent detections along time, removing occasional false detections;

(vi) Morphological operations to remove additional false positive and false negative

situations.

Details about the techniques proposed in this study for implementing the above

stages are presented in Chapter 5.

Fig. 3.2 shows a block diagram representing our abandoned object detection

process.

Reference

Video

Video

Target

NCC

NCC

NCC

Temporal

Temporal

Temporal

Filter

Filter

Filter

Voting

Voting

Voting

Step

Step

Step

Morphological

Operations

Morphological

Operations

Morphological

Operations

Multiscale Frame Comparison

Object

Detection

Video

Alignment

Image

Registration

21

3 4 5 6

Figure 3.2: Block diagram of the system abandoned object detection process.
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Block n.1 represents the reference and target video synchronization. Block n.2

represents the PoI identi�cation process, and the geometric registration between

the corresponding reference and target frames. In our multiresolution approach,

block n.3 shows our frame comparison step, employing NCC, block n.4 our tempo-

ral �ltering step, block n.5 our pixel-level voting strategy, and �nally in block n.6

the morphological operations are performed. Together, the results obtained in all

resolutions indicate where abandoned objects might be.

Fig. 3.3 shows another view of our real camera-robot system setup in the cluttered

environment where the database described in Chapter 4 was recorded.

Figure 3.3: Another view of our real camera-robot system setup.
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Chapter 4

Abandoned-Object Video Database

In order to allow a systematic veri�cation of the system robustness, a large video

database, described in [16] and available at [54], was deployed. We refer to it as the

VDAO database (from �video database of abandoned objects in a cluttered industrial

environment�). The whole database comprises more than 8 hours of video, including

8 reference videos (without abandoned objects) and 57 di�erent target videos (3

multi-object videos and 54 single object videos).

4.1 Database Development

4.1.1 Database Requirements

We developed this database with the following requirements in mind:

• Videos should include several changes in the movement direction to allow a

proper assessment of the time-alignment algorithm;

• Objects of di�erent colors, textures, shapes and sizes must be considered;

• The positions and numbers of objects within a frame must change in di�erent

video footages;

• Small di�erences in the levels of luminosity must be considered, not only in

di�erent videos but also within a same video footage.

4.1.2 Database Design

Based on the requirements listed in Subsection 4.1.1, the proposed database was

devised in the following way:

• Use of two di�erent cameras, both set to a resolution of 1280 x 720 pixels and

a rate of 24 frames per second, with quite distinct light/color characteristics;
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• Use of a spotlight in half of the footages, making brighter recordings, whereas

natural light was employed on the other half of the recordings;

• Recording of 3 multiple-object and 2 no-object (reference) videos with one

camera (Dlink DCS-3717) and 54 single-object and 6 no-object (reference)

videos with the other camera (Axis P1346);

• All the multiple-object recordings included 6 full performances of the robot

trajectory (or 5 direction changes), where the single-object videos only have

one trajectory performance in each direction;

• Use of 15 distinct objects for the multiple-object videos (see Fig. 4.1), and

9 other objects in the single-object videos (see Fig. 4.2). Some objects are

transparent or re�ective, and some are made of a material similar to the envi-

ronment, so that there is a signi�cant probability that they are not detected

by the human eye;

• The 3 multiple-object videos were recorded with the same 15 objects placed in

3 di�erent positions, with the spotlight, making completely distinct arrange-

ments. The di�erent positions also caused some objects to change size in the

footages, as they may be farther or closer to the camera. The 54 single-object

videos work in a similar way, as each of the 9 objects was recorded in 3 di�erent

positions and with/without the use of a spotlight;

• All multiple-object videos were devised in a way that most of the frames include

at least 2 objects.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

(j) (k) (l) (m)

(n) (o)

Figure 4.1: Objects used in the multiple-object videos (scales have been changed for
a better presentation): (a) string roll; (b) bag; (c) white box; (d) lamp-bulb box;
(e) spotlight box; (f) mug; (g) blue coat; (h) wrench; (i) bottle; (j) blue box; (k)
backpack; (l) pink backpack; (m) bottle cap; (n) umbrella; (o) green box.
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(a) (b) (c) (d) (e)

(f) (g) (h)

(i)

Figure 4.2: Objects used in the single-object videos (scales have been changed for a
better presentation): (a) shoe; (b) dark blue box; (c) camera box; (d) pink bottle;
(e) black backpack; (f) white jar; (g) brown box; (h) towel; (i) black coat.
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4.1.3 Database Recording

The database recording was performed with the camera mounted on an iRobot

Roomba R© platform passing over a hanging rail at a height of approximately 2.5 m,

as seen in Chapter 3. The camera was pointed to a cluttered environment comprising

several pipes and valves simulating a scene of interest inside an o�shore facility, as

shown in Figs. 4.3 and 4.4.

Figure 4.3: Environment where our database was generated.
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Figure 4.4: Environment where our database was generated.

Slight di�erences in illumination, video durations and robot speeds can be iden-

ti�ed within the database, as the recordings were performed in several sessions

comprising a total period of about 7 months. These recordings were performed in

di�erent times of the day, which also contributed to the di�erences in illumination,

as daylight varies from morning to afternoon, even inside the relatively closed in-

dustrial plant environment where the recordings took place. Such di�erences are

interesting in the sense that they allow a more robust evaluation of the proposed

system with respect to the intended characteristics.

It is also important to mention that the Roomba R© robot was built having in

mind that it would only move in the forward direction, that is, its motor would not,

normally, rotate in the opposite direction. This way, while moving backwards, the

robot's motor does not operate as smoothly as when it is moving in the forward

direction.

Due to the cluttered characteristic of the environment, many object occlusions

occur during the videos. An example is when part of the scenario (or of a foreground

object) passes in front of (another) object of interest, as seen in Figs. 4.5 and 4.6.

This challenge is also a desired characteristic of the database, since the surveillance

system should be able to detect an abandoned object even if it is occluded during a
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small period of time.

(a)

(b)

Figure 4.5: Example of occlusion: (a) no occlusion is happening; (b) foreground
object (pipe) is occluding the string roll and partially occluding the backpack.
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(a)

(b)

Figure 4.6: Another example of occlusion: (a) spotlight box is being partially oc-
cluded by pipe; (b) blue coat (abandoned object) is occluding the mug.
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One (out of the 3) multiple-object videos has only 5 camera trajectory perfor-

mances instead of 6. The single-object videos have an average duration of 6 minutes,

where the multiple-object videos have an average duration of 18 minutes (except the

one with 5 trajectory performances that is about 15 minutes long).

Another interesting feature of the database is that the recorded videos include

unwanted images of the objects, due to the many re�ective surfaces of the clut-

tered environment, as seen in Fig. 4.7, and shadows casted by the objects or the

scenario itself, as seen in Fig. 4.8. These e�ects may impair the performance of the

surveillance system, by causing false positive or false negative situations.

Figure 4.7: Example of re�ective surface (pipe on the right, immediately to the right
of the green pipe). The backpack to its left is being re�ected on it.

22



Figure 4.8: Example of shadow being cast by an object, the bottle.

4.2 Database Annotation

A crucial step to turn the proposed database into a useful tool for the performance

assessment of object-detecting systems is to identify all objects within its video

footages. In our case, we opted for a manual annotation process of each object,

since the human ability is considered the gold standard for the application at hand.

Due to the large quantity of frames to be marked (in the order of 7.1×105 frames),

it became clear that the support of a speci�c software for this purpose, with the

following characteristics, would be necessary:

• Object mark consisting of an outline of easy identi�cation, preferably a simple

bounding box;

• Marks inserted quickly, via mouse, due to the large number of frames to be

considered;

• Input commands via a GUI interface with a minimum number of intuitive

commands;

• Ability to mark multiple objects in the same frame;

• Possibility of identifying and associating several parts to a single object due

to occasional partial occlusions;

• Generation of an output �le with the labels and corresponding coordinates of

all objects in each frame.
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A new marking software attending all these requirements was developed in

C++ [55], using the free version of the QT Creator 2.81 application [56], due to

its friendly interface, extensive documentation available and portability between

Windows and Linux (Fedora 19) operating systems. The program also used the free

and multiplatform OpenCV library [57] for video manipulations. The main screen

of the developed annotation tool is shown in Fig. 4.9, whose main commands are

indicated on the left side (from top to bottom):

1. Set video position (in frames) by a slider (gross adjustment) or frame number

(�ne adjustment);

2. Open video �le to be marked;

3. Play video (with marked objects if a corresponding markup �le exists);

4. Save the markup text �le;

5. Set the object name and sub-index;

6. Skip frames without manual mark (interpolation is performed, as described be-

low);

7. Clear speci�c object from the output �le;

8. Set video frame rate.

The marking process of a given video starts by opening the desired �le and

setting it to the desired frame position. When �rst marking a video, the frame

position should be set to 1; a di�erent frame number is used when marking a video

which has already been partially marked. The play-video function can be used to

determine the video portion which has already been marked.

For marking an object, a rectangular bounding box was chosen for its simplicity.

For that purpose, the mouse must be positioned at any bounding-box corner and

dragged to the opposite corner with the left button pressed. When the left mouse

button is released a box is drawn around the object, which is then validated with

the �set� button.

The name of the object and its sub-index should be informed by the user. In

the proposed syntax, full objects are marked with sub-index zero. In case an object

is obstructed by another and it seems to be divided into several parts, each part

receives a sub-index number varying from 1 to the number of parts.

To expedite the marking process, the user can skip a given number of frames

and have the annotation tool to generate bounding boxes at interpolated positions

(supposing they are at a constant speed). Although such interpolation process can
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Figure 4.9: Main menu of video annotation tool showing all marking features.

lead to some marking error, at high frame rates (e.g. 24 frames/s), the variation

between close frames (about 10 frames apart) is quite small and so is the inserted

error.

The entire annotation process is summarized in a text �le containing, in each

line, the label of the object, the frame number and the coordinates of the upper-

left and bottom-right corners of the bounding box for each object or sub-object, as

shown in Fig.4.10.

Fig. 4.11 shows an example of annotated frame whithin the developed annotation

tool interface.
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Figure 4.10: Example of a text �le excerpt generated by the annotation process.

Figure 4.11: Example of abandoned-object annotation with the help of the developed
annotation tool.
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A visual example of the results provided by the annotation and detection pro-

cesses is provided in Fig. 4.12 for a speci�c multi-object video frame. In this �gure,

we notice the presence of the `spotlight box', `blue coat' and `bottle cap' objects

(shown in Figs. 4.1e, 4.1g and 4.1m, respectively), with the `blue coat' being par-

tially occluded by a large pipe in the foreground, as properly identi�ed in Figs. 4.12a

and 4.12b.

(a)

(b)

Figure 4.12: Example of a multiple-object video frame: (a) annotation result; (b)
detection result.
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Chapter 5

System Design

This chapter describes in detail the implementation of all the processing steps listed

in Chapter 3, including the techniques proposed in this thesis for a reliable, real-time

operation of the monitoring system.

5.1 Initial Video Alignment

The initial synchronization between the reference and target videos can be imple-

mented automatically using a maximum-likelihood approach based on the video's

motion data. It is in block n.1, shown in Fig. 5.1, that this step is performed.
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Figure 5.1: The initial video alignment step is performed in block n.1, pointed by
the red arrow.

In this scheme, the robot's motion model assumes a constant speed along the

straight track, with the direction changing when the robot reaches the track ends.

The instantaneous camera speed can be estimated from the homography transfor-

mation between consecutive frames, as determined in Section 5.2. By integrating

the horizontal component (along the track) of the camera speed, one can obtain the

horizontal camera displacement in each frame index n up to a constant δ.
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Fig. 5.2 shows camera displacements as a function of the frame index estimated

from actual reference (solid curve) and target (dotted curve) video sequences. In

this plot, the maxima and minima of each curve can be associated to the two track

ends. One should note that di�erent initial positions of the robot give similar curves

di�ering only on their mean values.
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Figure 5.2: Example of camera displacements estimated from reference (solid line)
and target (dotted line) videos, where the piecewise-linear dashed line represents
the robot's movement with a constant-speed model.

The displacement curves are noisy due to the camera vibration. A noiseless

motion model dr(n), however, can be determined by performing the least-squares

�tting of a piecewise-linear model composed of two straight lines of opposite angular

coe�cients. Such a model for the reference displacement is shown as a dashed line

in Fig. 5.2, where, without any loss of generality, the direction change is assumed

to be at n = 0. A similar motion model dt(n) can be generated for the target

displacement. Once again, since we do not know the initial position of the camera,

this function may have an arbitrary average level.

Using the two displacement models, an initial frame alignment between the ref-

erence and target videos can be determined as the displacement δ that maximizes

the cross-covariance between the dr(n) and dt(n), that is

δ̂ = argmax
δ

{∑
n

(dr(n− δ)− µr)(dt(n)− µt)

}
, (5.1)

where µr and µt are the average values of dr(n) and dt(n), respectively.

At a �rst glance, the summation interval in Eq. (5.1) should be approximately
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equal to the number of frames Np of one full back-and-forth movement of the camera.

In Fig. 5.2, for instance, Np ≈ 2600 frames. However, this would impose severe

restrictions for the system's real-time operation, as one would need to record a full

back-and-forth cycle before synchronizing the two videos. To mitigate this issue,

the summation interval can be restricted to only ∆ ≈ 200 frames, as long as one

guarantees that it contains one change in the camera moving direction to allow a

proper pattern matching.

It is important to note that such initial alignment does not need to be extremely

precise, since errors of a few frames translate into small displacements that can be

compensated for in the image registration stage (see Section 5.2).

This particular video alignment experiment was done with video sequences in

which a temporal subsampling of 8 was performed.

Fig. 5.3 shows more examples of video alignment experiments, using the three

videos containing multiple objects.
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(c)

Figure 5.3: Examples of camera displacements estimated from reference (solid line)
and target (dotted line) videos, where the piecewise-linear dashed line represents
the robot's movement with a constant-speed model: (a) Example generated with
the �rst video containing multiple abandoned objects and its respective reference
video; (b) Example generated with the second video containing multiple abandoned
objects and its respective reference video; (c) Example generated with the third
video containing multiple abandoned objects and its respective reference video.
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5.2 Image Registration

This step of our method is performed on block n.2, shown in Fig. 5.4

Reference

Video

Video

Target

NCC

NCC

NCC

Temporal

Temporal

Temporal

Filter

Filter

Filter

Voting

Voting

Voting

Step

Step

Step

Morphological

Operations

Morphological

Operations

Morphological

Operations

Multiscale Frame Comparison

Object

Detection

Video

Alignment

Image

Registration

21

3 4 5 6

Figure 5.4: The image registration step is performed in block n.2, pointed by the
red arrow.

Assuming that the reference and target videos have been initially aligned, as

described in Section 5.1, the speeded-up robust feature (SURF) algorithm is used

to identify the points of interest (PoI) on two corresponding frames of both video

sequences [58]. In the proposed system, the HD video resolution was downsampled

by a factor of 4 in each dimension, to reduce the computational complexity, allowing

the system to operate in real time. Larger decimation factors would yield smaller

images (in terms of pixels) and consequently fewer PoIs. This might both jeopardize

the subsequent image-registration stages and erase small objects from the scene.

Fig. 5.5 shows an example of PoIs obtained in a reference and a target frames.

One might note that �at surfaces generally do not present PoIs.

In [59], using a much simpler version of our abandoned object detection system,

presented in [60], the authors assess not only the performance of the SIFT and SURF

algorithms, but also of BRISK [61] and FREAK [62], considering their OpenCV

2.4.8 implementations. As the current and the older versions of our system were

implemented using OpenCV 2.3.1 (without BRISK and FREAK implementations),

the authors in [59] had to make the necessary modi�cations in order to perform

the mentioned study. Based on their conclusions and considerations about these

algorithms implementations in the di�erent OpenCV versions used, we decided to

employ the SURF method in the current version of our system, as it generates

approximately the same amount of PoIs than SIFT, but can be up to 5 times faster

(we performed this processing time test with the OpenCV 2.3.1 version).

In a subsequent step, a point-to-point correspondence is determined among the

PoI sets from the reference and target frames. The random sample consensus
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(a)

(b)

Figure 5.5: Example of PoIs obtained in reference and target frames: (a) reference
frame; (b) target frame.

(RANSAC) algorithm [8, 63], an iterative method used to estimate parameters of

a model from a set of observed data containing outliers, is employed to select pairs

of corresponding points in the images. Based on these correspondences, the homog-

raphy transformation that best maps the reference PoI set onto the target PoIs is

determined to compensate for any di�erence in the camera positioning in the tem-

porally aligned reference and target videos [8, 63]. An example of such homography

transformation can be seen in Fig. 5.6.

Homographies are invertible transformations of a projective space to itself that
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(a)

(b)

Figure 5.6: Example of homography transformation. The green quadrilateral shows
the image-plane mapping from the �rst image into the second one: (a) reference
video frame; (b) target video frame.

maps straight lines onto straight lines. In our case, the image obtained from the

reference video is mapped to the image from the target video. To calculate a homog-

raphy, it is necessary to have at least 4 correspondence points, with no 3 of them

being collinear. However, the more points are used, the more robust is the obtained

result, as more points can help to better cope with measurement errors, for exam-

ple. To further illustrate the concept of homography transformation, an example of

image warped after a homography was apllied to it can be seen in Fig 5.7.
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(a)

(b)

Figure 5.7: Example of image warped after a homography was apllied to it: (a)
image before homography was applied to it; (b) warped image, after homography
was applied to it.
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Fig. 5.8 illustrates the e�ect of the geometric registration process using the ab-

solute di�erence between two frames. One may note that, in the image generated

by the absolute subtraction between the frames in which the geometric registra-

tion procedure was performed, there are more dark regions, that is, there are less

di�erences between the registered frames.

(a) Reference frame (b) Target frame

(c) Absolute di�erence between frames (d) Absolute di�erence between frames
without geometric registration with geometric registration

Figure 5.8: Example of the e�ect of the geometric registration process. In this
image, one can also notice the considerable di�erence in the images promoted by
the shadow cast by the coat.

There is a depth dimension in the video sequences, as they show a surveillance

scenario. As abandoned objects can be at di�erent depths, as they map straight lines

to straight lines, homographies may cause some parallax issues. However, as we have

a real-time constraint, and as homography calculations are not too computationally

costly, we decided to keep using them in our image registration step and cope with

the small parallax e�ects that may happen.

In this work, considering the camera's horizontal movement, all reference-target

PoI correspondences yielded by the SURF algorithm with an angular displacement

with absolute value larger than 1◦ can be immediately discarded. This strategy

not only reduces the computational complexity associated to the RANSAC outlier

removal procedure, but also improves the consistency of the resulting homography

transformation.

An example of the improved consistency mentioned above can be seen in Fig. 5.9,

where one can notice that, in the example without our angular restriction, the
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resulting homography does not correspond to the horizontal movement performed

by the moving platform.

(a)

(b)

Figure 5.9: Example of homographies generated with and without our angular re-
striction: (a) without angular restriction; (b) with angular restriction.

5.3 Multiscale Frame Comparison

Once the two videos are registered, one would be tempted to employ plain frame sub-

traction to detect any objects present in only one of the video sequences. However,

this scheme tends to fail in cluttered environments, as seen in Fig. 5.10. The reason

for this is twofold. First, there are usually objects at many di�erent depths, and a

homography can only perform an accurate registration if the objects are all in the

same plane. Also, the excessive amount of image details involved would require very

precise registration. For that matter, the normalized cross-correlation (NCC) [8]

between the two images is often employed, followed by a simple threshold detection,

which yields a binary image indicating areas of the target frame that are candidates

to contain abandoned objects. In addition to that, in this study we propose to apply

some spatio-temporal post-processing on the binary masks generated.

The NCC k(m,n) between the images r(m,n) and t(m,n) over a window

W(m,n) centered in the pixel position (m,n) can be de�ned as

k(m,n) =
1

Nw

∑
(m′,n′)∈W(m,n)

[r(m′, n′)− r̄][t(m′, n′)− t̄]
σrσt

, (5.2)
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(a)

(b)

(c)

Figure 5.10: Example of plain frame subtraction: (a) Reference frame without aban-
doned object in it; (b) Target frame with abandoned object in it (backpack); (c)
Frame generated by performing the absolute subtraction between reference and tar-
get frames.

where Nw is the total number of pixels in the window W , r̄ and t̄ are the average

values of r and t inside the window W(m,n), respectively, and σr and σt are their

respective standard deviations.

38



Fig. 5.11 illustrates the di�erence in performance between the absolute sub-

traction between registered frames and the production of a NCC image using such

frames. It is clear that it is in the NCC image that the region where the abandoned

object is stands out the most.

(a) Reference frame (b) Target frame

(c) Absolute di�erence between frames (d) NCC image
with geometric registration without threshold detection

Figure 5.11: Example showing the di�erences between plain subtraction between
registered frames and the production of a NCC image. In the NCC image, one can
once again notice the di�erence in the frames promoted by the shadow cast by the
coat.

The NCC window size should be in the same order of the apparent size of the

abandoned object to be detected (as illustrated in Fig. 5.12, obtained with a static

camera), which is considered unknown or may even vary if more than one object

appear on the same frame, as illustrated in Fig. 5.13. In fact, large windows tend

to overlook small objects, whereas small NCC windows may identify a single large

object as several small ones. Therefore, for a robust detection, one must compute

the NCC function between two frames with di�erent window sizes, what may greatly

increase the computational complexity of the resulting algorithm.

A proposed solution to this problem is to perform a multiscale NCC computation,

which employs a �xed window (K ×K pixels) on several downsampled versions of

the reference and target videos. The whole multiscale procedure starts with a frame

downsampling factor of 64, which greatly simpli�es the NCC computation and makes

the �xed window suitable to detect larger objects. Progressively smaller objects are

then searched for by using the same K ×K window size with increasing resolution
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(a) Reference frame (b) Target frame

(c) NCC image generated with (d) NCC image generated with
small (3× 3) window window compatible with

abandoned object's dimensions

Figure 5.12: Example illustrating the e�ect of di�erent NCC window dimensions.
In image (d), one can also notice that, besides the abandoned object, re�ections in
the monitor screens and in the upper right corner of the wall were detected.

images. If a larger object is detected, the NCC computation in the corresponding

region can be skipped in higher image resolutions, thus reducing the computational

complexity even further.

40



Figure 5.13: Example of frame in which objects of di�erent sizes appear. Partial
occlusion can make a larger object (green box and umbrella in this example) look
like it is in fact one or more smaller objects.

Due to the real-time constraint, one has to restrict the allowed values of K,

image resolutions, and downsampling factors. The value of K is set based on the

size of the larger object to be detected in the smallest resolution to be used. For

the employed database, the NCC window size was set to K = 5. A large K leads

to missed detections due to low NCC values, as the missed wrench in Fig. 5.14a.

On the other hand, a small K highly increases the NCC sensitivity, yielding false

positive detections, as exempli�ed in Fig. 5.14b.
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(a)

(b)

Figure 5.14: Adjustment of NCC window size K (red stains indicate abandoned-
object detection): (a) Excessively large values of K tend to oversee smaller objects
(false negatives) such as the wrench at the top right; (b) Excessively small values of
K increase the sensitivity of the NCC measure, leading to false positives.
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The number of scales to be employed is de�ned by the operator, considering

the variation in the apparent sizes of the abandoned objects that one wants to

detect. For the VDAO database, four di�erent image resolutions were employed,

corresponding to image downsampling factors, in each direction, of 64 (suitable

for the detection of larger objects), 32, 16, and 8 (smaller objects), leading to a

satisfactory overall system performance, as illustrated in Fig. 5.15. Additional image

resolutions could �t even larger or smaller objects at an additional cost on the

resulting computational burden. With the NCC window size K �xed, this increase

in computational complexity is linear with the number of scales.

Figure 5.15: Example of VDAO-database objects of di�erent sizes being detected
with the multiscale approach: The large coat is detected with the video decimation
factor of 64, whereas the small bottle cap is detected with the decimation factor of
8.

The binarized NCC image generation step, in our multiscale context, is generated

in block n.3, as shown in Fig. 5.16.

Figs. 5.17 and 5.18 exemplify our multiscale approach.

Fig. 5.17a shows the target image with the pink backpack, umbrella, blue box

and bottle as abandoned objects. In Fig. 5.17b, the lowest resolution, only the

largest object (pink backpack) is detected. The higher the resolution, the more

objects start to be detected. In Fig. 5.17e, the highest resolution in this example,

even the shadow cast by the bottle is detected. One can also notice in this example

that the umbrella and the blue box are detected as a single object. This e�ect is

the result of the square dimensions of our NCC window together with the memory

e�ect of our voting step and the morphological closing operation. Both the voting

step and the morphological operations will be explained in Section 5.4.

43



Reference

Video

Video

Target

NCC

NCC

NCC

Temporal

Temporal

Temporal

Filter

Filter

Filter

Voting

Voting

Voting

Step

Step

Step

Morphological

Operations

Morphological

Operations

Morphological

Operations

Multiscale Frame Comparison

Object

Detection

Video

Alignment

Image

Registration

21

3 4 5 6

Figure 5.16: The binarized NCC image generation step is performed in block n.3,
pointed by the red arrow.

Fig. 5.18a shows the target image with a backpack (large object), a string roll

(medium object) and a mug (small object). In Fig. 5.18b an image that is sub-

sampled by 64 is used, and only the largest object, the backpack, is detected. In

Fig. 5.18c an image subsampled by 32 is used, and the string roll is also detected.

In Fig. 5.18d an image subsampled by 16 is used and the smallest object, the mug,

is also detected. Note that, at this resolution, a backpack strap is also detected.

44



(a)

(b) (c)

(d) (e)

Figure 5.17: Example of our the multiscale approach: (a) Target frame; (b) Largest
object (pink backpack) detected in the lowest frame resolution; (c) In a higher frame
resolution, the blue box and the umbrella start to be detected; (d) In an even higher
frame resolution, one can see the umbrella being properly detected; (e) In the highest
frame resolution, the bottle (and its shadow) start to be detected.
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(a) Target image (b) Image subsampled by 64

(c) Image subsampled by 32 (d) Image subsampled by 16

Figure 5.18: Example of detection masks using the multiscale approach: in image
(b), only the largets object (backpack) is detected; in (c), the string roll is also
detected; �nally, in (d), the mug algo starts to be detected. The green box is not
detected in this example because it dit not appear a su�cient number of times for
it to be detected yet.

5.4 Detection Mask Post-Processing

In order to reduce both false positive (spurious) and false negative (missed) detec-

tions, three additional processes are sequentially performed onto the resulting pixels

of the NCC multiscale masks: a temporal �ltering procedure, a voting strategy and

opening-closing morphological operations.

First, temporal �ltering is applied to the NCC mask frame sequence [8] such that

M(m,n, p) =

Ltf−1∏
i=0

k̂(m,n, p− i), (5.3)

where p is the frame index, Ltf is the temporal-�lter length and k̂(m,n, p) is a binary

version of the NCC output k(m,n, p). This binary mask is de�ned by a threshold bt
(see Section 6.1). This �ltering operation requires a registration procedure among

nearby frames. This can be done using a homography such as the one described

in Section 5.2. This �ltering stage is ideal to remove most of the false positive

occurrences from the detection mask, as it requires the intersection of Ltf consecutive
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masks to activate a given pixel, as seen in Fig. 5.19. An excessively large value

of Ltf , however, tends to produce false negatives in our detection process. This is

particularly relevant in our case since the camera is moving, and large displacements

among frames that are too distant in time tend not to be dealt with properly with

a homography. In our setup, the temporal �lter length was set to Ltf = 5. This

choice is justi�ed in Section 6.2.

(a)

(b)

Figure 5.19: Example of false positive elimination by the temporal �ltering stage: (a)
Detection mask produced without temporal �ltering; (b) Detection mask produced
with temporal �ltering.

In our multiscale context, the temporal �ltering step is performed in block n.4,
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as shown in Fig. 5.20.

Reference

Video

Video

Target

NCC

NCC

NCC

Temporal

Temporal

Temporal

Filter

Filter

Filter

Voting

Voting

Voting

Step

Step

Step

Morphological

Operations

Morphological

Operations

Morphological

Operations

Multiscale Frame Comparison

Object

Detection

Video

Alignment

Image

Registration

21

3 4 5 6

Figure 5.20: The temporal �ltering step is performed in block n.4, pointed by the
red arrow.

Following the temporal �ltering, a voting procedure is employed to increase the

detection robustness. The rationale for the voting procedure is that it is unlikely

that an object will disappear from the video for just a few frames to reappear again

later. Likewise, it is unlikely that an object will appear in the video for just a few

frames. In the voting step a new mask Mv(m,n, p) is generated as follows:

Mv(m,n, p) =


1, if

V−1∑
i=0

M(m,n, p− i) ≥ vt

0, if
V−1∑
i=0

M(m,n, p− i) < vt

, (5.4)

whereM(m,n, p) is de�ned in Eq. (5.3), V is the voting interval length and vt is the

voting threshold. Once again, this procedure assumes a proper registration of the

consecutive masks using a homography transformation as given in Section 5.2. The

values of V and vt determine the minimum amount of times a masking pixel must

be activated to be recognized as part of an abandoned object. In practice, these

parameters depend on the number of frames a given abandoned object appears in

the target video, that is related to the camera speed. The choice of these parameters

will be investigated in Section 6.3. Fig. 5.21 shows that the voting step is performed

in block n.5.

One could argue that the temporal �lter (Eq. (5.3)) and the voting procedure

(Eq. (5.4)) are somewhat redundant. However, there are several cases when both

are necessary. Generally speaking, the temporal �lter and the voting stage work

in tandem to eliminate most of false positives from the detection scheme. One
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Figure 5.21: The voting step is performed in block n.5, pointed by the red arrow.

illustrative example, depicted in Fig. 5.22, is when partial occlusions generated by

foreground obstacles cause an abandoned object to appear in only a limited number

of frames. These situations enforce upper limit values for the voting interval length

V and its corresponding threshold value vt. Therefore, they require the temporal

�lter to remove a priori most of the isolated spurious detections. Figure 5.23 shows

another example of a false positive that could have been eliminated if the temporal

�ltering step were performed.
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(a)

(b) (c)

Figure 5.22: Example of false positive promoted by occlusion without the temporal
�ltering step: (a) Initial detection of abandoned object without the temporal �ltering
step; (b) Displacement of detection mask caused by the foreground pipe in the
absence of the temporal �ltering (abandoned object is hidden behind bright pipe);
(c) Detection mask properly placed by the temporal �ltering, which removes the
e�ect from the foreground pipe.

50



(a)

(b)

(c)

Figure 5.23: Example of false positive promoted by beveled pipe in experiment
without the temporal �ltering step: (a) Example of target image; (b) Preliminary
detection mask generated after the NCC image binarization process relative to target
image above, employed directly in the voting step; (c) False positive not eliminated
by the less restrictive voting step. Without the temporal �ltering procedure, the
(re)inserting detection pixels feature of the voting step applied in the many incon-
stant preliminary detection masks produced by the beveled pipe generates a false
positive.
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In some cases, after the temporal �ltering and voting steps there remain isolated

small regions in the detection masks. For removing such pixels, one can perform

a morphological binary opening operation. Also, there are cases when the same

object is detected by more than one separate mask. In this case, the masks can

be connected by a morphological binary closing operation. The binary opening and

closing operations can be respectively de�ned as [64]:

A ◦B = (A	B)⊕B, (5.5)

A •B = (A⊕B)	B, (5.6)

where A is a binary image, B is the structuring element, ⊕ denotes dilation (ex-

pansion of the input image by the structuring element B), and 	 denotes erosion

(contraction of the input image by B). The e�ect of the closing operation is illus-

trated in Fig. 5.24. In the proposed system, the closing operation is applied to the

output of the opening operation.

(a) (b)

Figure 5.24: Example of morphological closing (detail): (a) Before; (b) After. It
joins two separate masks that refer to the same object.

The size of the structuring element of the opening operator should be slightly

larger than the expected size of the isolated regions that may be present on the

detection mask but cannot be larger than the smallest apparent size of the object

intended to be detected. In contrast, for the closing operation, the structuring

element size should be slightly larger than the expected size of the gaps that separate

the disconnected detection masks that may be associated to the same object. In

our system, we employed circular-shaped structuring elements with the same radius

for the two operations. In full resolution, this radius should be approximately twice

as large as the NCC window, and should keep its proportion to the resolution as it

decreases. Fig. 5.25 shows that the opening and closing morphological operations

are performed in the last block before the �nal object detection, block n.6.

In Fig. 5.26, one can notice the e�ect of both morphological operations. These

e�ects are clearer in Figs. 5.26d and 5.26e, as one can notice a small white area

inside the largest black spot being covered (e�ect caused by the closing operation),

the largest and the medium black spots being united in one (e�ect also caused by
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Figure 5.25: The morphological operations are performed in block n.6, pointed by
the red arrow.

the closing operation), and the smallest black spot disappearing (e�ect promoted

by the opening operation).

Finally, we perform the union of the detection masks obtained in all resolutions

to generate a single, �nal detection mask.

53



(a)

(b) (c)

(d) (e)

Figure 5.26: Example of morphological operations: (a) Target frame; (b) Abandoned
object detection without morphological operations applied to the detection masks;
(c) Abandoned object detection with morphological operations applied to the detec-
tion masks; (d) Final detection mask generated without morphological operations;
(e) Final detection mask generated with morphological operations.
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Chapter 6

Tuning of the System Parameters

This chapter outlines the design of all stages described in Chapter 5 aiming at an

overall robust performance for the proposed system. As described in Chapter 4, we

use the VDAO database [54] for this purpose. In order to do so, we divide the target

VDAO sequences in three sets: the training set comprises 16 single-object videos

(half with and half without the use of the spotlight), the validation set 38 single-

object videos and the testing set with 3 videos with multiple abandoned objects.

The 16 sequences on the training set are used in this chapter to develop routines

for the adjustment of each parameter, and determine their values for the VDAO

database. The e�ectiveness of these routines will be assessed in Chapter 7 using

the validation set, and the overall algorithm performance will be assessed using the

testing set.

To evaluate the e�ects of a given parameter in our method, several performance

analysis curves are derived. In these curves, the true positive measure is determined

as the percentage of the bounding box area of the abandoned objects which is covered

by the detection mask, and the false positive measure is given by the percentage of

remaining frame area covered by detection masks.

To generate each point on the curve, we �rst calculate, for a given video, the

average of the values obtained with each frame where the object and/or a detection

spot appears. Then, we calculate the average and the standard deviation of these

averages, considering all the objects in the training set. Some aspects, however,

a�ect the performance of the proposed system, and should be taken into account by

the reader when considering these measures:

• The voting operation requires a minimum number of frames to detect an aban-

doned object. This is usually not a problem, since the camera speed is such

that there is a large number of frames between the entry of the object in

the camera's �eld of view and its departure. However, when an object is oc-

cluded between entering and leaving the �eld of view, there may not be enough

55



frames to ensure its detection, which may cause false negative (missed) detec-

tions. Fig. 6.1 shows an example of object detection only after it has appeared

in a su�cient number of frames in the video sequence.

• A dual problem occurs when the voting strategy keeps the detection mask

active even after the object disappears from the scene, arti�cially increasing

the number of false positive detections.

• As the abandoned object does not occupy its entire bounding box, there may

be a signi�cant increase on the pixel-level false negative measure.

• Abandoned objects sometimes project shadows or re�ections on the other el-

ements of the scene. Strictly speaking, since such shadows and re�ections are

not present in the reference video, the algorithm tends to detect them, as seen

in Fig. 6.2. However, the VDAO database does not consider them as objects

of interest, which a�ects negatively the false positive measure.

Based on all these facts, one should not expect ideal values of any pixel-based

measurements, and an additional subjective validation scheme must also be em-

ployed to assess the overall system performance. However, in this parameter tuning

procedure, we deemed the use of this pixel-based measurement an useful tool to, in a

certain way, measure the percentage of the abandoned object covered by a detection

spot, as this would help us better tune the system considering that it deals with

abandoned objects of di�erent sizes. This allows us to perform a �ner parameter

tuning than if we employed an object-level measurement in this procedure.

As seen in Chapter 3, the robot covers the 6 m track in about 3 minutes. In our

experiments, we performed a temporal subsampling of 16 (1.5 frames/s) in order to

try to cope with our real-time constraint.

Each parameter study employs, for the other variables, the values already ob-

tained in the previous studies.
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(a)

(b)

Figure 6.1: (a) The green box on the left is not being detected because it did not
appear in enough frames yet; (b) Now that the green box has appeared in a su�cient
number of frames, the algorithm started to detect it.
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(a)

(b)

Figure 6.2: Example of shadow being detected as an abandoned object: (a) Target
frame showing objects, and the shadow of an object (bottle); (b) Frame showing the
object shadow also being detected.
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6.1 NCC Binarization Threshold

The �rst important parameter in the proposed system is the threshold value bt
used to binarize the NCC function. Note that, from Eq. (5.2), its dynamic range

is the interval [−1, 1]. In the discussion that follows, we assume that the NCC

measure from Eq. (5.2) is normalized to be in the interval [0, 255]. A small value of

bt would generate too many false negatives, whereas large values of bt would mark

large numbers of abandoned-object as candidates to be processed by the system's

subsequent stages. Fig. 6.3 shows the performance analysis curve for values of bt
in the set {60, 100, 140, 160, 190, 220, 250}. The smallest bt corresponds to the lower
leftmost point and the largest bt to the upper rightmost point. From it, we can

see that bt sets a trade-o� between true positives and false positives. Therefore,

by analyzing the system's performance on a training set, an operator can control

this trade-o� by selecting a proper value of bt. The performance analysis curve in

Fig. 6.3 shows that for the training set, bt = 190 provides a good trade-o�, with a

false positive rate of 1.4% and a true positive rate of 53%, while Table 6.1 shows the

results of the performance analysis curve presented in Fig. 6.3 in details. Fig. 6.4

illustrates the e�ect of the NCC Binarization Threshold variable in our abandoned

object detection process, and the pseudocode 1 shows in some detail the NCC step.

For this analysis, Ltf was set to 5, V was set to 20 and vt was set to 10.
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Figure 6.3: performance analysis curve for the NCC binarization threshold variable
bt ∈ {60, 100, 140, 160, 190, 220, 250}.
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Table 6.1: Table showing the values obtained for the performance analysis curve
relative to the Binarization Threshold variable.

Binarization True Positive True Positive False Positive False Positive
Threshold (bt) µ (%) σ (%) µ (%) σ (%)

60 3.06 6.66 0.15 0.44
100 7.56 10.74 0.25 0.62
140 25.35 20.43 0.61 0.91
160 35.94 24.13 0.91 0.98
190 53.39 20.07 1.37 1.04
220 60.45 19.15 1.92 1.34
250 67.00 18.24 4.09 2.40
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(a)

(b)

Figure 6.4: Example of the impact of the bt variable in our abandoned object detec-
tion process: (a) Detection with bt = 60; (b) Detection with bt = 250. The larger
the value, the less restrictive the detection. Here one can even see the occurrence of
false positives.
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Algorithm 1 NCC step
Require: TargetFrame and ReferenceFrame {Geometrically Aligned}
displacement← (K − 1)/2 {The NCC window has a K ×K dimension}
for FrameRowCounter ← 1 to total number of rows in frame do
for FrameColumnCounter ← 1 to total number of columns in frame do
imageRowNumber ← FrameRowCounter − displacement
imageColumnNumber ← FrameColumnCounter − displacement
for NCCwindowRowCounter ← K do

for NCCwindowColumnCounter ← K do

NCCwindowReference(NCCwindowRowCounter,NCCwindowColumnCounter)←
ReferenceFrame(imageRowNumber, imageColumnNumber)
NCCwindowTarget(NCCwindowRowCounter,NCCwindowColumnCounter)←
TargetFrame(imageRowNumber, imageColumnNumber)
imageColumnNumber ← imageColumnNumber + 1

end for

imageColumnNumber ← FrameColumnCounter − displacement
imageRowNumber ← imageRowNumber + 1

end for

NCCwindowReferenceMean(x, y) ← NCCwindowReference(x, y) −
¯NCCwindowReference

NCCwindowTargetMean(x, y) ← NCCwindowTarget(x, y) −
¯NCCwindowTarget

NCCimageP ixel ←
〈

NCCwindowReferenceMean
‖NCCwindowReferenceMean‖ ,

NCCwindowTargetMean
‖NCCwindowTargetMean‖

〉
{〈., .〉 is the inner product and ‖.‖ is the L2 norm}
NCCimage(FrameRowCounter, FrameColumnCounter) ←
NCCimageP ixel

end for

end for

for FrameRowCounter ← 1 to total number of rows in frame do
for FrameColumnCounter ← 1 to total number of columns in frame do
if NCCimage(FrameRowCounter, FrameColumnCounter) ≤ bt then

BinarizedNCCimage← 1
end if

end for

end for

return BinarizedNCCimage {This binary matrix contains possible abandoned
object candidates}

6.2 Temporal Filtering Length

The second parameter of interest is the size of the temporal �lter vector Ltf . As

mentioned before, the temporal �ltering is a necessary step to remove spurious false

positives from the subsequent voting stage. Larger values of Ltf correspond to more

restrictive temporal �lters which may introduce false negative detections.
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Fig. 6.5 shows the performance analysis curve associated to temporal �lter vector

size. From this curve, we can see that the best trade-o� between true positives

and false positives is given by Ltf = 5. It is indeed small enough to avoid most

false negatives and large enough to deal with most false positives such as the one

illustrated in Fig. 5.22, while Table 6.2 shows the results of the performance analysis

curve presented in Fig. 6.5 in details. Fig. 6.6 illustrates the e�ect of the Temporal

Filter Length variable in our abandoned object detection process. The bigger the

vector, the smaller the resulting detection mask. The pseudocode 2 shows in some

detail the Temporal Filtering step.

For this analysis, V was set to 20 and vt was set to 10.
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Figure 6.5: performance analysis curve for the temporal �lter length Ltf ∈
{3, 5, 7, 9, 11, 13, 15, 17, 19}.
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Table 6.2: Table showing the values obtained for the performance analysis curve
relative to the Temporal Filter Length variable.

Temporal Filter True Positive True Positive False Positive False Positive
Length (Ltf ) µ (%) σ (%) µ (%) σ (%)

1 73.11 18.38 2.45 1.77
3 63.43 19.97 1.69 1.21
5 53.39 20.07 1.37 1.04
7 36.04 27.19 1.15 1.05
9 25.92 27.22 0.79 1.09
11 21.12 22.96 0.62 0.90
13 16.96 18.43 0.51 0.75
15 12.83 14.57 0.43 0.62
17 6.07 11.09 0.19 0.36
19 4.39 10.37 0.16 0.37
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(a)

(b)

Figure 6.6: Example of the impact of the Ltf variable in our abandoned object
detection process: (a) Detection with Ltf = 1, where some false positive occurrences
can be seen; (b) Detection with Ltf = 19. The larger the value, the more restrictive
the detection.
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Algorithm 2 Temporal Filtering step
Require: NCCresultbuffer {bu�er containing the last Ltf results of the NCC
step} and H1buffer {bu�er containing the homography matrixes computed for
any two neighboring frames relatives to the results of the NCC step stored in
NCCresultbuffer}
for u← 1 to Ltf do
M1 ← NCCresultbuffer(u)
for w ← u to Ltf − 1 do
M2 ← H1buffer(w)×M1

M1 ←M2

end for

Mintersec ←Mintersec ∩M1

end for

return Mintersec {This binary matrix contains possible abandoned object candi-
dates}

6.3 Voting Parameters

The pixel-level voting procedure on the detection mask depends on two parameters,

namely the length in frames V of the voting interval and the threshold value vt, as

given in Eq. (5.4). When testing the in�uence of V , vt was set to half the value of

V , and the performance analysis curve in Fig. 6.7 has been obtained for V in the set

{2, 6, 10, 16, 20, 24, 30, 40, 50, 60, 70, 80, 90}. From this curve, for V ≥ 50, the true

positive rates decrease without any improvement upon the false positive rates. This

result is to be expected because, as the sizes of V and vt increase, the number of

objects that would not appear in a su�cient number of frames in order for them to

be detected would also increase.

The best trade-o�s are delivered with V = 16, which are then considered in a

subsequent analysis on the value of vt.

Table 6.3 shows the results of the performance analysis curve presented in Fig. 6.7

in details.
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Figure 6.7: performance analysis curve for the Length in frames V of the voting
interval V ∈ {2, 6, 10, 16, 20, 24, 30, 40, 50, 60, 70, 80, 90}.

Table 6.3: Table showing the values obtained for the performance analysis curve
relative to the Voting Vector Length variable.

Voting Vector True Positive True Positive False Positive False Positive
Length (V ) µ (%) σ (%) µ (%) σ (%)

2 48.95 16.02 1.10 0.97
6 49.84 17.27 1.20 1.02
10 52.77 19.00 1.42 1.12
16 55.31 19.70 1.69 1.21
20 54.36 22.17 1.91 1.33
24 55.32 22.56 1.97 1.24
30 54.23 25.69 2.20 1.28
40 55.63 29.03 2.32 1.25
50 41.31 32.57 1.65 1.45
60 28.95 36.51 1.33 1.66
70 28.93 39.93 1.00 1.47
80 18.25 34.71 0.58 1.12
90 3.058 7.75 0.16 0.45
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Fig. 6.8 illustrates the e�ect of the Voting Vector Length variable in our aban-

doned object detection process. The larger the vector, the smaller the resulting

detection mask.

(a)

(b)

Figure 6.8: Example of the impact of the V variable in our abandoned object detec-
tion process: (a) Detection with V = 2, where some false positive occurrences can
be seen; (b) Detection with V = 50. The larger the value, the more restrictive the
detection.

Fig. 6.9 shows the results for V = 16 and vt ∈ {1, 4, 7, 10, 13, 16}. From the

performance analysis curves obtained from the study of the voting parameters, the

best compromise is given by V = 16 and vt = 7 frames, with a false positive rate

of 1.83% and a true positive rate of 56.60%. Table 6.4 shows the results of the
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performance analysis curve presented in Fig. 6.9 in details.

Fig. 6.10 illustrates the e�ect of the Voting Threshold variable in our abandoned

object detection process, and the pseudocode 3 shows in detail the voting step.
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Figure 6.9: performance analysis curve for the threshold value vt ∈
{1, 4, 7, 10, 13, 16}.

Table 6.4: Table showing the values obtained for the performance analysis curve
relative to the Voting Threshold variable.

Voting True Positive True Positive False Positive False Positive
Threshold (vt) µ (%) σ (%) µ (%) σ (%)

1 70.76 17.87 3.94 2.70
4 63.35 20.47 2.46 1.72
7 56.60 20.72 1.83 1.30
10 50.78 19.80 1.38 1.05
13 45.77 16.47 0.86 0.85
16 29.73 19.61 0.35 0.54
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(a)

(b)

Figure 6.10: Example of the impact of the vt variable in our abandoned object
detection process: (a) Detection with vt = 1, where some false positive occurrences
can be seen; (b) Detection with vt = 16. The larger the value, the more restrictive
the detection.
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Algorithm 3 Voting step
Require: TemporalF ilterResultbuffer {bu�er containing the last V results of the
Temporal Filtering step} and H2buffer {bu�er containing the homography ma-
trixes computed for any two neighboring frames relatives to the results of the
Temporal Filtering step stored in TemporalF ilterResultbuffer}
for u← 1 to V do

M1 ← TemporalF ilterResultbuffer(u)
for w ← u to V − 1 do
M2 ← H2buffer(w)×M1

M1 ←M2

end for

for k ← 1 to CountMatrixrows do {CountMatrixrows is the number of rows
in the matrix CountMatrix (the same number of rows in the video frames)}
for l ← 1 to CountMatrixcols do {CountMatrixcols is the number of
columns in the matrix CountMatrix (the same number of columns in the
video frames)}
if M1(k, l) = 1 then {If that element (pixel) in M1 is a candidate of
belonging to a possible abandoned object}
CountMatrix(k, l)← CountMatrix(k, l) + 1

end if

end for

end for

end for

for kgets1 to CountMatrixrows do
for lgets1 to CountMatrixcols do
if CountMatrix(k, l) ≥ vt then
Mvoting ← 1

end if

end for

end for

return Mvoting {This binary matrix contains the abandoned object candidates}

When performing the experiments for V = 16, however, we veri�ed that the

same phenomenon described in Section 5.4 and illustrated in Fig. 5.22 happened:

the displacement of the detection mask caused by a foreground pipe. It is noteworthy

that, in this experiment, we were performing the temporal �ltering step.

Fig. 6.11 shows the detection mask displacement phenomenon happening with

V = 16 and vt = 7.

We decided, then, to perform more tests varying Ltf , V (for V ≤ 16 and for

V = 20) and vt for the shoe object to assess the situation. In the case of V = 20,

we decided to perform this test because, as it can be seen in Table 6.3, the standard

deviations of the true positive rates are large, in the order of 20%, allowing us to

consider V = 16 and V = 20 as being roughly equivalents.

For V = 20, we were able to �nd a con�guration in which we were able to

deal with this e�ect, and still produce good detection results. The performance
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(a)

(b)

Figure 6.11: Example of detection mask displacement phenomenon promoted by
foreground pipe: (a) Detection mask placed over abandoned object, before the fore-
ground pipe passes in front of the object; (b) Displacement of the detection mask
happening after the foreground pipe passes in front of the abandoned object.

analysis curve relative to this experiment is shown in Fig. 6.12 for V = 20 and

vt ∈ {1, 4, 7, 10, 13, 16, 20}.
From this performance analysis curve, the best compromise is given by V = 20

and vt = 13 frames, with a false positive rate of 1.37% and a true positive rate of

53.38%.

Table 6.5 shows the results of the performance analysis curve presented in

Fig. 6.12 in details.
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Figure 6.12: performance analysis curve for the threshold value vt ∈
{1, 4, 7, 10, 13, 16, 20}.

Table 6.5: Table showing the values obtained for the performance analysis curve
relative to the Voting Threshold variable.

Voting True Positive True Positive False Positive False Positive
Threshold (vt) µ (%) σ (%) µ (%) σ (%)

1 73.80 17.21 4.63 2.93
4 65.34 20.65 3.14 2.01
7 60.66 21.84 2.44 1.56
10 54.36 22.17 1.91 1.33
13 53.39 20.07 1.37 1.04
16 44.31 19.10 0.96 0.88
20 26.82 21.37 0.31 0.50
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Fig. 6.13 shows that the detection mask displacement phenomenon does not

happen with V = 20 and vt = 13.

(a)

(b)

Figure 6.13: With V = 20 and vt = 13, the detection mask displacement phe-
nomenon does not happen: (a) Detection mask is placed over abandoned object,
before the foreground pipe passes in front of the object; (b) Detection mask is still
properly placed even after the foreground pipe passes in front of the abandoned
object.

For V ≤ 16, by simply augmenting the value of Ltf , the detection mask dis-

placement e�ect promoted by the foreground object (pipe) can be reduced, but not

eliminated altogether. Also, larger values of Ltf can jeopardize detection, as seen in

Section 6.2. However, by analyzing the situation considering the shoe videos with

74



and without extra illumination, we noticed that we were able to remove the detec-

tion mask displacement e�ect in the video with the spotlight illumination, but not

in the video without this extra illumination. We also veri�ed that, eventually, in

the video without the spotlight illumination, more restrictive con�gurations led to

results that were worse than the previous, less restrictive ones, with slightly bigger

detection mask displacements.

Fig. 6.14 shows an example of detection mask displacement caused by the

foreground object (pipe) also happening with a bigger Temporal Filtering Length

(Ltf = 7) con�guration (with V = 16 and vt = 7).

Figure 6.14: Example of detection mask displacement happening with a bigger Tem-
poral Filtering Length (Ltf = 7) in video without extra illumination (with V = 16
and vt = 7).

Fig. 6.15 shows the detection mask being properly placed in the video with

the spotlight illumination, even after the foreground pipe passes in front of the

abandoned object (shoe), with V = 16 and vt = 7.

This situation led us to look into what was happening in the Homography Trans-

formation step (described in Section 5.2). We veri�ed that, in the video without the

extra illumination, when the foreground object (pipe) appeared, it produced a small

variation in the homography, amplifying the detection mask displacement e�ect.

As this e�ect can be cumulative, it can explain why, eventually, more restrictive

con�gurations led to worse results, as described above.

Fig. 6.16 shows the small variation in the Homography Transformation that

happens when the foreground object (pipe) appears.
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Figure 6.15: Example of detection mask being properly placed in the video with the
spotlight illumination (with V = 16 and vt = 7).

(a)

(b)

Figure 6.16: The green quadrilateral shows the image-plane mapping from the left
image into the right one: (a) Homography Transformation varying when foreground
object (pipe) appears; (b) Proper Homography Transformation being generated after
foreground object (pipe) fades out.
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As the V = 16 and vt = 7 con�guration was able to deliver an adequate trade-

o� between the true and false positive rates, and as the detection mask displace-

ment phenomenon shown here was mostly produced by an issue happening with an

Homography Transformation in our Image Registration step in a single video, we

deemed this con�guration as the most suitable to follow up on our experiments, as

it was obtained with our proposed system parameters tuning procedure.

Table 6.6 sumarizes the values obtained for each variable studied in this chapter:

Table 6.6: Table showing the values obtained for the studied variables.
Variable Name Variable Value

NCC Binarization Threshold bt 190
Temporal Filtering Length Ltf 5
Voting Vector Length V 16
Voting Threshold vt 7
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Chapter 7

Experimental Results

In this chapter, we assess the parameter tuning procedure presented in Chapter 6 and

the overall system performance using the remaining database videos not employed

in the parameter tuning stage.

In order to assess the parameter tuning procedure we compute the true positive

and false positive rates (as de�ned in Chapter 6) of the videos from the validation

set. The frame-based detection results (average (µ) and standard deviation (σ)

values) are shown in Table 7.1 for both the validation and training sets. From

these numbers, we can conclude that the parameter tuning detailed in Chapter 6

yields similar and consistent results with both the training and validation sets. It

is important to note that despite the not so high values of true positive rates (of

the order of 60%), these refer to the percentage of the bounding boxes covered, as

speci�ed in Chapter 6. However, in a practical application, an operator will see the

masks and decide whether an abandoned object has been detected or not. We have

performed this evaluation in the validation set, and veri�ed that all the abandoned

objects contained in the validation dataset were properly detected.

Table 7.1: Table showing the comparison between the detection results obtained
with the training and validation sets.

Data True Positive False Positive
Employed µ (%) σ (%) µ (%) σ (%)
Training set 57 21 1.8 1.3
Validation set 66 15 3.6 3.6

In order to assess the overall system performance, we have employed our testing

set, consisting of the 3 multi-object videos from the VDAO database [54], with 15

abandoned objects in each video. This multi-object scenario requires more complex

metrics than before, as in principle we do not know beforehand which ground-truth

frame mask corresponds to the mask of a given detected object. In addition, in

cases of missed or false detections, there is no one-to-one correspondence with the
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ground truth masks. Due to these matters, our initial system evaluation was based

on [65], which proposes metrics that take into account the accuracy of the matchings

as well as the false positives and false negatives for the case of multiple objects. In

addition, we also assess the proposed method using metrics that mimic whether or

not an operator, by looking at the detection masks generated, is able to indicate

correctly the presence of an abandoned object.

The de�nition of the metrics in [65] is based on two pixel sets:

• Ak,i, the set of pixel positions belonging to the ground truth mask of the object
of index i in frame k.

• Âk,i, the set of pixel positions belonging to the detected mask of the object of

index i in frame k.

The �rst metric is the accuracy error Ak. It represents the amount of spatial overlap
between the detected-object bounding box Âk,i and its corresponding ground-truth

value. It has to be computed over all possible correspondences of masks from the

detected objects and the ground truth masks. If we de�ne

O(A,B) =
|A ∩B|
|A ∪B|

, (7.1)

where |A| is the number of elements of the set A, then the accuracy error is given

by

Ak = min
π∈Πmax(dk,d̂k)

min(dk,d̂k)∑
i=1

[1−O(Âk,i, Ak,π(i))], (7.2)

where dk and d̂k are respectively the number of ground truth masks and detected

objects in frame k, the permutation π(i) is a one-to-one function that maps the set

of indexes of detected objects into the indexes of ground truth masks, and Πj is the

set of all possible permutations over j indexes.

The frame-level accuracy error rate (AER) is de�ned as the average of Ak over
all frames, that is

AER =
1

K

K∑
k=1

Ak, (7.3)

where K is the total number of frames. The minimum accuracy error happens

when all the bounding boxes coincide exactly pixel by pixel, and is therefore zero.

The maximum value happens when no bounding boxes coincide, and is equal to

min(dk, d̂k).

The problem with Ak is that if an object is missed or there is a false positive, its

contribution to Ak is zero. To cope with that issue, the authors of [65] de�ne the

cardinality error rate, that quanti�es the discrepancy in estimating the number of
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targets. It is just the average di�erence in the numbers of ground truth masks and

detected objects over all frames, that is

CER =
1

K

K∑
k=1

Ck. (7.4)

where Ck = |dk − d̂k|.
Therefore, a metric that would take into account both the accuracy and the e�ect

of false positives and false negatives can be obtained by adding both Ak and Ck. In
addition, since both increase with the number of objects present, this sum can be

normalized by the number of objects to produce the METEk (Multiple Extended-

target Tracking Error) score, de�ned as [65]

METEk =
Ak + Ck

max(dk, d̂k)
(7.5)

In [65] it is shown that the METE value is equal to 0 in the case of perfect matching

and is 1 in the worst case.

From all the metrics to evaluate tracking that are presented in [65], we chose

the one presented above (METE) because it can also be applied in our anomally

detection scenario, as it represents the extent of the mismatch between the actual

abandoned object and the detected one in a given frame, combined with a cardinality

error.

Table 7.2 shows the AER, CER and METE results, averaged over all frames,

using our testing video set, with a temporal subsample value of 16, as described in

Chapter 6.

Table 7.2: Quantitative evaluation of object-detection system performance using the
METE metrics with temporal subsampling of 16.

Data AER CER METE
Employed µ µ µ σ

Multiobject video 1 2.1 1.6 0.80 0.10
Multiobject video 2 1.8 1.2 0.72 0.17
Multiobject video 3 2.5 1.2 0.80 0.10

When performing a visual validation of the system performance, we noticed that

it missed 2 objects in the �rst video, 2 in the second, and 1 in the third (each video

has 15 objects). In all cases, the missed objects were slightly smaller than the ones

considered in the system development. Hence, the resulting detection mask was too

small, and some parallax issues caused by the homography transformation forced the

temporal �lter to remove these masks. In addition, due to the object position, one

of these missed objects also appeared in a very limited number of frames, making
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its detection even harder. When reducing the frame decimation factor by 2, which

is equivalent to reducing the robot speed in half, all problems were eliminated and

all objects were properly detected.

Fig. 7.1 shows an example of previously undetected object (bottle cap) being

detected with reduced frame decimation.

(a)

(b)

Figure 7.1: Example of false negative: (a) Frame showing missed detection (bottle
cap); (b) Frame showing bottle cap detected, with reduced frame decimation. One
can notice the detection spot displacement over it due to parallax e�ect.

Thus, the following evaluations were performed with detection videos generated

with a temporal subsample of 8, but with the same parameter con�gurations as
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before.

Table 7.3 shows the AER, CER and METE results, averaged over all frames,

using our testing video set, with a temporal subsample value of 8.

Table 7.3: Quantitative evaluation of object-detection system's performance using
the METE metrics with temporal subsampling of 8.

Data AER CER METE
Employed µ µ µ σ

Multiobject video 1 2.5 0.9 0.72 0.11
Multiobject video 2 2.5 2.2 0.77 0.14
Multiobject video 3 3.2 2.9 0.85 0.09

The high METE scores, around 78% for each video, indicate signi�cant discrep-

ancies between the bounding boxes of the detected objects and the ground truth,

what is easily understood, as discussed in Chapter 6, by the situation depicted in

Fig. 7.2. In such a case, only about 50% of the bounding box for the string roll

detection mask, in the middle bottom of the frame, coincides with its ground truth,

justifying the resulting large METE values.

Figure 7.2: Detection results for frame with objects of di�erent sizes (backpack on
the left, box on the right and string roll in the middle). All of them have been
correctly detected.

Despite the large METE values yielded by the proposed system, an operator

can correctly indicate the presence of the string roll by looking at the provided

detection mask. The same is true for the backpack and the box objects, also shown

in that frame image, and the object-based detection error rate should be zero in

that case. This demonstrates the importance of measuring the detection error rate

at the object level, which can be done based on the following measurements:
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• The number of true positives NTPj
, that is the number of frames where object

j is correctly detected.

• The overall number of false positives NFPall
, that is the number of frames where

any object is incorrectly indicated.

• The number of false negatives NFNj
, that is the number of frames where object

j is incorrectly missed.

• The overall number of true negatives NTNall
, that is the number of frames that

have been correctly indicated as having no objects.

• The number of positives NPj
, that is the number of frames where object j is

present.

• The overall number of positives NP, that is the number of frames where the

presence of any object is indicated.

• The number of negatives NNj
, that is the number of frames where object j is

not present.

• The overall number of negatives NN, that is the number of frames where no

object is indicated.

Note that the number of true negatives cannot be computed for a particular object

j, since the frames that have been correctly classi�ed as having no object cannot

be associated with any object. In addition, one cannot assign a false positive to

any object. Then, using the above measurements the following detection error rate

metrics are de�ned:

TP =

∑Nobjs

j=1 NTPj∑Nobjs

j=1 NPj

(7.6)

FP =
NFPall

NP

(7.7)

TN =
NTNall

NN

(7.8)

FN =

∑Nobjs

j=1 NFNj∑Nobjs

j=1 NNj

(7.9)

where Nobjs is the total number of objects.

Table 7.4 shows the resulting values for these metrics using our multi-object

testing set. The average number of true positives as de�ned by Eq. (7.6) is approx-

imately 71%, and the average number of false positives (Eq. (7.7)) is about 42%,

most of them due to the object shadows and re�ections, which are multiplied in the
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cluttered environment, as already discussed in Chapter 6. In addition, one can see

that the average value of false negatives (Eq. (7.9)) is approximately 10%, meaning

that there are not many missed frames containing abandoned objects. This indicates

that the proposed abandoned object detection system can be useful for providing

e�ective alarms of the presence of abandoned objects in a practical situation. Note

that the void entries in Table 7.4 are accounted for the fact that, in the particular

case of the multi-object videos of the VDAO databases, there are no frames without

any abandoned objects. Thus, both NTNall
and NN are zero, and TN is unde�ned.

Table 7.4: Quantitative evaluation of object-detection system's performance in terms
of the correct detection of an abandoned object (Eqs. (7.6) to (7.9)).

Data TP (%) FP (%) TN (%) FN (%)
Employed

Multiobject video 1 68 40 � 13.4
Multiobject video 2 69 42 � 9.6
Multiobject video 3 77 43 � 7.7

The proposed metrics given in Eqs. (7.6)�(7.9) are relevant for the assessment of

the overall system capabilities and its intrinsic behaviors. In a practical surveillance

scenario, however, one is mostly interested in a system that can give an alarm for all

abandoned objects. If the alarm happens in all frames that the object is present or

in just some, the practical e�ect is the same, drawing the attention of an operator

that can further analyze the surveillance video. We have performed this analysis on

the three videos from the testing set, and have veri�ed that the proposed system has

alarmed all 15 objects in the 3 videos. This suggests the usefulness of the proposed

method in a practical surveillance scenario.

One may argue that the results shown are incomplete, since they lack a compar-

ison with the state-of-the-art in abandoned object detection using moving cameras.

An interesting work about detection of abandoned objects using a moving camera

is the one in [8]. However, that method has been developed for the detection of

abandoned objects in roads, that have several particular characteristics, such as: (i)

the presence of horizon lines, (ii) objects that are far enough from the camera such

that the e�ects of parallax have very little in�uence on the results, and (iii) the

use of a GPS to synchronize the videos. Thus, the assessment of this method using

the VDAO database would not be fair, since this database does not satisfy any of

those conditions. Also, the databases used in most of the other works on abandoned

object detection using moving cameras are not public, which is another obstacle to

a fair comparison. Nevertheless, we expect that, since we made the VDAO database

public, it will be easier from now on for other authors to compare their results on

the VDAO database.

As far as complexity is concerned, for real-time applications we have to be able
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to run the detection algorithm in the time interval between two frames. If this

time interval is not large enough due to processing power restrictions, we have two

options:

• To subsample the videos. The problem with that situation is that if a video is

subsampled by a very large factor, there may not be enough frames where an

object is present in order for us to perform the temporal �ltering and voting

procedures (Eqs. (5.3) and (5.4)).

• To reduce the robot's speed and then subsample the videos. In this case there

may be both enough time for processing between frames and an adequate

number of frames for the temporal �ltering and voting.

In our experiments, we employed an Intel core I7 2630QM processor with a 2-GHz

clock rate, and with 8 GB of RAM. With this con�guration, considering that the

algorithms used in our system have not been optimized, each frame took about 4.5 s

to be processed. Considering our tests temporal subsampling, each frame should

take about 0.7 s to be processed for us to consider that the system operates in real

time. By decomposing the 4.5 s total time in each of our algorithms times, we have:

• 0.05 s for the SURF with the 1◦ absolute angular displacement restriction

(µ = 0.05 s, σ = 0.006 s and worst case = 0.06 s). The SURF alone takes

about 0.045 s. This is performed 3 times each iteration, one to register the

reference and target frames, and two others to register the target frames used

in the Temporal Filtering and Voting steps. This way, we have, here, 0.15 s;

• 0.015 s for the NCC step (µ = 0.015 s, σ = 0.003 s and worst case = 0.017 s);

• 0.36 s for the Temporal Filtering step (µ = 0.36 s, σ = 0.02 s and worst case

= 0.37 s);

• 3.9 s for the Voting step (µ = 3.9 s, σ = 0.16 s and worst case = 4.0 s);

• 0.014 s for the morphological operations (µ = 0.014 s, σ = 0.002 s and worst

case = 0.02 s).

However, if we employ the geometric registration proposed and tested in [59],

we could reduce this time by a factor of 3. Also, if we precalculate PoIs and the

homographies between the reference frames and use them instead of using the ones

calculated using the target frames in the Temporal Filtering and the Voting steps,

the PoIs would be calculated only once in each algorithm iteration, instead of thrice.

This way, instead of 0.15 s, the registration step wold take 0.015 s.
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In our Voting step, it is the many homographies among the many frames rela-

tives to the detection masks stored in the Voting Vector that are time consuming

(see the nested for loops in pseudocode 3). With V = 16, for example, we calculate

120 homographies (15 from the �rst element in the vector to the last, plus 14 from

the second element to the last, and so on). But if we employ the strategy of precal-

culating the homography matrices using the reference frames, we would only have

to apply them once in each detection mask present in the Voting vector. This way,

we would perform 15 operations instead of 120. This could reduce the 3.9 s time to

0.5 s

The same reasoning can be considered in the Temporal Filtering step (see the

nested for loops in pseudocode 2): with Ltf = 5, instead of 10 operations, we would

have 4. This way, this step would take 0.15 s to be performed.

With these mentioned optimizations, the time to process each frame could go

down to 0.7 s.

Also, all our operations are being performed sequentially. If we paralelize the

operations that allow it, we could also improve our algorithms performance.

Finally, one could always employ a faster computer ir order to obtain faster

results.

We should also take into account that we are employing a multiscale algorithm

(in our tests, we employed 4 resolutions). If the operator decides to search for

even smaller abandoned objects, more (and bigger) resolutions would be necessary,

and our processing time would go up. Likewise, if he decides to search only for

bigger objects, less resolutions would be needed (the bigger one(s) would not be

used), and the resulting processing time would go down. Also, with a di�erent

number of resolutions, and as the NCC window dimensions could be di�erent than

the K = 5 employed in our tests, the process of tuning the system's parameters

shown in Chapter 6 would have to be performed considering these new requirements

(that is, �nding even smaller objects, or not having to �nd small objects).

Figs. 7.3 and 7.4 show examples of successfully detected abandoned objects in

videos containing single objects. Fig. 7.5 shows examples of objects successfully

detected in videos containing multiple abandoned objects.
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(a) Target image (camera box) (b) Detected object (camera box)

(c) Target image (black coat) (d) Detected object (black coat)

Figure 7.3: Examples of successfully detected abandoned objects.

(a) Target image (white jar) (b) Detected object (white jar)

(c) Target image (towel) (d) Detected object (towel)

Figure 7.4: Other examples of successfully detected abandoned objects.
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(a) Target image (b) Detected objects
(bottle cap, bottle, string roll, (bottle cap, bottle, string roll,

wrench, backpack and pink backpack) wrench, backpack and pink backpack)

(c) Target image (d) Detected objects
(pink backpack, green box, umbrella, (pink backpack, green box, umbrella,

lamp-bulb box and bag) lamp-bulb box and bag)

Figure 7.5: Examples of successfully detected abandoned objects in videos contain-
ing multiple abandoned objects.
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Chapter 8

Conclusions

In this thesis, we propose a technique for real-time detection of abandoned objects

in a cluttered environment. We based our proposal in a group of techniques com-

monly employed in similar problems, such as SURF for Point of Interest detection

together with RANSAC for outlier removal and homography computation for frame

registration. We also used the well-known normalized cross-correlation for detecting

changes among frames.

We introduced a multiresolution approach that allowed us to detect multiple

abandoned objects, of di�erent apparent sizes, not only in the same video footage,

but also in the same video frames. We employed temporal �ltering to eliminate false

positives, and proposed a voting step to deal with false positives as well, but also to

(re)introduce pixels in detection masks in order to improve the temporal consistency

of the abandoned detection process, dealing with false negatives. Morphological

operations were used to remove isolated small regions in the detection masks and to

connect detection spots in the cases where a single objects is detected as multiple

ones. Also, we have proposed a method for performing the synchronization of the

reference and target videos based solely on the acquired videos, deeming the use of

external signals unnecessary

Another contribution of this research is a procedure for tuning the algorithm

parameters based on a training set containing single abandoned objects. We have

evaluated its e�ectiveness using also a single-object validation set. The database

used, the VDAO database, has been produced in a real cluttered surveillance envi-

ronment consisting of a room with energy generators and many pipes. It is composed

of 54 videos featuring a single object as well as 3 videos containing multiple objects

simultaneously shown. Other 8 videos were acquired with no objects for reference

purposes. The database was manually annotated with the help of a software tool.

This real world cluttered environment database, essential to the development

and testing of out algorithms, is publicly available at [54]. We hope that others will

use it in their researches, comparing their results with the ones presented in this
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thesis.

We have performed the overall system evaluation employing three multi-object

videos, using three sets of evaluation metrics. The �rst set of evaluation metrics used,

METE, has been proposed in [65] and is based on the percentages of superposition

of the detection masks and the ground truth for each object. The second set is based

on the overall object detection errors on a frame-by-frame basis. We proposed this

second metric for measuring the detection error rate at the object level because the

positions and the dimensions of the bounding boxes of the produced detection spots

were not very similar to the ones annotated in the database, this way providing

large values in our METE evaluations (in METE, the smaller the measurement, the

better). As what we want to measure is if the abandoned object is detect or not, the

proposed metric is more suited for our application than METE. Finally, the third set

is just the decision about the presence of an abandoned object in the environment

that would be made by an operator watching the videos with the detection masks.

In this last case, all objects in all testing set videos could be properly detected.

In brief, the original contributions of the work have been on:

i Initial video alignment using a maximum likelihood approach that precludes the

use of any external trigger signals;

ii Voting process among frames to increase detection robustness.

iii A multiresolution approach in order to cope with the detection of multiple ob-

jects of di�erent sizes in a single video. Bigger objects are detected in smaller

resolutions, and progressively smaller objects are detected in progressively bigger

resolutions;

iv The development and use of an annotated database, with more than 8 hours of

recorded video, produced in a real world cluttered environment (an industrial

plant) in order to properly train and test our algorithms;

v The development, using a training set that is representative of a given usage

scenario, of a procedure for parameter tuning based on the impact of each pa-

rameter of our method in the abandoned object detection performance. The

four analysed parameters were the NCC Binarization Threshold, the Temporal

Filtering Length, the Voting Vector Size, and the Voting Threshold;

vi The proposal of a metric in order to evaluate the obtained results.

The previously studied techniques, shown in Chapter 2, employ static or PTZ

cameras, use external triggers for video alignment, process data o�ine, are not

suited to be used in cluttered environments, or have other di�erent constraints or
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requirements not present in our problem. This way, the database had to be produced,

and the algorithms, parameter tuning procedure and evaluation metric had to be

developed in order to allow us to deal with it.

Our abandoned object detection process, then, is composed of a video synchro-

nization step, an image registration step, and a multiresolution approach to compare

the registered frames. This multiresolution approach is composed of a step do pro-

duce a binarized NCC image, a temporal �ltering, a voting step, and morphological

operations (Fig. 3.2 shows a block diagram representing the whole process).

With the techniques presented in this document, we could successfully detect

abandoned objects with good true positive rates and low false negative rates, with

the possibility of performing this task in real time. Observing the achieved results,

we believe that such a system has a good potential application in the surveillance

of cluttered environments such as industrial plants. In these kinds of environments,

with the help of a system using the techniques described in this thesis, their economic

operation could be greatly improved. Also, allowing automated operations to be

performed would help to greatly minimize labor risks to which people would normally

be subjected to in their works. This way, automatic detection of abandoned objects

with a moving camera using multiscale video analysis could help in the protection

of human lives.
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